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ABSTRACT
In this paper, we present a framework for assessing the effect of non-stationary Gaus-
sian noise and radio frequency interference (RFI) on the signal to noise ratio, the
number of false positives detected per true positive and the sensitivity of standard
pulsar search pipelines. The results highlight the necessity to develop algorithms that
are able to identify and remove non-stationary variations from the data before RFI ex-
cision and searching is performed in order to limit false positive detections. The results
also show that the spectrum whitening algorithms currently employed, severely affect
the efficiency of pulsar search pipelines by reducing their sensitivity to long period
pulsars.

Key words: methods: analytical – methods: data analysis – methods: statistical –
(stars:) pulsars: general.

1 INTRODUCTION

Pulsars provide a wealth of information about neutron
star physics, the interstellar medium and stellar evolution
(Lorimer & Kramer 2005). Furthermore, their clock-like
properties allow for sensitive measurements of their orbital
dynamics which are used to constrain the equation of state
of ultra-dense matter (Hessels et al. 2006; Demorest et al.
2010), probe the physics of binary evolution and test the pre-
dictions of General Relativity (Antoniadis 2014). The con-
tinued discovery of new pulsars through pulsar surveys is
paramount if we are to improve our understanding of the
radio pulsar population as well as expand research in the
aforementioned areas. Consequently, pulsar surveys remain
a driving force in the field of astrophysics.

Pulsar research has in the past been driven by a number
of large-scale surveys carried out with various radio tele-
scopes. Surveys of the Galactic plane (Manchester et al.
2001; Johnston et al. 1992), supernova remnants (Seward
& Harnden Jr 1982), globular clusters (Manchester et al.
1991) and all-sky surveys (Manchester et al. 1996; Cordes
et al. 2006a) have led to the discovery of more than 2200
pulsars.

Pulsar population synthesis models (Lorimer 2011),
based on pulsar surveys and the known pulsar population,
are used to predict the number of pulsars expected to be dis-
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covered in future pulsar surveys (Lorimer et al. 2006; Bates
et al. 2014). These techniques are also used to estimate the
number of potentially detectable (i.e. those that are beam-
ing towards us as well as being luminous enough) normal
pulsars and millisecond pulsars (MSPs) in the Galaxy.

The number of pulsars actually discovered in recent sur-
veys (Swiggum et al. 2014; Lazarus et al. 2015) has fallen
well short of the number predicted by the aforementioned
estimation techniques. It was predicted that the Arecibo
PALFA Precursor survey (Swiggum et al. 2014) should have
detected 490+160

−115 normal pulsars and 12+70
−5 millisecond pul-

sars (MSPs) by the beginning of 2014, but managed to detect
only 283 normal pulsars and 31 MSPs. The full PALFA sur-
vey, when complete, is expected to have detected 1000+330

−230
normal pulsars and 30+200

−20 MSPs. However, close to comple-
tion it has only managed to detect ∼ 443 normal pulsar and
∼ 40 MSPs respectively (Lazarus et al. 2015). It is worth not-
ing that the largest discrepancy between predictions and de-
tections is for normal pulsars, i.e. pulsars with long periods.
Furthermore, it is estimated that there are between 82,000
to 143,000 detectable normal pulsars and 9,000 to 100,000
detectable MSPs in the Galactic disk alone (Lorimer et al.
2006; Swiggum et al. 2014), yet to date we have only discov-
ered some 2200 pulsars (Hobbs et al. 2004). The deficiencies
in pulsar detections have been attributed to RFI and scintil-
lation (Lorimer 2011), both these effects are not addressed
in current population synthesis models (Levin et al. 2013).

Electromagnetic radiation with frequencies between
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2 E. van Heerden et al.

circa 10 kHz and 100 GHz is referred to as radio frequency
(RF). Radio frequency interference (RFI) in the context of
a pulsar survey is any signal or disturbance emitted from a
man-made source either extra-terrestrial or terrestrial that
corrupts the measurements of data obtained. The spatial
and temporal variability of RFI make it difficult to iden-
tify and to mitigate. If RFI is not dealt with then spurious
trends may occur in the data collected, thereby decreasing
the signal to noise ratio (SNR) and making it more difficult,
or impossible, to detect new pulsars.

All-sky pulsar surveys, such as the Arecibo PALFA sur-
vey, are more often than not conducted in the L-band (the
1 to 2 GHz range of the radio spectrum), more specifically
the frequency range 1.2 GHz to 1.6 GHz (Lazarus et al.
2015; Burgay et al. 2006). The frequency range 1.2 GHz to
1.6 GHz happens to overlap with frequencies that have been
earmarked for other applications such as satellite navigation,
telecommunication, aircraft surveillance, amateur radio and
digital audio broadcasting (Regulations 2008). Most of the
aforementioned RFI sources severely decrease the sensitivity
of surveys conducted in the L-band.

Spectrum occupancy in the L-band, depicted in Fig-
ure 1, is dominated by RFI mainly from satellites. The
colours in Figure 1 represent interference from different
satellites: red - Afristar, yellow - Thuraya, blue - Inmarsat,
cyan - Satellite Radio, grey - IRIDIUM, green - {Galileo,
Beidou, GPS, GLONASS} and grey - {Fengun, Meteosat}.

Figure 1. Typical spectrum occupancy in the L-band. Source:

Square Kilometre Array South Africa

In a recent study by Lazarus et al. (2015), synthetic
pulsars with various periods and pulse widths were injected
into actual PALFA survey data with the aim to assess the
effect of RFI and red noise1 on the survey sensitivity. The
study found that there is a significant degradation in sensi-
tivity of between 10 % and a factor of 2 for pulsars with spin
periods between 0.1 s and 2 s and dispersion measure (DM)
> 150 pc cm−3 due to red noise induced by RFI, receiver
gain fluctuations and opacity variations of the atmosphere.
Additionally, a population synthesis analysis based on the

1 Red noise is a type of signal noise with a power spectral density
inversely proportional to f 2, which means it has more energy at

lower frequencies.

empirical survey sensitivity found that 35± 3 % of pulsars,
with predominantly long periods, are missed compared to
expectations which are based on the theoretical sensitivity
curves as derived from the radiometer equation. With these
results the authors conclude that the reduced sensitivity to
long-period pulsars is mainly attributed to red noise. All the
results were obtained despite applying a red noise suppres-
sion algorithm.

In this paper we show, supplementary to the Lazarus
et al. (2015) study, that frequency dependent noise such as
red noise indeed reduces the SNR of long-period pulsars and
increases the number of false detections (Lyon et al. 2016).
Moreover, we offer an explanation as to how the red noise
suppression technique in the Lazarus et al. (2015) paper ac-
tually contributed to the reduced sensitivity of long-period
pulsars by explaining what the algorithm does and quanti-
fying the loss of signal to noise ratio when the algorithm is
applied.

It is evident, from the number of pulsars missed, that
RFI and frequency dependent noise greatly affect the sensi-
tivity of radio telescopes to normal pulsars, i.e. pulsars with
long periods. Therefore, the aims of this study are:

(a) to quantify the effect that non-stationary Gaussian
noise and RFI has on the performance of pulsar search
pipelines;

(b) to examine the effectiveness of the current spectrum
whitening methods available in pulsar search software
suites;

(c) to determine if detrending the data with a moving av-
erage filter before searching for pulsars is effective;

(d) to examine the effectiveness of the current RFI detec-
tion and mitigation methods available in pulsar search
software suites.

