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Background
The study of nonlinear reaction–diffusion equation of the form

(1)
∂u

∂t
= D∇2u+ f (u) for 0 < x < l, t > 0

(2)u(x, 0) = d(x)

(3)u(0, t) = a(t)

(4)u(l, t) = b(t)

Abstract 

In this paper, we consider the numerical simulations of an extended nonlinear form 
of Kierstead–Slobodkin reaction-transport system in one and two dimensions. We 
employ the popular fourth-order exponential time differencing Runge–Kutta (ETDRK4) 
schemes proposed by Cox and Matthew (J Comput Phys 176:430–455, 2002), that was 
modified by Kassam and Trefethen (SIAM J Sci Comput 26:1214–1233, 2005), for the 
time integration of spatially discretized partial differential equations. We demonstrate 
the supremacy of ETDRK4 over the existing exponential time differencing integrators 
that are of standard approaches and provide timings and error comparison. Numerical 
results obtained in this paper have granted further insight to the question ‘What is the 
minimal size of the spatial domain so that the population persists?’ posed by Kierstead 
and Slobodkin (J Mar Res 12:141–147, 1953), with a conclusive remark that the popula-
tion size increases with the size of the domain. In attempt to examine the biological 
wave phenomena of the solutions, we present the numerical results in both one- and 
two-dimensional space, which have interesting ecological implications. Initial data and 
parameter values were chosen to mimic some existing patterns.
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has a long-standing history in mathematical modeling of propagation phenomena that 
mostly occurs in distributed dissipative dynamics, as well as diffusive transport of mass 
and heat, there is some reaction term representing, for instance, population growth or 
heat generation. Most realistic physical problems such as Allen-Chan, Burgers, Cahn–
Hilliard, Fisher-KPP, Nagumo, Gray-Scott (or cubic autocatalytic), Kierstead, Slobodkin 
and Skellam (KiSS), Kuramoto–Sivashinsky and host of others, naturally exist in form 
of higher-order partial differential equations. In Holmes et al. (1994), PDEs of the class 
(1) have shown to provide a natural framework for investigating the influence patch size 
and geometry on the population dynamics of organisms living within an habitat. Many 
researchers have used equations of the form (1) in different forms especially in relation 
to three applications that model the behavior of biological systems in a spatial setting. 
The three major and popular applications of reaction–diffusion models relate to critical 
patch size (Kierstead and Slobodkin 1953), spread of advantageous genes (Fisher 1937), 
and pattern formation (Turing 1952). For instance, if the reaction or interaction term 
f(u) is replaced by κu(1 − u), where κ and D are positive parameters regarded as the car-
rying capacity and diffusion respectively in the context of biology, then (1) becomes the 
classic simplest case of a nonlinear reaction–diffusion equation popularly referred to as 
Fisher equation (1937) with history dated back to 1937, which has since becomes one of 
the most well-studied reaction–diffusion models in population biology to describe the 
spread of an advantageous allele.

In addition, A large number of nonlinear reaction–diffusion PDEs of the form (1), 
sometimes exist in the form of blow-up problems if f (u) = uα , α > 0. In PDEs sys-
tems, solution with the given initial data often lead to singularity (which could either be 
a point where a discontinuity occurs or the dependent variables tend to infinity) in finite 
time, such a phenomenon is widely referred to as the blow-up, and the time at which 
such occurs is known as the blow-up time, see for instance, (Owolabi 2015b; Roberts 
2007) and references therein. A generalization of (1), which frequently occurs as a limit-
ing case of a system, is when there is nonlocal dependency, often of the source term, 
upon u, we do not treat this problem here. We briefly present a review in “An extended 
KiSS model” section for special nonlinear KiSS model.

It is important to check for the uniqueness of solution of the class of diffusion Eq. (1).

Proposition 1 The Dirichlet problem (1)–(4) has at most one solution.

Proof Let us adopt energy integral method for this proof, by assuming that there exist 
two solutions uα (x, t) and uβ (x, t); let u = uα − uβ. Based on the definition, u satisfies

Furthermore, we obtain

ut − Duxx = 0, for 0 < x < l and t > 0,

u(x, 0) = 0, u(0, t) = 0 and u(l, t) = 0.

0 = (ut − Duxx)u =
(
u2

2

)

t

+ (−Duxu)x + Du2x.
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On integration, we get

The second term to the right is zero from the boundary condition, thus we can take 
the t derivative as

This implies that the integral 
∫ l
0 is monotonically decreasing in t, meaning that in each 

case we expect to have

So, it follows that u(x, t) = 0, uα = uβ  for all t ≥ 0. □

We can also obtain the qualitative information based on the time of local existence 
of solution. By considering the system (1) in a single space variable u =  (u1, u2,…, un), 
D = diag(d1, d2, …, dn), with di ≥ 0 for all i. We also in addition consider the initial data

Next, solutions that are continuous function of time can be obtained in Banach spaces. 
We proceed by using definition to describe these space. Let B denote a Banach space of 
functions in Rn → R, let ∥·∥∞ denotes L∞-norm, and ∥·∥B.

