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A B S T R A C T

In this study, the GlobalFiler1 Express amplification kit was evaluated for forensic use in 541 South
African individuals belonging to the Afrikaaner, amaXhosa,1 amaZulu,1 Asian Indian and Coloured
population groups.
Allelic frequencies, genetic diversity parameters and forensic informative metrics were calculated for

each population. A total of 301 alleles were observed ranging between 5 and 44.2 repeat units, 43 were
rarely observed partial repeats and seven were novel. The combined match probability (CMP) ranged
from 2.21 �10�26 (Coloured) to 5.21 �10�25 (AmaZulu), and the combined power of exclusion (CPE)
0.9999999978 (Afrikaaner) to 0.99999999979 (AmaZulu) respectively. No significant departures from
Hardy-Weinberg equilibrium (HWE) were observed after Bonferroni correction.
Strong evidence of genetic structure was detected using the coancestry coefficient u, Analysis of

Molecular Variance (AMOVA) and an unsupervised Bayesian clustering method (STRUCTURE). The
efficiency of assignment of individuals to population groups was evaluated by applying likelihood ratios
with WHICHRUN, and the individual ancestral membership probabilities inferred by STRUCTURE.
Likelihood ratios performed the best in the assignment of individuals to population groups. Signs of
positive selection were detected for TH01 and D13S317 and purifying/balancing selection for locus SE33.
These three loci also displayed the largest informativeness for assignment (In) values.
The results of this study supports the use of the GlobalFiler1 STR profiling kit for forensic applications

in South Africa with the additional capability to predict ethnicity or continental origin of a random
sample.

ã 2016 Published by Elsevier Ireland Ltd.
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1. Introduction

South Africa is located at the southernmost point of the African
continent and the ancestries of its inhabitants have diverse
Abbreviations: AIMs, ancestry informative markers; AMOVA, analysis of
molecular variance analysis; BIC, Bayesian inference of clusters; CMP, combined
match probability; CPE, combined power of exclusion; CPI, combined paternity
index; DC, discrimination capacity; FDR, false discovery rate; He, expected
heterozygosity; HGDP, human genome diversity project; Ho, observed heterozy-
gosity; HWE, Hardy Weinberg equilibrium; In, informativeness for assignment;
InDels, insertions and deletions; Log10(L), logarithm of likelihood ratio; PE, power of
exclusion; PIC, polymorphic information content; RMP, random match probability;
STR, short tandem repeats; TPI, typical paternity index; RST, R-statistic; FST, F-
statistic.
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1 Prefixes ama- and isi- are used within Bantu populations to indicate population
group and language respectively.
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geographic origins. The autochthonous population groups of South
Africa are the click-speaking Khoisan, and the Bantus (black
Africans). Skeletal evidence indicates the presence of the Khoisan
in South Africa dating between 2000 and 4500 years ago [1–3].
Presently, the Khoisan populations constitute a minority of the
total South African population. The Bantu-speaking groups which
constitute 79% of the total population [4], entered South Africa via
the Eastern coastal routes prior to the fifth century [5]. Both groups
have historically been subject to racial killing by indigenous and
foreign populations. In 1652, Dutch Europeans moored on the
shores of South Africa to set up a refreshment settlement for the
Dutch East India Company. Following the Dutch colonists,
inhabitants from several other European countries (the majority
of British, French and German descent) settled in South Africa and
their descendants today constitute 8.9% of the overall South
African inhabitants [4]. The Afrikaaners are Southern African,
descendants of Dutch settlers who speak the Dutch-derived
language: Afrikaans. The onset of colonisation resulted in the trade
of slaves from Central Africa, Eastern Africa and South East Asia [6].
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Commencing in 1860 and continuing until 1902, the local slave
force in Durban was augmented by the influx of indentured
labourers shipped from India [7] which at that time was under
British rule. The South African Indian population presently
constitute 2.5% of South Africa’s inhabitants [4]. The Coloured
populations are the resultant progeny of several centuries of
admixture between indigenous South African and immigrant
population groups [8–10], and constitute 8.9% of the South African
population [4]. The admixture present within the Coloured
subpopulations is not homogenous; however, they display a large
European ancestral contribution with varying contributions from
Khoisan, Bantu and Asian Indian ancestries [11,12].