(e) to investigate the reduction in sensitivity as a func-
tion of both the correlation length of the non-stationary
noise and the pulse period.

We start in § 2.2 by describing the building blocks of
a typical pulsar search pipeline for normal pulsars. There
exist various software implementations of this pipeline. The
ones used in this analysis are introduced in § 2.3. Although
these software packages differ in a number of ways, the way
in which they deal with frequency dependent noise is of par-
ticular interest for this study. Therefore, in section § 2.4
the different spectrum whitening algorithms available in the
software packages considered are mathematically described.
The method used for generating the synthetic filterbank files
with non-stationary Gaussian noise are detailed in § 3.1.1
and the RFI added to some of the files can be found in
§ 3.1.2. In § 3.2.1 to § 3.2.4 we introduce the experimental
framework we used for generating and processing filterbank
files containing different noise processes.

The aim of this framework is to assess the ability of
different pulsar search pipelines to detect pulsars embedded
in non-stationary Gaussian noise amidst RFI. It is worth
noting that this study differs from the Lazarus et al. (2015)
study in that the aim is to quantify the sensitivity of dif-
ferent pulsar search pipelines as a function of noise correla-
tion length and pulsar spin period, whereas the latter aimed
at quantifying the Arecibo PALFA survey’s sensitivity as a
function of DM and pulsar spin period. Finally, the results,
discussion and conclusions can be found in § 4 to § 6.

MNRAS 000, 1–18 (2016)



Performance Assessment of Pulsar Search Pipelines 3

2 SEARCH PROCESS FOR NORMAL
PULSARS

In order to determine how phenomena like RFI and non-
stationary noise can hinder pulsar detections it is necessary
to first understand the nature of the acquired data and the
functionality of each of the building blocks that form part
of a pulsar search pipeline. Therefore, a detailed descrip-
tion of a typical pulsar search pipeline is presented in this
section. Two existing software implementations of the pul-
sar search pipeline and a detailed algorithmic description of
the spectrum whitening techniques available in each of them
are also presented here. Different configurations of these soft-
ware suites are used in a subsequent section to process pulsar
data where the results will be used to assess their abilities
to deal with non-stationary noise and RFI.

2.1 Search data

The data that are searched for pulsars are time series of total
power per frequency channel typically referred to as filter-
bank data. The number of frequency channels, the temporal
resolution and the dynamic range (i.e. 1-bit, 8-bit or 16-bit)
of the data are unique to each survey.

Files that contain filterbank data are currently pro-
cessed off-line; however, with the increase in scope and sen-
sitivity of future surveys it will become infeasible to store
the raw data for off-line processing due to capacity and in-
put/output constraints. Hence, the need for a paradigm shift
from off-line to real-time processing of survey data.

Real-time processing entails block-wise dedispersion for
the purposes of rapid reporting of Fast Radio Burst (FRB)
detections, which constitute a byproduct of pulsar searches.
The time duration of each block depends on the dispersion
measure search and the observing frequency, and is likely to
be of order a few seconds for typical searches. RFI cleaning
must happen prior to dedispersion. Thereafter, all frequency
information is lost and likewise the opportunity to detect
and mitigate RFI in the time-frequency plane. The relevant
timescale on which any RFI excision technique needs to op-
erate is therefore more likely to be related to the FRB de-
tection buffer size, rather than the full integration required
for periodicity searches.

2.2 Pipeline for a standard pulsar search

Detecting radio pulses produced by pulsars is an intrinsi-
cally difficult task due to their narrow duty cycles, low sig-
nal strengths, dispersion effects and the presence of non-
Gaussian noise.

Numerous techniques have been developed to overcome
some of the difficulties highlighted above. These techniques
are combined to form the standard pulsar search pipeline.

The typical pipeline used for the processing of filterbank
files consists of nine stages as depicted in Figure 2. The
pipeline starts with noisy filterbank files (Figure 2.1) that
may or may not contain a pulsar.

Each filterbank file is examined for narrowband RFI
signals, which are excised by replacing the affected samples
with constant values chosen to match the median bandpass
(Figure 2.2) (Lazarus et al. 2015).

The corrected filterbank files are then dedispersed for a

number of trial dispersion measure (DM) values to compen-
sate for the dispersion induced by the interstellar medium
(Figure 2.3) (Lorimer & Kramer 2005). The zero-DM time
series is used to identify and mitigate broad band RFI (Fig-
ure 2.4) that went undetected by the narrow band RFI exci-
sion process. After mitigating broad band RFI, the Fourier
transform of each dedispersed time series is computed (Fig-
ure 2.5).

The power spectrum is whitened (Figure 2.6) so that
the response is as uniform as possible, i.e., mitigating fre-
quency dependent noise, subtracting a running median and
normalising the local root mean square (rms) of the power
spectrum such that it has a zero mean and unit rms. A
whitened power spectrum is preferred, because estimating
the significance level of any signal present is relatively easy.
Different techniques have been implemented to whiten the
spectrum and these will be described in more detail in sec-
tion 2.4.

The next stage of the pipeline concerns identification
of periodic RFI. Known periodic signals which are present
all or most of the time, such as power lines carrying alter-
nating current and communication systems such as airport
radar systems are flagged with their harmonics and their
bandwidths determined. These interferences are mitigated
by creating a spectral mask (see Figure 2.7). This mask con-
sists of a list of all the Fourier bins affected and which should
be ignored in all subsequent processing.

Radio pulses from pulsars generally have narrow duty
cycles which, in the Fourier domain, results in the power
to be distributed between the fundamental frequency and a
number of harmonics (van Heerden et al. 2014). Therefore,
to take full advantage of the power contained in the har-
monics the whitened spectrum is harmonically summed by
adding the higher harmonics to the fundamentals. The orig-
inal power spectra as well as the composite spectra formed
by summing 2, 4, 8 and 16 harmonics (Lyne & Graham-
Smith 2012) are each searched for periodicities (Figure 2.8)
(Cordes et al. 2006a). The best candidates from each trial
DM are saved.

After all the time series have been processed, a list of
pulsar candidates is compiled. This list is pruned by post-
processing procedures (Figure 2.9) ranging from sifting and
folding to sophisticated machine learning candidate selection
(Lazarus et al. 2015). The most promising pulsar candidates
are saved for future observation and follow-up (Cordes et al.
2006a).

2.3 Pulsar search software

The pulsar search pipeline described above is available in
a number of pulsar search software packages: SIGPROC de-
veloped by Lorimer (Lorimer 2001), PRESTO developed by
Ransom (Ransom 2011), PEASOUP developed by Barr (Barr
2013) and PULSARHUNTER developed by Keith (Keith 2007).
The two most frequently used packages are SIGPROC and
PRESTO, both of which are freely available and well tested.
Together they have been responsible for the discovery of
most of the pulsars known today. We refer the interested
reader to Cordes et al. (2006b), Rane et al. (2016), Stovall
et al. (2014) and Lazarus et al. (2015) for a comprehensive
discussion of how these two pipelines are typically used in
real pulsar surveys.

MNRAS 000, 1–18 (2016)
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Figure 2. Schematic illustration of a typical pulsar search pipeline, see text for details.