Definition 2 B is acceptable if the following conditions hold:

(i) B is a bounded subset and continuous functions on R, and if v ∈ R, then ∥v∥B ≥ ∥v∥∞.
(ii) B is the translation-invariant. That is, voϱ ∈ B for every v ∈ B and every translate 
ϱ:R → R. Also ∥voϱ∥B = ∥v∥B.

(iii) If Rn → Rn is smooth, and f (0) = 0, then f (v) ∈ B for every v ∈ B, and for any G > 0, 
there exists a constant k (G) such that

  �f (G)− f
(
G′)�B ≤ k(G)�v−v′�

  for all v, v′ in B with ∥v∥∞, ∥v′∥∞ ≤ G.
(iv) If ϱh:R → R represents translation by h, that is ϱh (x) = x + h, then for each v ∈ B, 

we have

 �vo̺h− v�B → 0 as h → 0.

The aims of this work are in folds. We first give an extension to the existing linear 
KiSS model in the form of a nonlinear type. Secondly, we formulate a viable numerical 

0 =
l∫

0

(
u2

2

)

t

dx − [Duxu]
l
0 + D

l∫

0

u2xdx.

d

dt
=

l∫

0

(u(x, t))2

2
dx = −D

l∫

0

(ux(x, t))
2dx ≤ 0.

0 ≤
l∫

0

(u(x, t))2dx ≤
l∫

0

(u(x, 0))2dx = 0.

(5)u(x, 0) = u0(x), x ∈ Rn.
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techniques in space and time for the numerical simulation of an extended KiSS model 
in one and two dimensional spaces. We finally justify the suitability and applicability of 
the present numerical techniques with the existing family of higher-order time-stepping 
schemes.

The rest of paper is structured as follows. In “An extended Kiss model” section, an 
extension is given to the KiSS model with underlying theory to back the patchy size 
selection. We discuss adaptive numerical methods in space and time as well as the sta-
bility analysis of the scheme in “Numerical method” section. Numerical experiments in 
one- and two dimensions are examined in “Numerical simulations” section. Finally, con-
clusion is drawn in “Conclusion” section.

An extended Kiss model
In the present paper, numerical solution of an exponential growth model of the form (1), 
where the reaction term f (u) is given as τ uα, so that Eq. (1) becomes

where the diffusion coefficient D, the growth rate τ and the critical exponent constant α, 
are all positive parameters. This equation is the critical patch model popularly known as 
the KiSS model named after Skellam (1951) and Kierstead and Slobodkin (1953) which 
was originally developed to describe the spread of red tide outbreaks. Red tide is a name 
given to the discolored waters caused by the aggregation or blooming of microscopic 
organisms. A model for growth and spread of a population is used to determine the min-
imal size of the spatial domain needed for population to survive and this minimal size is 
is referred to as the critical patch size (Allen 2007).

In the classical paper (Kierstead and Slobodkin 1953), the critical patch size was deter-
mined for a simple reaction–diffusion equation with exponential growth, their model 
was applied to study phytoplankton plants living in the ocean. Determination of patch 
size of one-dimensional form of (6) have been considered (Allen 2007; Kierstead and 
Slobodkin 1953; Kot 2001; Murray 1989; Okubo 1978) on the spatial domain [0, l] via 
separation of variables method. In one-dimension with the choice α =  1, we have the 
KiSS model

Subject to initial and homogeneous boundary conditions

where D > 0 and τ > 0. The solution is given as

(6)
∂u

∂t
= D∇2u+ τuα

(7)
∂u

∂t
= D∇2u+ τu, 0 ≤ x ≤ l, t > 0,

(8)u(x, 0) = u0(x), 0 ≤ x ≤ l,

(9)u(0, t) = u(l, t) = 0, t > 0,

(10)u(x, t) =
∞∑

n=1

an sin
(nπx

l

)

exp

[

τ − n2π2

l2

]

t
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with

By examining the solution reveals the condition that supports population growth and 
extinction.