The AmpFlSTR1 Identifiler1 Plus (Thermo Fisher Scientific)
autosomal STR genotyping kit is routinely used in forensics and
paternity casework in South Africa [13–15]. This kit displays a low
random match probability for the Coloured, Bantu, Khoisan
populations from South Africa [13,16]. This study however utilises
the GlobalFiler1 kit which implements a 6-dye system to
scrutinise 21 autosomal STRs and 3 gender specific markers
(D3S1358; vWA; D16S539; CSF1PO; TPOX; D8S1179; D21S11;
D18S51; D2S441; D19S433; TH01; FGA; D22S1045; D5S818;
D13S317; D7S820; SE33; D10S1248; D1S1656; D12S391;
D2S1338; Y InDel; DYS391; and Amelogenin). This kit showed a
high level of discrimination within American [17], Japanese [18],
Mexican [19], Southern Portuguese [20], and the United Arab
Emirates [21] populations.

In this study, the GlobalFiler1 Express DNA amplification kit
was evaluated for use in forensic applications in South Africa. The
ascertainment bias in the selection of STR loci for forensic
applications implies that lower genetic differentiation is expected
than with randomly selected STRs [22], however Algee-Hewitt
et al. [23] demonstrated otherwise. The main contributors to
genetic differentiation between populations using forensic
markers are thus expected to be historical events and demo-
graphic processes leading to genetic drift. The evaluation of
population structure and ancestry information with STR forensic
markers has been extensively reported [22–29]. Given the
complexity of the ethnic composition in South Africa, the
population structure was evaluated using different methods:
summary statistics (coancestry coefficient u, RST and AMOVA) and
STRUCTURE.

Furthermore, we investigated the possibility of loci being
subjected to selection processes using the traditional and
hierarchical FDIST2 methods and a Bayesian approach. The final
component of the study was to investigate the possibility of the
assignment of individuals to population groups and this was
evaluated using the log likelihood ratios (Log10(L)) of population
probabilities with WHICHRUN, as well as from the ancestral
components with STRUCTURE. The implications of our results for
forensic identification in South Africa are discussed.

2. Materials and methods

2.1. Samples and DNA purification

The sampling procedure was approved by the Ethics Commit-
tee of the University of the Western Cape (10/3/39). Buccal swabs
were collected from 541 consenting individuals belonging to five
South African population groups, namely Afrikaaner (n = 106),
Asian Indian (n = 102), Cape Coloured (n = 113), amaXhosa
(n = 120) or amaZulu (n = 100). The Cape Coloured population
group is referred to as “Coloured” throughout. Genomic DNA was
extracted from cotton swabs using a modified salting out method
[30]. The quality and quantity of the extracted DNA was estimated
using a Nanodrop ND-2000 spectrophotometer (Thermo Fisher
Scientific).
2.2. Amplification and genotyping

Amplification of genomic DNA (2 ng) was performed as per the
GlobalFiler1 Express DNA amplification kit’s protocol [31] at half
reaction volume and cycled in a Veriti thermocycler (Thermo
Fisher Scientific). Liz 600 internal size standard (Thermo Fisher
Scientific) was run alongside amplified products, resolved on an
ABI 3500 (Thermo Fisher Scientific), and raw data was captured
with 3500 Series Data Collection Software 2 (Thermo Fisher
Scientific). STR genotyping was completed using GeneMapper1

IDX v1.4 software (Thermo Fisher Scientific). The above work was
conducted as per the quality control guidelines outlined by
Schneider [32]. The individuals displaying tri-allelic patterns or
rare variants were subject to reamplification for confirmation and
tri-alleles were excluded from further statistical analysis.

2.3. Statistical analysis

2.3.1. Genetic diversity and forensic parameters
Genetic diversity parameters including allele frequency, ob-

served (Ho) and expected (He) heterozygosity were estimated
using Gstudio [33], in R v3.1.3 (http://www.r-project.org/), and
Hardy-Weinberg equilibrium using Arlequin v3.5 [34]. Bonferroni
correction [35] was applied to the probability of HWE to determine
significant deviations. Forensic metrics, namely: random match
probability (RMP), combined match probability, discrimination
capacity (DC), polymorphic information content (PIC) [36], typical
paternity index (TPI), combined paternity index (CPI), power of
exclusion (PE), and combined power of exclusion (CPE) were
calculated using Gstudio [33], in R v3.1.3 with an in-house script.