There are three main differences between SIGPROC and
PRESTO. Firstly, the manner in which they search for pulsars
that orbit a companion, namely binary pulsars. Radio pulses
from binary pulsars typically exhibit Doppler shifts in their
rotational period, caused by the acceleration of the pulsar
around its companion. To be efficient, these shifts need to be
accounted for in the so-called acceleration searches. PRESTO
performs acceleration searches in the Fourier domain (Ran-
som 2001). SIGPROC on the other hand does time-domain re-
sampling to carry out acceleration searches. Secondly, SIG-
PROC looks for harmonically related signals in the amplitude
spectrum, whereas PRESTO uses the power spectrum to iden-
tify possible pulsar candidates (Lorimer & Kramer 2005).
Lastly, SIGPROC uses SNR as a metric to identify peaks in the
normalised power spectrum whereas PRESTO uses the Gaus-
sian significance (adjusted for the number of trials searched)
of the peaks as a metric under a white noise assumption.
Hereinafter, the terms SNR and Gaussian significance shall
be collectively referred to as detection significance.

2.4 Spectrum whitening

A stochastic process is considered white if and only if it is
stationary and independent at all points. As a consequence,
the power spectral density of a white process is uniformly
distributed across the whole available frequency range. A
non-white process is instead characterised by a given distri-
bution of the power per unit frequency along the available
frequency bandwidth (Lazarus et al. 2015). A whitening op-
eration on any non-white process entails forcing said process
to adhere to the conditions described above for a white pro-
cess.

In the case of pulsar searching, well-behaved white noise
is sought after, because it simplifies any attempt at estimat-
ing the significance levels of any signal present in the data
and consequently makes detection easier. Hence, it is stan-
dard practice to whiten the power spectral density by sup-
pressing frequency-dependant noise, in particular red noise,
so that the response to noise is as uniform as possible.

The spectrum whitening techniques implemented in
SIGPROC and PRESTO are similar in that they aim to nor-
malise the spectrum. However, the way in which these tech-
niques algorithmically operate in normalising the spectrum
is quite different. The different whitening options available
in SIGPROC and PRESTO are mathematically described in the
two subsequent sections.

2.4.1 Spectrum whitening in SIGPROC

In SIGPROC there are three spectrum whitening
options for the SEEK function. In all three ap-
proaches the spectrum is divided into blocks of
max{128,(number of spectral data points/400000)} Fourier

bins. The simulation parameters of this analysis resulted in
the number of Fourier bins per block to be consistently 128
and thus for all subsequent explanations we assume that
the spectrum is divided into blocks of 128 Fourier bins as
depicted in Figure 3.

Figure 3. Amplitude spectrum partitioning for the whitening

algorithm implemented in SIGPROC, see text for details.

The algorithms implemented for the three options in
SIGPROC are:

• Option 1:
The default whitening algorithm executed when the func-
tion SEEK is called computes the mean and corrected sample

standard deviation, s =
√

1/
(N−1)∑

N
i=1 (xi− x̄)2, for each of

the blocks A1,...,AN in Figure 3. The mean is subtracted
from each Fourier bin in the block, whereafter the bins are
scaled by the corrected sample standard deviation of that
particular block. The algorithmic steps are detailed in Algo-
rithm 1.

Algorithm 1 SIGPROC: default

1: for i = 1, ...,N do
2: µi = mean(Ai)
3: si = corrected standard deviation(Ai)
4: Anew

i = (Aold
i −µi)/si

5: end for

• Option 2:
The whitening algorithm executed when the function SEEK

is called with the flag -submn is identical to Algorithm 1
except for one difference. The blocks A1,...,AN in Figure 3
are scaled with the root mean square (rms) of that particular
block instead of the corrected sample standard deviation.
• Option 3:
The whitening algorithm executed when the function SEEK

is called with the flag -submjk computes the mean and
corrected sample standard deviation for each of the blocks
A1,...,AN in Figure 3. Thereafter, the gradients of the mean
and corrected sample standard deviation between adjacent
blocks of 128 Fourier bins are computed. For each Fourier bin
j = 1, ...,128 in a block the mean is subtracted and the result
scaled with the corrected sample standard deviation, where-
after the mean and corrected sample standard deviation is
updated with the calculated gradients for that particular
block. The algorithmic steps are detailed in Algorithm 2.

MNRAS 000, 1–18 (2016)
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Algorithm 2 SIGPROC: submjk

1: for i = 1, ...,N do
2: µi = mean(Ai)
3: µi+1 = mean(Ai+1)
4: si = corrected standard deviation(Ai)
5: si+1 = corrected standard deviation(Ai+1)
6: slopemeani

= (µi+1−µi)/128
7: slopesi

= (si+1− si)/128
8: for j = 1, ...,128 in Ai do
9: Anew

i [ j] = (Aold
i [ j]−µi)/si

10: Update: µi = µi + slopemeani

11: Update: si = si + slopesi

12: end for
13: end for

2.4.2 Spectrum whitening in PRESTO

In PRESTO there is only one spectrum whitening technique
implemented to suppress frequency dependent noise (Ran-
som et al. 2002). The median power level is measured in
blocks across Fourier bins and then multiplied by log 2 to
convert the median value to an equivalent mean level assum-
ing that the powers are distributed exponentially. There-
after, the measured mean power values (variable P in Algo-
rithm 3) are used to compute the slope between two adjacent
Fourier bins which in turn is used to normalise the complex
Fourier amplitudes (variable A in Algorithm 3).

The number of Fourier frequency bins per block starts
with 6 and increases logarithmically to 200, see Figure 4.
Thus, for frequencies where there is little coloured noise
the number of bins used per block are 200. The algorithmic
steps for the spectrum whitening technique implemented in
PRESTO are detailed in Algorithm 3.

Figure 4. Power spectrum partitioning for the whitening algo-

rithm implemented in PRESTO, see text for details.

Algorithm 3 PRESTO: default

1: for i = 1, ...,N do
2: µi = median(Pi)/log 2
3: µi+1 = median(Pi+1)/log 2
4: slopei = (µi+1−µi)/(size(Pi)+ size(Pi+1))
5: lineoffset = 1

2 (size(Pi)+ size(Pi+1))
6: for j = 1, ...,size(Pi) do
7: Update: lineval = µi + slopei× (lineoffset− j)
8: Update: scaleval = 1/

√
lineval

9: Update: Re(A)newi [ j] = Re(A)oldi [ j]× scaleval

10: Update: Im(A)newi [ j] = Im(A)oldi [ j]× scaleval
11: end for
12: end for

Irrespective of the red noise suppression algorithm being
applied, PRESTO by default normalises the power spectrum

using median blocks before performing harmonic summing
and searching.

3 METHODOLOGY

Pulsar software currently available for generating synthetic
pulsar data as well as the detection and timing thereof, as-
sumes that the noise present in the signals acquired by radio
telescopes is additive white Gaussian noise. This assump-
tion ignores the fluctuating nature of the sky temperature
(Lorimer & Kramer 2005; Nice et al. 1995) as well as the ef-
fects that RFI have on the noise baselines of the data. Con-
sequently, it is poorly understood how the aforementioned
phenomena, which are clearly non-stationary, affect the abil-
ity of pulsar search pipelines to detect pulsars. Hence, the
need for software to emulate these phenomena (see § 3.1)
and a framework whereby their effect on the ability of pul-
sar search pipelines to detect pulsars can be investigated and
quantified (see § 3.2).

3.1 Synthetic file generation

In section § 3.1.1 we present the low-pass filter that was in-
spired by a Gaussian Process (Rasmussen & Williams 2006)
to generate synthetic filterbank files with non-stationary
noise baselines. Additionally, in section § 3.1.2 we describe
the choice of RFI that we injected into a subset of the syn-
thetic filterbank files.