For instance, if

then u(x, t) will approach zero as time progresses, while if

u(x, t) will increase indefinitely with time, thus leading to the bloom of the plankton.
An attempt to have a better understanding of how the solution of the reaction–diffu-

sion Eq. (6) behaves, we let τ = 0. Hence, Eq. (6) reduces to diffusion equation. We can 
now find the solution of the general initial value problem of solving (6) in spatial variable 
x, subject to

with the aid of the Fourier transforms, as then u(x, t) will approach zero as time pro-
gresses, while if

On using the initial condition as the localized source of the spread of species popula-
tion, u0(x) = δ(x), then, (13) becomes

As time increases the solution spreads out, having a typical width of O
(√

4πDt
)

 and 
a maximum height of 1/

√
4πDt. It is also noticeable that the diffusion transports the 

species within the interval of integration [−l, l], since u(x, t)  >  0 for all x when t  >  0. 
For |x|  ≫  1 and t  ≪  1, the corresponding species concentration are very small. If 
u0(x) = G(−x), then the solution takes the form

Further, we consider the reaction–diffusion system (7) on (x, t) ∈ Ω × R+  , for Ω is 
defined as a bounded domain in Rm, ∂Ω is smooth, u ∈ Rn, and f (u) = τ (u) is smooth 
in U ⊂ Rn → Rn for each t ≥ 0. D is nonnegative diagonal matrix of size n × n. So, we 
assume that system (7) has a bounded invariant region

(11)an = 2

l

∫ L

0

u0(x) sin
(nπx

l

)

dx

l < π

√

D

τ
,

l > π

√

D

τ
,

(12)u(x, 0) = u0(x), for − l ≤ x ≤ l,

(13)u(x, t) = 1√
4πDt

∫ l

−l
u0(X) exp

{

(x − X)2

4Dt

}

dX .

(14)u(x, t) = e−x2/4Dt

√
4πDt

.

(15)u(x, t) = 1√
π

∫ l

x/
√
4Dt

e−ξ2dξ .
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where −∞ < ai < bi < ∞, i = 1, 2,…, n. In addition to (7), we have the initial conditions

where u0(x) lies in Σ∀x ∈ Ω. We also assume that u is admissible of the homogeneous 
Neumann boundary conditions

Lemma 3 Let Σ be defined by (16) and ρ = ρ(u, t) is Lipschitz continuous in Σ, for each 
t ≥ 0. If

Then ρ+ is Lipschitz continuous in Σ.

Proof Let us assume that ai = 0, i = 1, 2,…, n. For any u ∈ Σ, the set

then ρ+(u, t) = sup{ρ(ξ, t): ξ ∈ Lu}. If we let u, z ∈ Σ, and since ρ is a continuous, there 
exists ξ ′∈ Lu so that

If ξ0 = max(0,ξ ′ + z − u), that is, (ξ ′0)j = max(0, ξ ′j  + zj − uj), j = 1, 2,…, n. It is obvious 
that ξ ′0 ∈ Lz, and that

Known that

and if ξ ′j  + zj − uj ≥ 0, ξ ′j  − max(0, ξ ′j  + zj − uj) = uj − zj, while ξ ′j  + zj − uj < 0, then 
ξ ′j  − max(0, ξ ′j  + zj − uj) = ξ ′j  < uj − zj. Thus (19) is admissible, and by suppressing the t’s 
we obtain

If the roles of u and z are interchanged, the proof is completed.  □

In spite of considerable progress so far made in the field of population dynamics some 
years back, there are still many open problems. In particular, the numerical exploration 

(16)

∑

=
n∏

1

[ai, bi],

(17)u(x, 0) = u0(x) =
(

u01,u
0
2, . . . ,u

0
n

)

(x)

(18)
du

dt
= 0 on ∂�× R+.

ρ+(u, t) = sup{ρ(u1, ξ2, ξ3, . . . , ξn, t) : ai ≤ ξi ≤ ui, i = 2, 3, . . . , n}

Lu = {ξ ∈ R
n : 0 ≤ ξj ≤ uj , j > 1, u1 = ξ1}

ρ+(u, t) = ρ(ξ ′, t).

(19)|ξ ′0 − ξ ′| ≤ |u− z|.

|ξ ′0 − ξ ′|2 = �[ξ ′j −max(0, ξ ′j + zj − uj)]2,

ρ+(u)− ρ+(z) = sup
ξ∈Lu

ρ(ξ)− sup
ξ∈Lu

ρ(ξ)

≤ ρ(ξ ′)− ρ(ξ0) ≤ k|ξ ′ − ξ0| ≤ k|u− z|.
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of (6) for α > 1 has received little or no attention when the domain of interaction is con-
sidered wide enough to contain the population spread. Put together all these findings, 
we are motivated to seek for an appropriate and efficient numerical solution of (6) in one 
and two-dimensional space which we consider on an infinite domain truncated at some 
large, but finite value of l. We proceed in the next section to describe these methods.