2.3.2. Population structure
To evaluate the presence of genetic structure between

population groups, several statistical methods were implemented.
Coancestry between populations were calculated implementing
Weir and Cockerham’s u [37], at a 5% significance level over 10 000
permutations as implemented in Genetix v4.05 [38]. Hierarchical
AMOVA was performed to quantify the partition of genetic
variation of the South African population groups placed into four
groups (Afrikaaner, Asian Indian, Coloured and Bantu which is
constituted by the amaXhosa and amaZulu groups) with Arlequin
v3.5 [34], using RST like distance matrix and running 50 000
permutations.

The Bayesian clustering method in STRUCTURE v.2.3.4 [39], was
applied in an unsupervised manner implementing admixture and
correlated allele frequencies parameters, with 600 000 repeats after
a burn-in of 100 000. Three iterations for each K from 1 to 6 were
run and the optimal number for K was estimated using Evanno’s
DK method [40]. The iterations for each K were merged using
CLUMPP [41], and the ancestral components plotted with Distruct
[42], using the online package Clumpak [43].

2.3.3. Ancestry informative loci
The contribution of each locus to population differentiation was

evaluated with the frequentist method of Rosenberg In [44],
calculated using Infocalc v1.1 [45], excluding the admixed Coloured
population.

2.3.4. Investigation of loci under processes of selection
To investigate whether any loci were under processes of

selection, we applied the coalescence-based approach to identify
FST outliers [46], implemented in Lositan [47], and in an
hierarchical manner [48], as implemented in Arlequin v3.5 [34].
Additionally, a Bayesian approach was used as implemented in
BayeScan v2.1 [49]. The population structure used for all selection
tests were determined by Beaumont & Nichols’ suggestion for the

http://www.r-project.org/


Table 1
Tri-allelic patterns observed in South African populations. The number of tri-alleles
observed per locus, the pattern observed and population group.

Locus N� observed Alleles Type Population

D1S1656 1 13, 14, 15 II Coloured
TPOX 4 9, 10, 11 II Coloured

8, 10, 11 II AmaXhosa
6, 8, 10 II AmaZulu
6, 9, 10 II AmaZulu

vWA 1 14, 17, 20 II Asian Indian
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FDIST2 method [46], and the hierarchical equivalent version by
Excoffier et al. [48]. The criteria stipulate using a large number of
markers (�20), with large heterozygosity values and large sample
sizes from well-defined population groups. Therefore, only three
population groups (Afrikaaner, Asian Indian and Bantu) were used
for the selection tests.

Analysis with Lositan was conducted as suggested by Antao
et al. [47], calculating a neutral FST by removing probable non-
neutral loci after calculating an initial mean FST over 1 000 000
iterations, assuming a stepwise-mutation model. The calculated
mean neutral FSTwas then used in a second run, including all loci to
identify loci deviating from neutrality expectations, using a 0.99
confidence interval and a false discovery rate (FDR) of 0.1. The
hierarchical island model of Excoffier et al. [48], was implemented
assuming 20 groups, 200 demes over 20 000 simulations and loci
were considered under selection when the Rst value displayed a p-
value below 5%. The Bayesian approach to detect loci departing
from neutrality was implemented in BayeScan v2.1 [49]. BayeScan
estimates the locus-specific (a) and population-specific (b)
components of FST, the probability of a significantly deviating
from zero, the posterior odds (PO) as the ratio of posterior
probabilities between models (assuming selection, and neutrality),
and the q-values per locus as the minimum FDR at which this locus
may become significant. The program was run using equal
weighting for each of the three population groups. Model
parameters were tuned using 20 pilot runs with 5000 steps.
Following this, a burn-in of 5000 iterations was followed by 100
000 iterations with sample sizes of 5000 and ten thinning
intervals. The prior odds to neutral model were set to ten and
the Log10(PO) values were evaluated at a 1% FDR.

2.3.5. Assignment
Individual assignments were evaluated by applying a Log

likelihood approach and a cluster inference method assuming two
(African or non-African) or three (European, Asian Indian or
African) population groups. For the first evaluation, all individuals
were jackknifed and likelihoods of their genotype probabilities
were estimated given the allele frequencies for the assumed
scenarios of two or three population groups (see above) using
Log10(L) of assignment ratios as in [50]. A cut off value of 0.602
(Log104) was chosen as FDR. For the cluster analysis method,
criteria similar to that of Phillips et al. [24,51] was implemented
whereby an assignment cut-off of 0.7 for cluster membership
probability was implemented. Individuals were considered
“correctly assigned” when the assignment corresponded with
the self-declared population group (Log10(L) > 0.602; cluster
membership probability > 0.7). The error rate of assignment
was calculated as the fraction of individuals whose assigned
population differed from the self-declared population. Individu-
als not matching these criteria were considered unassigned
(admixed).