3.1.1 Non-stationary Gaussian noise

Filterbank files contain quantised power values computed by
superimposing tens or even hundreds of single Nyquist power
measurements (see Equation 1). The power measurement of
a single Nyquist sample is computed from the real and imag-
inary parts of the raw voltages associated with either linear
or circular polarised electromagnetic waves acquired by ra-
dio telescopes. The power measurement of a single Nyquist
sample is given as:

Power = X2
real + X2

imag +Y 2
real +Y 2

imag, (1)

where X and Y are either the horizontal and vertical com-
ponents of linear polarisation or the left and right handed
components of circular polarisation.

The power values found in filterbank files comprise both
signal and noise. The noise levels in the filterbank files are
proportional to the overall system temperature which is af-
fected by RFI, the sky temperature and the receiver temper-
ature. During an observation various objects and RFI with
different brightness levels are encountered so the duration
and magnitude of the non-stationarity associated with each
of these phenomena differ greatly.

In order to generate a time series with correlated sam-
ples, i.e. a varying noise baseline, we constructed a low-pass
filter (see Equation 2) and convolved it with random samples
drawn from a Gaussian distribution with zero mean and unit
variance (N (0,1)) (see Equation 3), where ε = 1×10−5, t is
the sampling interval and N the number of samples in the
observation. Consequently, the convolution yields a vector,

MNRAS 000, 1–18 (2016)
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w with samples correlated over length scales defined by λ

and magnitudes proportional to h (see Equation 4).

u := h2 exp
[
−
( t

λ

)2
]
∀ t ∈ R such that u > ε (2)

v := z1,z2, ...,zN ∼N (0,1) (3)

w = u∗v (4)

In order to generate N data points which are correlated
over long length scales (i.e. λ >>) requires N random sam-
ples drawn from a standard normal distribution (N (0,1))
to be convolved with a finely sampled low-pass filter which
is compact on a large interval. Consequently, convolving two
large vectors is computationally very expensive. To circum-
vent this challenge we generate data points with the required
correlation length by convolving a fraction of the random
samples drawn from a standard normal distribution with a
coarsely sampled low-pass filter and then interpolating be-
tween the resultant points to produce a time-series with the
desired number of points.

The vector w generated by convolving the low-pass filter
with samples drawn from a standard normal distribution is
not always positive. However, for the purpose of these exper-
iments non-negative samples are desired because the stan-
dard deviation of the baseline drift needs to be proportional
to the square root of the mean. Therefore, a new vector g is
defined:

g = w−min(w), (5)

such that the offset is equal to zero and all the values are
non-negative.

The mean vector g is used to generate samples for the
vectors Xreal, Ximag, Yreal, Yimag:

Xreal,Ximag,Yreal,Yimag
i.i.d.∼ N (g,

√
g) , (6)

such that the power for each sample in the synthetic filter-
bank file can be computed using Equation 1.

A large value for the length-scale variable λ of the low-
pass filter results in a slow drifting baseline as depicted in
Figure 5a. As the value of λ deceases the baseline drifts be-
comes more capricious as depicted in Figure 5b to Figure 5e.

3.1.2 RFI injected

For the experiments aimed at investigating the effects of RFI
on the performance of pulsar search pipelines we injected
the same RFI into all the filterbank files, see Figure 6. The
choice of injected RFI was obtained by studying spectrum
occupancy data from the KAT-7 radio telescope over several
months (see Figure 1) and cross-correlating that with the L-
band spectrum allocation as determined by the International
Telecommunication Union (ITU) (Regulations 2008). The
RFI injected include:

(a) broadband periodic RFI with a period of 0.02 s and a
duty cycle of 50 %,

(b) narrowband periodic RFI with a period of 12 s and
a duty cycle of 25 % affecting the frequency channels
1.266 GHz to 1.276 GHz,

Table 1. Simulated observation parameters

Parameter Value

tobs 300 s
tsamp 64 us

nbits 8

nnchans 512
flow 1214 MHz

fhigh 1536 MHz

Bandwidth,∆ f 322 MHz
Channel Bandwidth,∆ fchan 628.91 kHz

(c) several instances of narrowband RFI with random du-
rations affecting the frequency channels identified from
the RFI characterisation plot in Figure 1.

Various routines exist in current pulsar search pipelines
for excising bright RFI, but the effect of weak and unknown
sources of RFI are unbeknownst to us. Therefore, the mag-
nitudes of the various instances of injected RFI were delib-
erately chosen to be within one sigma of the baseline such
that the effect of weak RFI on pulsar search pipelines could
be investigated. The percentage of samples affected by RFI
is 12 % for each filterbank file.

3.2 Framework for Pulsar Search Pipeline
Analysis

In this section a framework to generate and process non-
stationary noise files with RFI is introduced. This frame-
work allows for the understanding of how non-stationary
noise processes with different correlation lengths can impede
the detection of pulsars with specific periods. Additionally,
it contributes to the understanding of how RFI can pass
undetected through current pulsar search pipelines and the
consequences of not mitigating these spurious sources of in-
terference.

The generation part of this framework include the syn-
thetic observation parameters (see § 3.2.1), the experimental
design specifics for each experiment (see § 3.2.2) and the pe-
riods of the pulsars injected for this analysis (see § 3.2.3).

The processing part of this framework includes the dif-
ferent configurations of SIGPROC and PRESTO that were anal-
ysed (see § 3.2.4).

3.2.1 Simulated observation parameters

The observation parameters that were used for generat-
ing the synthetic filterbank files were chosen to match the
Arecibo PALFA survey (Lazarus et al. 2015) parameters and
are summarised in Table 1.

3.2.2 Experiments

The experiments that we designed for analysing various con-
figurations of SIGPROC and PRESTO are summarised in Ta-
ble 2.

The design of experiments 1 to 4 is such that each one
emulates a blind pulsar survey. Each experiment comprises
one hundred simulated pointings with a subset of these con-
taining a pulsar. The differences between the experiments

MNRAS 000, 1–18 (2016)
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(a) λ = 100 s (b) λ = 10 s

(c) λ = 1 s (d) λ = 0.1 s

(e) λ = 0.01 s

Figure 5. Examples of dedispersed time series that correspond to the five correlation lengths used to simulate non-stationary noise

processes. Black represents the actual signal in the filterbank file, orange the mean and pink the standard deviation (1σ) of the dedispersed
time series. The correlation length decreases from (a) 100 s to (e) 0.01 s.

Table 2. Summary of the experiments conducted

Experiment # Files # Pulsars Noise h λ (s)

1. Stationary 100 15 Stationary Gaussian - -

2. Non-stationary 100 15 Non-stationary Gaussian 0.1, 0.2, 0.3, 0.4 0.01, 0.1, 1.0, 10.0, 100.0

3. Stationary +RFI 100 15 Stationary Gaussian - -
4. Non-stationary +RFI 100 15 Non-stationary Gaussian 0.1, 0.2, 0.3, 0.4 0.01, 0.1, 1.0, 10.0, 100.0
5. All pulse periods per λ 75 75 Non-stationary Gaussian 0.1, 0.2, 0.3, 0.4 0.01, 0.1, 1.0, 10.0, 100.0
6. All pulse periods per λ + RFI 75 75 Non-stationary Gaussian 0.1, 0.2, 0.3, 0.4 0.01, 0.1, 1.0, 10.0, 100.0
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Figure 6. The RFI injected into each filterbank file.

are the type of noise processes simulated and whether RFI
is present of not.

Experiment 1 comprises one hundred files with station-
ary Gaussian noise. Fifteen of the hundred files contain an
injected pulsar (see Table 3) and the remainder are without.
The results from experiments 2 to 4 will be benchmarked
against the results of experiment 1 because of its idealised
noise process and lack of RFI.

Experiment 2 comprises one hundred files with non-
stationary Gaussian noise. Fifteen of the aforementioned
files contain an injected pulsar that is unique (see Table 3)
and the remainder of the files are without a pulsar. The
non-stationary Gaussian noise processes were generated ac-
cording to the procedure described in § 3.1.1. Note, every
noise process is unique in that each one is defined by a
different non-stationary vector, g, and the additive Gaus-
sian noise has zero mean and variance proportional to the
square root of the non-stationary vector (see Equation 6).
The length scales, λ , for the non-stationary variability of the
noise baselines range from 10−2 s to 102 s in factors of 10, i.e.
twenty files were generated per λ . Consequently, each file ex-
hibits a unique variation because of the stochastic nature of
the generation process despite having the same correlation
length.

The correlation lengths can be chosen to represent any
timescale that we could consider to have an effect on the
survey sensitivity to periodic pulsars, and could result from
instrumental variability, to environmental effects and RFI.
The power spectrum of a non-stationary noise baseline with
a given correlation length will contain more power in the
frequencies that correspond to that length. For this rea-
son, we choose our length scales to sample a broad range
that is relevant to the pulse periods searched, as mentioned
above. Comparing the results from experiment 2 with the
results of experiment 1 enables the quantification of the ef-
fect that non-stationary Gaussian noise has on the perfor-
mance of pulsar search pipelines. Moreover, experiment 2
allows for the determination of the effectiveness of the spec-
trum whitening techniques described in § 2.4 and whether or
not detrending the data with a moving average filter before
searching for pulsars is effective.

Experiment 3 is identical to experiment 1 except for
the addition of RFI (see § 3.1.2). The experimental design
of experiment 3 serves to investigate the ramifications when
weak RFI (see § 4.4) passes undetected through a pulsar
search pipeline. Furthermore, it serves to investigate the ef-
ficacy of RFI detection and mitigation algorithms currently
employed.

Experiment 4 is identical to experiment 2 except for the

Table 3. Synthetic pulsar properties

Parameter Value

Period(ms) 1.102 2.218 5.218 10.870

18.505 61.965 126.175 286.555
533.320 850.158 1657.496 2643.410

3927.013 5580.899 9964.532

Amplitude All pulsars are detectable with a detection
significance of ∼ 12 in SIGPROC in the

presence of stationary Gaussian noise when

processed with pipeline H in SIGPROC.
Duty cycle 12 % (fixed)

Dispersion measure 68

addition of RFI (see § 3.1.2). Comparing the results from
experiment 4 to the results of experiments 1, 2 and 3 re-
spectively serves to quantify the combined effect that non-
stationary Gaussian noise and RFI have on the performance
of pulsar search pipelines and to deduce which phenomenon
has the greatest impact on said performance.

Experiment 5 comprises seventy five files in total, fifteen
files per correlation length λ (see Table 2). Each one of the
pulsars in Table 3 was separately injected into the fifteen
files with the same correlation length and this was repeated
for all five values of λ .

Experiment 6 is identical to experiment 5 except for
the addition of RFI (see § 3.1.2). The experimental design
of experiments 5 and 6 serves to investigate the reduction
in sensitivity of pulsar search pipelines as a function of both
the correlation length of the non-stationary noise and the
pulse period of a pulsar.

Lastly, experiments 2, 4, 5 and 6 are repeated for four
different values of the magnitude parameter h defined in
Equation 2, namely h = 0.1, 0.2, 0.3, 0.4.

3.2.3 Pulsar properties

The properties of the fifteen pulsars that were randomly
injected into the synthetic filterbank files were taken in part
from the Arecibo sensitivity study (Lazarus et al. 2015) and
are summarised in Table 3.

A pulse with the profile of pulsar PSR B0833-45 at 1.4
GHz obtained from the EPN-database (Lorimer et al. 1998)
with a duty cycle of 12 % was injected into all the files.

3.2.4 Pulsar search pipeline configurations

All of the files generated for the experiments described in
Table 2 were processed by both SIGPROC and PRESTO, i.e.
twelve different configurations of SIGPROC (see Table 4) and
eight different configurations of PRESTO (see Table 5) were
used to search every single synthetic file. Because the aim
with this analysis is not to investigate sensitivity as a func-
tion of DM, all the files were dedispersed at the correct DM.

SIGPROC by default removes the baseline of a dedis-
persed time series by linearly detrending the time series un-
less the flag -nobaseline is set when the dedisperse func-
tion is called. In addition to the option available in SIGPROC

for detrending the baseline, a 10 s moving average filter was
implemented as a second option for normalising the base-
line of a dedispersed time series. The red-noise mitigation
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Table 4. The twelve SIGPROC pipeline configurations used to pro-
cess all the files in this analysis.

Pipeline Baseline Red-noise mitigation

A Removed default

B Removed submn

C Removed submjk

D Removed -
E Intact default

F Intact submn

G Intact submjk

H Intact -

I Moving average filter default

J Moving average filter submn

K Moving average filter submjk

L Moving average filter -

techniques applied in the different SIGPROC pipelines are de-
scribed in § 2.4.

To process all the files with SIGPROC the following func-
tions and their associated flags were called:

(a) function dedisperse with the flags -d, -o and
with/without -nobaseline,

(b) function seek (number of summed harmonics is 16) with
the flags -z and -submn/-submn/-submn,

(c) function best with flag -s8.

The function best in SIGPROC produce a ’.lis’ file which was
searched for possible candidates based on the SNR of the
peaks.

The RFI mask configuration option in Table 5 refers to
the RFI mask computed in PRESTO when the rfifind func-
tion is called. In this analysis an RFI mask was computed
and applied to each synthetic filterbank file at integration
intervals of 8 s. An integration time of 8 s was chosen to
resemble typical real-time processing intervals. The default
values for the time and frequency rejection thresholds in
the rfifind function was selected. A moving average filter
of 10 s was also implemented as a processing step in the
PRESTO pipelines. Lastly, details of the red-noise mitigation
technique in PRESTO can be found in § 2.4.

To process all the files with PRESTO the following func-
tions and their associated flags were called:

(a) function prepdata with the flags -dm, -o and
with/without the flag -mask

(b) function realfft,
(c) function zapbirds with the flags -zap and -zapfile,
(d) function accelsearch with the flags -sigma 1.0,

-flo 0.1, -zmax 0 (acceleration searching was turned
off by setting the flag -zmax 0) and -numharm 16 (i.e.
the number of summed harmonics is 16).

The accelsearch function in PRESTO produce an ACCEL
file which was searched for possible candidates based on the
Gaussian significance of the peaks under the assumption of
pure white noise.

4 RESULTS

The results are organised according to the aims set forth in
the introduction (see § 1) of this paper.

Table 5. The eight PRESTO pipeline configurations used to process
all the files in this analysis.