3. Results and discussion

3.1. Rare variant, and off-ladder alleles

Alleles falling within virtual bins were classified as “rare
variants”, or when no bin was present they were classified as “off-
ladder” variants. A total of 43 rare variant alleles and seven novel
off-ladder alleles were observed for GlobalFiler1’s allelic ladder
(BIN set v1.2) in this study (Supplementary Table 1). The high
frequency of the observed rare variant alleles in the indigenous
South African population groups is likely a result of the dearth of
genetic population data available for South Africa for these loci.
The observed novel off-ladder alleles were all partial repeats and
observed in the Afrikaaner (D22S1045 allele 13.2), Coloured
(D1S1656 allele 16.1) and Bantu (SE33 alleles 6.2, 21.3, 22.3 and
24.1 and D8S1179 allele 14.3) population groups. The allelic
frequencies of all loci for all populations are shown in Supplemen-
tary Table 2A and individual population groups in Supplementary
Table 2B–F.

3.2. Tri-allelic patterns

Tri-allelic patterns have been intensively researched and the
various patterns have been well described [52–54]. Presently
two patterns are known: type 1 (three imbalanced alleles) and
type 2 (one imbalanced allele peak). Tri-allelic genotypes have
also been identified to be of significant importance in paternity as
well as forensic cases [53,55,56]. Tri-allelic genotypes, while a
rare variant, do occur frequently, with 388 variants reported
for autosomal STRs as of 09/11/2015 in the NIST STR database
(http://www.cstl.nist.gov/biotech/strbase/tri_tab.htm) with
TPOX (19 variants) and FGA (40 variants) displaying the most
observations and several hundred profiles from previous studies
[15,53,57,58]. The genotypes of six individuals who displayed tri-
allelic patterns for loci D1S1656, TPOX and vWA are shown in
Table 1.

Type 2 patterns were the only variants observed in this study
(Supplementary Fig. 1). The tri-allelic patterning of the TPOX locus
is the best characterised and studied with the extra allele
hypothesised as being a translocation of allele 10 onto the X-
Chromosome [15,53]. All individuals displaying tri-allelic patterns
in this study presented this allele. Frequencies of tri-alleles, for the
locus TPOX, below 0.006 were observed in non-African regions
[53–55,57,59]. Greater frequencies (0.004–0.045) have been
observed in African populations [15,60–62], and the Dominican
republic [58]. Interestingly, Muro et al. [63], and Takeshita et al.
[64], reported no tri-allelic variants for the Ovambo population in
Namibia. A frequency increment by two orders of magnitude was
reported for African-Americans [54], suggesting this pattern might
occur in higher frequency in Western Africa since it is the
predominant ancestry of African Americans [12].

The frequency of tri-alleles for the locus TPOX in the current
study is in agreement with previous studies [51,56–58], with all
observed tri-alleles originating in the indigenous South African
populations: 0.9% and 1.5% for the Coloured and Bantu population
groups respectively. Recent studies [15,53,58] have shown that
due to the TPOX translocation onto the X-chromosome, males will
transmit an extra allele to their daughters, while tri-allelic
females have a 50% probability to transmit their extra X-linked
allele to their progeny. Lane et al. [15], also suggested that the
translocation of the extra TPOX allele with the X-chromosome
occurred prior to the Bantu expansion based on the frequencies of
tri-allelic patterns observed between the Western and Eastern
Bantu populations. Therefore, taking into account the method of
transmittance and estimated time of occurrence [15] we
hypothesise that the driving force behind the high frequency of
tri-allelic TPOX genotypes in African populations is the cultural
practice of polygamy.

http://www.cstl.nist.gov/biotech/strbase/tri_tab.htm


Table 2
Pairwise population u values for coancestry. Significant p-values (<0.05) are
indicated with an asterisk (*).

Population Coloured AmaXhosa Afrikaaner Asian Indian AmaZulu

Coloured 0 0.01194* 0.0089* 0.00617* 0.0131*
AmaXhosa 0 0.02914* 0.02958* 0.0001
Afrikaaner 0 0.01732* 0.02867*
Asian Indian 0 0.02761*
AmaZulu 0
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3.3. Genetic diversity and forensic statistic metrics

The genetic diversity parameters for all five populations tested
are shown in Supplementary Table 3. No locus showed significant
deviation from Hardy-Weinberg equilibrium after Bonferroni
correction [35] (Supplementary Table 3). The computed forensic
metrics are shown in Supplementary Table 4. The least and most
polymorphic loci were TPOX and SE33 displaying PIC values of 0.56
and 0.94 respectively. The probability of obtaining a random match
between individuals (CMP) ranged between 2.21 �10�26 (Col-
oured), and 5.212 � 10�25 (amaZulu), and the CPE ranged from
0.9999999978 (Afrikaaner) to 0.99999999979 (amaZulu). The
large CPE and small CMP values supports the use of GlobalFiler1

in individual identification within South African populations. In
comparison with Identifiler1 Plus, GlobalFiler1 achieves four and
seven larger orders of magnitude for CPE and CMP respectively
[13,14,16,20]. Additionally, GlobalFiler1 displayed large likelihoods
for CPI ranging from 3.41 �108 (Afrikaaner) to 5.3 � 109 (AmaZulu)
indicating that this kit will be of value in paternity cases.

3.4. Population structure

In this section, we investigated the degree of differentiation
between populations. To investigate the genetic heterogeneity
between populations, pairwise u values for coancestry were
calculated and were found to be significant for all populations at
the 5% level except between the amaXhosa and amaZulu groups
(Table 2).

This coancestry result can be explained by the two groups
belonging, linguistically, to the same Nguni subgroup of the
Bantoid macrogroup [65], and they are also geographically in close
proximity. Genetic similarity between the amaXhosa and amaZulu
has also previously been identified using both Profiler plusTM [28],
and Investigator DIPplex1 kits [66] using the same individuals in
the latter. These two Nguni population groups were therefore
grouped into one large group named “Bantu” for hierarchical
AMOVA between the Afrikaaner, Asian Indian, Coloured and Bantu
population groups. AMOVA indicated that 93.36% of the variation is
contained within populations, 6.3% among groups, and 0.34%
between populations within groups (Table 3). The presence of
significant population structure between the four groups was also
indicated by a large RST value (0.0664, p-value = 0.00000).

The results of STRUCTURE (Fig. 1), display the genetic
substructure between the Afrikaaner, Asian Indian, Coloured and
Bantu populations and also provides evidence of admixture within
the Coloured population (Fig. 1) as previously shown by [11,12,66].
The optimal K was determined to be three using the Evanno
method indicating that each cluster was representative of one of
three continental groups (European, Asian Indian or African).
Individuals similarly appear to be grouped as African or non-
African when K = 2 (Fig. 1). The similarities between the amaXhosa
and amaZulu populations are shown in all Ks > 1 with the majority
of individuals from both population groups getting assigned to the
same cluster(s).

The major ancestral contributor to the Coloured population, in
this study, was observed as originating from Asian Indian (K = 3)
and non-African (K = 2) ancestries (Supplementary Fig. 2). The
Table 3
AMOVA results of four South African population groups (Afrikaaner, Asian Indian, Colo

Source of Variation d.f. Sum of squares Varian

Among groups 3 492304.6 581.73
Among populations within groups 1 15273.753 30.957
Within populations 1065 9179092.253 8618.8
Total 1069 9686670.606 9231.5
Coloured population has previously been shown to exhibit high
levels of admixture with the main contributors differing between
studies which used SNPs [11], microsatellites and InDels [12], and
InDels [66].

3.5. Ancestry informative loci

Several parameters can be implemented to identify loci which
drive differentiation between populations such as absolute allele
frequency differences (d), F statistic (FST), Fisher Information
Curvature Criterion (FIC), Shannon Information Content (SIC) and
Informativeness for assignment (In). Ding et al. [67] showed that In
and FST are highly correlated, and provided conservative values for
the best performance of the above-mentioned parameters for
binary markers. Inwas therefore implemented in this evaluation of
ancestry informative STR loci. Rosenberg et al. [44] and Listman
et al. [68] state that dinucleotide STRs are the most informative due
to their stability. However, GlobalFiler1 or any other forensic kit do
not contain dinucleotide repeats. The most informative (In) locus
was also the most polymorphic locus SE33 in this study and [69].
The 5 most informative markers identified in this study were SE33,
D1S1656, D21S11, TH01 and D8S1179 (Supplementary Table 5). The
largest In was 0.168 and suggests the individual markers are not
optimal for inference of ancestry.