Pipeline RFI Moving average Red-noise
mask filter mitigation

A X X X
B X X X
C X X X
D X X X
E X X X

F X X X
G X X X

H X X X

The heuristics used for quantifying the results are:

(a) a signal is considered a candidate if its detection signif-
icance is greater than the default detection threshold in
SIGPROC or PRESTO,

(b) injected pulsars are considered discovered when (a)
holds true AND if the difference between the periods
of the discovered and injected signals are less than the
allowed error, i.e.:
|Perioddiscovered−Periodinjected| ≤ error, where

error = 0.02 ms if period≤ 10 ms
error = 0.20 ms if 10 ms<period≤ 100 ms
error = 2.00 ms if 100 ms<period≤ 1000 ms
error = 20.0 ms if 1000 ms<period≤ 10000 ms

(c) the discoveries from (b) are validated by visual inspec-
tion of their folded profiles produced by folding the in-
verse Fourier transform of their whitened spectra at the
detected periods. At this stage a detection is rejected if
the folded profile does not resemble a real pulsar,

(d) determining whether a pulsar was detected or not the
non-fundamental harmonics were not considered,

(e) harmonically related candidates are removed and,
(f) only candidates with 1 ms ≤ period ≤ 10 s are consid-

ered.

For the direct SIGPROC and PRESTO comparisons the ex-
act same files were searched by both routines.

The sensitivity of a pipeline refers to the ability of the
pipeline to detect the fifteen randomly injected pulsars ex-
pressed as a percentage. The number of false positives de-
tected per true positive is the total number of false positive
candidates detected across all hundred files divided by the
number of true positives detected.

Note that all the results presented here should be inter-
preted as per DM.

4.1 Non-stationary Gaussian noise and RFI

The results of processing the synthetic files from the emu-
lated blind surveys (see experiments 1-4 in Table 2) with
the default pulsar search pipelines of SIGPROC and PRESTO

are shown in Figure 7. Note, the metric used in this section
to express the performance of each pipeline is the number
of false positives detected for every true positive detected
across all 100 files for each experiment.

The number of false positives per true positive detected
by SIGPROC increases approximately proportionally with a
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linear increase in the amplitude of the non-stationary noise
(see Figure 7a). This trend is also visible in Figure 7b when
RFI is injected. Hence, the default SIGPROC pipeline is very
sensitive to non-stationary noise.

The number of false positives detected per true positive
by PRESTO is unaffected by the type and amplitude of the
noise process present in the files, i.e. the number of false
positives detected per true positive is almost constant irre-
spective of the amplitude of the non-stationary noise (see
Figure 7a). However, the number of false positives detected
per true positive by PRESTO is slightly higher when weak RFI
is present (see § 4.4) compared to when no RFI is injected.

The sensitivity of SIGPROC and PRESTO can be seen in
Figure 7a to decrease by at least 20 % and 7 % respec-
tively in the presence of non-stationary noise compared to
the stationary noise case. The 20 % and 7 % losses recorded
in sensitivity were averaged over all the pulse periods; how-
ever, the long period pulsars were much more affected. Note,
the amplitudes of the injected pulsars were chosen such that
they are detectable at a SNR of ∼ 12 in the presence of
white noise when processed with pipeline H in SIGPROC (see
Table 3); however, the addition of any (significant) amount
of non-stationary noise rendered the pulsars undetectable.
Consequently, there is no correlation visible between sensi-
tivity loss and the non-stationary noise amplitude.

There is no correlation between the loss in sensitivity of
SIGPROC and the amplitude of the non-stationary noise when
weak RFI is present. Interestingly, the presence of weak RFI
leads to an increase in the sensitivity of SIGPROC for the
stationary noise case with RFI compared to the stationary
noise files without RFI. Similarly, there is an increase in
sensitivity for the non-stationary 4 case when RFI is present
compared to the no RFI case.

Comparing the sensitivity of PRESTO in Figure 7a to the
sensitivity in Figure 7b it becomes apparent that PRESTO is
not sensitive to weak RFI. The highest sensitivity attain-
able with PRESTO for files containing weak RFI and non-
stationary noise is 73 %; furthermore, a direct comparison
reveals that PRESTO’s sensitivity is on average 11 % better
than SIGPROC’s sensitivity.

4.2 Spectrum whitening methods

The power versus log-frequency plot in Figure 8 shows the
power spectrum density of two non-stationary Gaussian
noise processes with correlation lengths λ = 1 s (red) and
λ = 100 s (blue) as well as for a stationary Gaussian noise
process (black). It is evident from Figure 8 that the power
spectrum density of a non-stationary process diverges from
the desired flat power spectrum density of a stationary white
noise process as the correlation length of the non-stationary
process shortens.

With Figure 8 in mind, four spectrum whitening meth-
ods (see § 2.4) were assessed and the results can be seen in
Figure 9. The spectrum whitening techniques in both SIG-

PROC and PRESTO reduce the number of false positives de-
tected per true positive significantly compared to the case
when no spectrum whitening is applied. In the presence of
non-stationary noise the sensitivity of SIGPROC improved
slightly from 53 % to 60 % when the default spectrum
whitening method was applied but the other methods had
no effect on sensitivity (see Figure 9a). The sensitivity of

PRESTO is unchanged when the spectrum whitening method
is applied compared to no spectrum whitening.

4.3 De-trending the data before processing

De-trending the baseline in SIGPROC with either a 10 s mov-
ing average filter or the built-in de-trending method led to
an increase in the number of false positives detected per
true positive compared to when the baseline was left intact
(see Figure 10a). However, the 10 s moving average filter did
improve the sensitivity by 6 %.

De-trending the baseline in PRESTO with a 10 s moving
average filter reduced the number of false positives detected
per true positive and increased PRESTO’s sensitivity with
7 % (see Figure 10b).

These results hint at the improved sensitivity attainable
when the file contains both a baseline with long correlations
and a slowly pulsating pulsar, i.e. removing the baseline sig-
nificantly improves the sensitivity of detecting slow pulsars.
This fact is highlighted with the postcard plots in sections
§ 4.6 and § 4.7, described later in the paper.

4.4 RFI detection and mitigation methods

RFI masks created with PRESTO’s rfifind function, for the
same file, are depicted in Figure 11. The masks differ with
respect to the integration times used to create them. With
the plots in Figure 11 we show that the RFI we injected,
although visible, is weak compared to the amplitude of the
non-stationary baseline.

The default integration length of 30 s is most successful
at detecting the actual injected RFI (see Figure 11c). The
two masks created with shorter integration times mostly
flagged the maxima of the non-stationary baseline as op-
posed to the actual injected RFI (see Figure 11a and Fig-
ure 11b).

RFI was injected such that 12 % of all the samples in
the data are affected. The 2 s mask in Figure 11a found
6.868 % of the 2 s intervals to be affected by RFI, the 8 s
mask in Figure 11b found 6.887 % of the 8 s intervals to be
affected by RFI and the 30 s mask found that 16.895 % of
the 30 s intervals are affected by RFI.

The focus of this section is on the real-time detection
and mitigation of RFI, hence the decision to investigate the
effectiveness of an RFI mask integrated over a few seconds
when applied to the synthetic filterbank files. The results of
which can be seen in Figure 12.

The RFI detection and masking routine available in
PRESTO had on average little to no effect on both the sen-
sitivity and the number of false positives detected per true
positive except for the non-stationary 3 with RFI case where
the sensitivity was increased from 53 % to 73 % when the
mask was applied. Greater insight on the effect of applying
the RFI detection and mitigation routine in PRESTO to files
containing weak RFI can be gained by comparing the results
of pipelines A-D to those of pipelines E-H in Figure 14.