3.6. Selection

For the analysis of selective pressure over these loci, we applied
different methods based on different assumptions. FDIST2 [46], is
based on the identification of outliers from the simulated null
distribution of FST given an infinite island model of population
structure, with demes of equal sizes and migration rates. Excoffier
et al. [48], improved the FDIST2 method by incorporating a
hierarchical island model, because of the trend of hierarchical
population structure and bottlenecks to render false positives. The
Bayesian method in BayeScan models FST allowing for locus and
population effect, permits unequal gene flow between demes
differentiated from a common ancestral population and is robust
under different demographic scenarios and small sample sizes
[49]. The performance of these methods has been evaluated using
simulation studies [70], showing higher Type I and Type II error
rates with the hierarchical FDIST2 method, and the lowest Type I
error with BayeScan and FDIST2.

It is worth noting that the results of these tests may not indicate
a direct effect on the microsatellites but a hitchhiking effect from
the genomic regions they are linked to. Discrepant results among
different methods might originate from deviations from the
ured and Bantu).

ce components Percentage of variation Fixation indices (p-values)

2 Va 6.3 RCT 0.06302 (0.10003)
61 Vb 0.34 RSC 0.00358 (0.07544)
65 Vc 93.36 RST 0.06637 (0.00000)
5558



Fig. 1. STRUCTURE results for GlobalFiler1 genotypic data from South African population groups (Afrikaaner, Asian Indian, Coloured, amaXhosa and amaZulu). The individual
ancestral components were obtained by merging results of three iterations for K = 1–6.
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assumptions these methods are based on, or limited power to
detect low levels of selection [70]. Consistent results among the
methods lend support to the hypothesis of the loci being under
selective pressure.

Our results are compatible with the hypothesis that locus TH01
(classic outlier test) and D13S317 (hierarchical test) are affected by
positive selection (Supplementary Fig. 3A and B). The locus TH01 is
located within intron 1 of the human tyrosine hydroxylase gene on
chromosome 11 (11p15.5), the protein of which is responsible for
the conversion of tyrosine to L-Dopamine. The locus D13S317 is
located on the long arm of chromosome 13 (13q31.1) and is
located > 100 kb from the nearest gene coding region. The Bayesian
method displayed a Log10(PO) > 2 with a negative a value for locus
SE33 which is indicative of balancing/purifying selection (Supple-
mentary Fig. 3C). Locus SE33 is located on the long arm of
chromosome 6 (6q14) and codes a b-actin related pseudogene
which is believed to be functionless [71]. At the less stringent FDR
of 5%, loci vWA and FGA showed “strong” and “very strong” signs of
purifying/balancing selection respectively based on the scales of
Jeffreys [72] and Foll [73]. The loci vWA and FGA are found in
introns of functional genes. A summary of all three methods for all
loci is shown in Supplementary Table 6. It is notable that the three
loci with the lowest FST, closer to the ‘balancing selection’ zone
defined by Lositan, are identified by BayeScan as being under
purifying/balancing selection, whereas TH01 shows the highest
averaged posterior FST. As expected, the loci identified here as being
under positive selection processes are among the loci with highest
ancestry information content, discussed in the previous section.

3.7. Assignment

The assignment of individuals to population groups is impor-
tant for the identification of human remains in mass disasters
[24,74], identification of possible criminal suspects [24,29],
biobanking [75] and for evaluation of the weight of evidence
[76,77]. The validity of the assignment of individuals to population
groups using GlobalFiler1 was evaluated using likelihood ratios in
WHICHRUN, and ancestral proportions in STRUCTURE (Supple-
mentary Table 7). The assignment tests were investigated
assuming the assignment to either two (African and non-Africa
in Supplementary Table 7A) or three (European, Asian Indian and
African in Supplementary Table 7B) population groups.