4.5 Variation of detection with signal significance

The detection significance which pulsars embedded in dif-
ferent noise processes were detected at by the default search
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(a) No RFI (b) RFI

Figure 7. The performance of SIGPROC and PRESTO for processing files which contain either stationary noise or non-stationary noise with

varying amplitudes (i.e. different values for h): (a) without RFI (see experiments 1 and 2 in Table 2); (b) with RFI (see experiments 3
and 4 in Table 2). (SIGPROC pipeline: default baseline subtraction → default red-noise removal. PRESTO pipeline: RFI mask → baseline

not subtracted → default red-noise removal.)

Figure 8. The power spectrum density for different noise pro-

cesses.

pipelines of SIGPROC and PRESTO are depicted in Figure 13
with the colours being representative of the following:

(a) Green square: an injected pulsar was detected (the de-
tection significance is printed in the square),

(b) Orange square: an injected pulsar is amongst the de-
tected signals but is not considered a candidate because
its detection significance is not above the default thresh-
old value,

(c) Red square: signifies that an injected pulsar was missed,
(d) Grey square: signifies that an injected pulsar was de-

tected but is not considered a candidate because it has
an abnormally high detection significance.

Each box in Figure 13 show a single instantiation of a
pulsar/non-stationary baseline pair that was searched by
both SIGPROC and PRESTO.

The left hand side of both matrices in Figure 13 are
populated with detections, whereas the right hand sides are
predominantly populated with misses. Hence, long-period
pulsars embedded in non-stationary noise processes across a
range of correlation lengths are missed by both the default
SIGPROC and PRESTO pulsar search pipelines.

The detection significance at which pulsars with periods
greater than 50 ms are detected decreases as the correlation
length of the non-stationary noise shortens, whereas the de-
tection significance of fast-period pulsars are unaffected by
the correlation length of the non-stationary noise.

The results in Figure 13 portray single-trials for near-
threshold signals which are very sensitive to the noise real-
isation used. To help understand the average and variance
associated with the detection significance of these signals, we
injected a pulsar with a period of 0.126 s in an ensemble of
20 noise realisations each with the same correlation length
of 1 s and amplitude h = 0.4 (see Equation 2). This addi-
tional experiment showed that the average SNR at which
the pulsar was detected in SIGPROC is 9 with a standard de-
viation of 1.45 compared to the SNR of 12.1 at which the
pulsar is detected when embedded in stationary Gaussian
noise. Similarly, the average Gaussian significance of the de-
tected pulsar in PRESTO is 6.621 with a standard deviation of
1.14 compared to the stationary Gaussian noise case of 7.7.
Consequently, the results for this particular combination of
period and correlation length that are plotted in Figure 13,
Figure 14, Figure 15 and Figure 16 would show very little
variability had there been more realisations of the same ex-
periments. Multiple repetitions of this experiment over all
combinations is extremely time costly and has not been at-
tempted here. We have however computed similar standard
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(a) SIGPROC (b) PRESTO

Figure 9. The performance of the red-noise mitigation methods available in (a) SIGPROC and (b) PRESTO for processing files which contain
either stationary noise (see experiment 1 in Table 2) or non-stationary noise (see experiment 2 in Table 2). No RFI were present in the

files analysed. (SIGPROC pipeline: baseline intact → red-noise removal methods. PRESTO pipeline: RFI mask → baseline not subtracted →
red-noise removal method.)

(a) SIGPROC (b) PRESTO

Figure 10. The performance of the time-domain baseline normalisation methods available in (a) SIGPROC and (b) PRESTO for processing
files which contain non-stationary noise (see experiment 2 in Table 2). No RFI was present in the files analysed. (SIGPROC pipeline:

three time-domain baseline normalisation methods → default red-noise removal. PRESTO pipeline: No RFI mask → baseline normalisation

method → no red-noise removal.)

deviations for other combinations of period and length scale
(e.g periods of 5 s, 0.01 s and 0.002 s, and λ s of 1 s, 0.01 s
and 100 s), using small numbers of realizations (5 to 20). We
find that the standard deviation in the experiments with no
injected RFI remains similar to the measurements above,
whereas the cases with RFI show increased variance, with

measured standard deviations of between 2 and 3. Although
this will have an effect on a case by case basis, the overall
statistical picture can be interpreted.

It is evident from Figure 13a and Figure 13b that the
default search pipeline in PRESTO is better at finding pul-
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(a) 2 s integration (b) 8 s integration (c) 30 s integration

Figure 11. RFI masks created with PRESTO’s rfifind function. The plots are for the same file but created with different integration
times. The -timesig threshold was set to three and the -freqsig threshold was set to eight for the rfifind function.

Figure 12. The efficacy of the RFI detection and masking rou-

tine in PRESTO when processing files which contain either non-

stationary noise (see experiment 2 in Table 2) or non-stationary
noise with weak RFI (see experiment 4 in Table 2). (PRESTO

pipeline: RFI Mask Yes/No→ baseline intact→ default red-noise
removal.)

sars of various periods embedded in different non-stationary
noise processes compared to SIGPROC.

4.6 Sensitivity postcard plots of all the pipelines
used to process files with PRESTO

The sensitivity plots for all the search pipelines explored in
PRESTO (see Table 5) are depicted in Figure 14.

None of the pipelines in PRESTO are able to detect all the
pulsars embedded in the different noise processes. Moreover,
most of the pipelines miss the long-period pulsars. The addi-
tion of weak RFI, in general, does not alter PRESTO’s ability
to find pulsars.

Pipelines A, C, E and G in Figure 14 contain detec-
tions with Gaussian significances well in excess of the ex-
pected maximum Gaussian significance. We do not consider
these outliers as true detections. However, do note that these
pipelines all have one thing in common and that is they do
not whiten the spectrum.

The only difference between pipelines A to D and E to
H is the application of the RFI masking routine in PRESTO.
From the results it appears that the RFI routine attenuates
the Gaussian significance of short period pulsars below the
detection threshold both in the presence and absence of RFI.

From these plots it is evident that running a moving
average filter to normalise the time-domain data results in
improved sensitivity, for example compare pipeline E with
G and pipeline F with H. Note, when the moving average
filter is applied in conjunction with the red-noise suppres-
sion method (see pipeline H in Figure 14) then more long-
period pulsars embedded in non-stationary noise processes
with long correlation lengths are detected compared to when
only the moving average filter is applied (see pipeline F in
Figure 14).

The pulsar search pipeline D in PRESTO (No RFI mask
→ MA filter → red noise mitigation) yields the best results
amongst all the set-ups both in the presence and absence of
RFI.
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(a) SIGPROC

(b) PRESTO

Figure 13. The detection significance (values in black) at which 15 pulsars with different periods were detected (green squares) in files

containing non-stationary noise processes with a relative amplitude of h = 0.4 and five different correlation lengths (see experiment 5 in

Table 2). Each box represents a single instantiation of a pulsar/non-stationary baseline pair that was searched by both SIGPROC and
PRESTO. The red squares represent missed pulsars and the orange squares represent detected pulsars with detection significances below

the default threshold levels. (a) The results for files processed with the default pipeline in SIGPROC; (b) The results for files processed
with the default pipeline in PRESTO.

4.7 Sensitivity postcard plots of all the pipelines
used to process files with SIGPROC

The sensitivity plots for all the search pipelines explored in
SIGPROC (see Table 4) are depicted in Figure 15 and Fig-
ure 16.

Note, the pulsar with period 0.002218 s is detected be-
low the detection threshold (see orange squares in Figures 15
and 16) by almost all of the pipeline configurations in SIG-

PROC when RFI is present despite the other millisecond pul-
sars being detected. This pulsar is missed due to the in-
creased variance of the SNR associated with the presence of
RFI as explored and explained in section § 4.5.

It is apparent from pipelines D and H in Figure 15 and
pipeline L in Figure 16 that not normalising the spectrum
results in a lot of pulsars being missed. Furthermore, mostly
the long-period pulsars are regularly missed irrespective of
the pipeline used in SIGPROC.

Overall PRESTO’s performance across all the pipelines
is more consistent when compared the pipelines in SIGPROC.

5 DISCUSSION

With the advent of instruments like the Square Kilometre
Array, real-time processing will become essential. Therefore,
it is crucial that the pipeline employed to do this processing
is optimal from the start. The purpose of the analysis in
this paper was to investigate what improvements to current
pulsar search pipelines are necessary before embarking on
the development of a new real-time processing pipeline that
is adept at dealing with the demands posed by this new era
of pulsar astronomy.

This analysis demonstrated that non-stationary Gaus-
sian noise processes with different correlation lengths lead
to an increase in the number of false detections per true
pulsar detection because of the static threshold applied in
the power spectrum to distinguish between possible pulsar
candidates and noise, i.e. non-stationary Gaussian noise is
partly to blame for the so called ’crisis’ in candidate selec-
tion (Lyon et al. 2016). In order to reduce the high number
of false positives, SIGPROC as well as PRESTO employ spec-
trum whitening methods. Our analysis has revealed how
these methods decrease the number of false positives per
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No RFI injected RFI injected

(experiment 5 with h = 0.4) (experiment 6 with h = 0.4)

A

B

C

D

E

F

G

H

Figure 14. The Gaussian significance at which pulsars were detected (green squares) after files containing them (see experiments 5 and
6 in Table 2) were processed by eight different pipelines in PRESTO. The red squares represent missed pulsars, the orange squares represent

detected pulsars with Gaussian significances below the default threshold level of 2 and the grey squares represent detected pulsars with
Guassian significances above the average maximum Gaussian significance of 15.

true positive at the cost of a loss in sensitivity and detection
significance to long-period pulsars.

The spectrum whitening techniques assessed in this
analysis suppress the power in the lower frequencies to con-
form to the power levels of the higher frequencies. Conse-
quently, the spectral power of real signals from slowly rotat-
ing pulsars is attenuated along with the noise. This analysis
serves as evidence that there is room for improvement in the
effectiveness of the current spectrum whitening methods. In-
stead of forcing the spectrum to be uniform in the lower fre-
quencies, the solution should rather be to accurately model
the noise both in the spectral and in the time domain. In

fact we have shown that applying a 10 s moving average
filter in the time domain resulted in a greater number of
detections of long period pulsars. Consequently, leveraging
moving averages on streaming data can help meet future
real-time processing requirements whilst increasing surveys’
sensitivity to long period pulsars.

As we discussed earlier, the results presented in Fig-
ure 13, Figure 14, Figure 15 and Figure 16, are based on
single realizations of period-length scale combinations. How-
ever, we have sampled the standard deviation of the signifi-
cance of these detections for several cases, and we conclude
that although the picture may change for different realiza-
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No RFI injected RFI injected

Experiment 5 with h = 0.4 Experiment 6 with h = 0.4

A

B

C

D

E

F

G

H

Figure 15. The SNR at which pulsars were detected after files containing them (see experiments 5 and 6 in Table 2) were processed by
eight different pipelines in SIGPROC. The red squares represent missed pulsars, the orange squares represent detected pulsars with SNRs

below the default threshold level of 8 and the grey squares represent detected pulsars with SNRs above the average maximum SNR of
15.

tions and different initial S/N values of the injected pulsars,
the areas in the plots which are most affected remain the
same.

In this analysis we dedispersed all the files at the same
DM as what we injected the pulsars at (DM = 68 pc cm−3).
However, a subset of the files we dedispersed at four ad-
ditional DM values, namely 0, 20, 150 and 300 pc cm−3.
Dedispersing the files at these four additional DMs allowed
us to confirm that the number of false positives detected
by the pulsar search pipelines for the files containing both
non-stationary noise and RFI are greatest when the filter-
bank files are not dedispersed and decreases as one moves

away from 0 DM. However, the number of false positives
detected by the pulsar search pipelines is very similar for
the five DMs used to dedisperse the data. Consequently, the
number of false positives detected for files containing only
non-stationary noise is similar irrespective of the DM used
to dedisperse the data.

In this analysis it was demonstrated that the RFI de-
tection algorithm in PRESTO is very sensitive to the interplay
between integration length over which the statistics of the
filterbank files are computed and the rejection thresholds
both in time and frequency of said statistics. For off-line
processing this interplay can be fine tuned so that most RFI
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Figure 16. The SNR at which pulsars were detected after files containing them (see experiments 5 and 6 in Table 2) were processed by
four additional pipelines in SIGPROC. The red squares represent missed pulsars, the orange squares represent detected pulsars with SNRs

below the default threshold level of 8 and the grey squares represent detected pulsars with SNRs above the average maximum SNR of

15.

at different brightness levels can be detected and masked.
However, for the real-time detection of RFI this exploration
of parameter space is not always possible because of the
time constraint as well as the dynamic nature of the RFI
environment.

There are a multitude of modules each placed strate-
gically throughout current pulsar search pipelines for de-
tecting different sources of RFI. Most of these RFI detec-
tion algorithms are largely amplitude-based and are there-
fore very sensitive to non-stationary baselines. Consequently,
data which contain no RFI but which have higher than av-
erage mean and standard deviation are flagged as RFI. This
analysis demonstrated that by flagging and replacing blocks
of non-stationary data which contain no RFI or weak RFI
may result in short period pulsars being attenuated below
the detection threshold. Hence, there is a need for algorithms
that can simultaneously normalise a non-stationary baseline
and excise RFI signals superposed on said baseline without
compromising the data that is not affected.

6 CONCLUSION

This paper gives a unified view of a typical pulsar search
system. Moreover, it delves into the particulars of the al-
gorithms available in the pulsar search software packages
SIGPROC and PRESTO for spectrum whitening.

This analysis accords with the Lazarus et al. (2015)
PALFA sensitivity analysis that non-stationary noise and
weak RFI leads to an increase in the number of false posi-
tives and lower sensitivity for long period pulsars. These two
effects have resulted in overestimates of survey production.

The severe degradation of the detection significance is
partly due to frequency dependent noise and partly due ot

the attenuating nature of the spectrum whitening algorithms
implemented in pulsar search software. Both these effects
serve as explanation for why so many detectable long period
normal pulsars are missed by pulsar search pipelines.

The analysis revealed that an increase in sensitivity was
achieved when the data were de-trended with a moving aver-
age filter with a window size larger than the slowest pulsar.
However, it should be noted that the efficacy of the filter is
dependent on the filter window size relative to the correla-
tion length of the non-stationary noise process.

Following from the results of this paper it is now fea-
sible to investigate methods for normalising a varying base-
line as well as addressing the question of how to decouple
the red noise from the signal without attenuating the de-
tection significance. The effectiveness of these methods can
be determined by applying them to the files created for this
sensitivity analysis and then re-processing the normalised
and modified files with the same pulsar search pipelines.
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