For the assignment tests assuming two population groups
(Supplementary Table 7A), both methods displayed large rates of
correct assignment (99.52–100%), with STRUCTURE being the most
efficient in detecting admixture (unassigned individuals). A similar
trend was observed for the analyses assuming three population
groups (Supplementary Table 7B), with both methods showing
large rates of correct assignment. No cross-assignment was
observed between African and European population groups
(Supplementary Table 7B) and WHICHRUN was also the most
efficient in distinguishing individuals with Indian ancestry from
those with European ancestry. The similarities between the two
methods are observed for both K = 2 and 3 as shown in Fig. 2A and B
respectively.

The negligible error rate of assignment (0.48%) when assuming
three population groups was due to a single Bantu individual being
assigned to the Asian Indian population. This individual self-
identified as an amaZulu who was originally from the Kwa-Zulu
Natal province, which historically had a large influx of Asian Indian
slaves. This type of cross-assignment error was also observed in the
work of Phillips et al. [51] with forensic STR markers, and Londin
et al. [75] with ancestry-informative STRs. Hefke et al. [66] showed
similar population substructure and assignment using STRUCTURE
with larger cross-assignment error rates (<4%) between African
and non-African population groups when assuming three popula-
tion groups. The error rate of assignment in this study, however
low, may exist due to the recent admixture between the population
groups, or more likely due to the suboptimal efficiency of these
genetic markers for population assignment. This is because these



Fig. 2. A. The assignment ratios of individuals to groups using likelihood ratios, assuming two and three population groups, is plotted against cluster membership
probabilities from STRUCTURE for K = 2 (A) and 3 (B) respectively. STRUCTURE assigned ancestral components to clusters with either non-African (Blue bars) or African
(Orange bars) ancestry. The Log10(L) assignment ratios between non-African/African (white dots) and Africa/non-African (black dots) were calculated by jackknifing
individuals from non-African (Afrikaaner, Asian Indian) and African population groups. The Coloured individuals were assigned to either of the two population groups using
likelihood ratios. The assignment of an individual to a population group was implemented at a 4 times more likely cut-off value (red dashed line). Individuals with assignment
ratios below Log10(L) < 0.602 (red dashed line) were deemed admixed. B. The assignment ratios of individuals to groups using likelihood ratios, assuming three population
groups, is plotted against the cluster membership probabilities from STRUCTURE for K = 3. STRUCTURE assigned ancestral components to clusters with either European (Blue
bars), Asian Indian (Maroon bars) or African (Orange bars) ancestry. Log10(L) ratios (European/other – light Blue diamond, Asian Indian/other – Yellow/maroon triangles and
Bantu/other – black plus) were calculated by jackknifing individuals from Afrikaaner, Asian Indian and Bantu population groups. The Coloured individuals were assigned to
either of the three population groups using likelihood ratios. The assignment of an individual to a population group was implemented at a 4 times more likely cut-off value
(red dashed line). Individuals with all assignment ratios below the red dashed lines (Log10(L) < 0.602) were not assigned and deemed admixed. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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markers have not been selected for their ancestry information
content, as observed by Barnholtz-Sloan et al. [78].

In summary, the advantages of using WHICHRUN over
STRUCTURE for population assignment are: higher rates of
assignment, lower error rates and a greatly reduced computational
time.

4. Conclusion

This study has thoroughly evaluated the GlobalFiler1 Express
DNA amplification kit for use in forensics applications within South
African. The observation of several off-ladder alleles in a small
subset of a majority population of South Africa underlines the need
for further investigation into African polymorphisms. The kit
showed increased levels of discrimination capacity and lower
probability of random matches for African populations than with
the Identifiler1 Plus STR kit. In this study, GlobalFiler1 also showed
large paternity index values for South African populations
indicating that the kit is a valuable asset in paternity testing.

In addition to the above, significant genetic substructure
between South African populations was also identified. This
differentiation appears to be driven by selection processes on
highly informative markers. This observation can be beneficial in
forensics investigations as the possibility of population group
prediction is possible by evaluating the ancestry informative
content of the autosomal STR markers. The large correct
assignment rate and almost negligible errors when assuming
two population groups (<0.5%) makes GlobalFiler1 an important
tool for forensic analysts. Furthermore, several of the loci
containing the highest ancestry informative content, produce
amplicons below 220 bp. In cases of degraded human remains or
mass disasters, the profiles obtained with this kit could be used for
group prediction applying a simple likelihood ratio method.
GlobalFiler1 is therefore highly recommended for human identi-
fication and paternity testing within South Africa.
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