Numerical method
We discuss briefly the spatial discretization methods used in in this paper. When a time 
dependent partial differential equation is discretized in space especially with either a finite 
difference or spectral approximations, it results to system of coupled ordinary differential 
equations in time, the resulting ODEs coming from the notion of method of lines (MOL) 
(Owolabi and Patidar 2014a) is stiff, such a system requires the use of higher-order approx-
imation scheme in both space and time since naturally some of these time-dependent 
problems are found of combining lower-order nonlinear terms with higher-order linear 
terms. In one-dimension, we consider the semi-linear partial differential equation

with D > 0, τ > 0 and α > 0.

Spatial discretization method

We discretize in space with step size h = x/(N − 1) and approximate the second-order 
spatial derivative by the fourth order central difference operator, we obtain a system of 
nonlinear ordinary differential equations

and u = [u1, u2,…, ul]T, for 1 ≤ i, j ≤ l.
 Again, the two-dimensional form of system (6) can be written as

now, we discretize the spatial domain by mesh (xi, yj) = (l1 + i × hx, l1 + j × hy) where 
hx = (l2 − l1)/(Nx + 1), hy = (l2 − l1)/(Ny + 1) and 0 ≤ i ≤ Nx + 1 and 0 ≤ j ≤ Ny + 1. 
Using fourth order central difference discretization on the linear term, we obtain a sys-
tem of nonlinear ODEs of the form

(20)

∂u
∂t

= D
∂2u
∂x2

+ τuα , −l ≤ x ≤ l, t > 0,

u(x, 0) = u0(x), −l ≤ x ≤ l,

u(0, t) = u(l, t) = 0, t > 0,

(21)
dui,j

dt
= D

[−ui+2,j + 16ui+1,j − 30ui,j + 16ui−1,j − ui−2,j

12h2

]

+ τ (ui,j)
α ,

(22)

∂u
∂t = D

(
∂2u
∂x2

+ ∂2u
∂y2

)

+ τuα , (x, y) ∈ Ω = (l1 ≤ x, y ≤ l2), t > 0,

u(x, y, 0) = u0(x, y), l1 ≤ x, y ≤ l2,

u(0, t) = u(l2, t) = 0, t > 0,

(23)

dui,j

dt
= D

12

[−ui+2,j + 16ui+1,j − 30ui,j + 16ui−1,j − ui−2,j

h2x

]

+ D

12

[

−ui,j+2 + 16ui,j+1 − 30ui,j + 16ui,j−1 − ui,j−2

h2y

]

+ τ (ui,j)
α
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where

Spatial discretisation of Eq.  (6) can also be done using Fourier spectral method with 
periodic boundary conditions (Boyd 2001; Craster and Sassi 2006; de la Hoz and Vadilo 
2008; Kassam and Trefethen 2005; Trefethen 2000; Weideman and Reddy 2001). We 
adapt the Fourier spectral method from (Trefethen 2000) and applied it to (6), leaving 
all the time stepping in Fourier space gives the following system of ordinary differential 
equations

so that the linear term of (6) now becomes a diagonal. Next, the systems (21), (23) and 
(25) will now be integrated using a time integration method as explained below.

At this junction, we have discretised the system (6) in spatial variables with both finite 
difference approximations and spectral approximations, we can now present the system of

ODEs obtained in the form

Let us use the idea of the so-called abstract ODEs in Hilbert space (H) to nonlinear 
problem (26). Let us take an assumption that the linear operator L:D(L) ⊂  H →  H is 
defined by

where ψj, j = 1, 2,… is the complete orthonormal system in (H), it follows that

Following this assumption, we require powers (−L)δ for 0 ≤ δ ≤ 1. In that

Known, (−L)δ as (L) is regarded as closed operator, and (Hδ) is a Banach space w.r.t graph 
norm ∥u∥ + ∥u∥δ. We have

(24)u =








u1,1 u1,2 · · · u1,Ny u1,Ny+1

u2,1 u2,2 · · · u2,Ny u2,Ny+1

...
...

...
...

uNx ,1 uNx ,2 · · · uNx ,Ny uNx ,Ny+1








Nn×Ny+1

(25)ût = −Dk2û+ τ (û)α ,

(26)
ut = Lu+ F(u, t), t > 0,

u(x, 0) = u0.

Lu =
∞∑

j=1

�i�u,ψj�ψj , u ∈ D(L)

0 > �1 > �2 > · · · , lim
j→∞

�j = −∞.

Hδ = D((−L)δ) and �u�δ = �(−L)δ)u�.

||u||2 =
∞∑

j=1

�u,ψj�2

≤ (−�1)
−2δ

∞∑

j=1

(
−�j

)2δ�u,ψj�2

= (−�1)
−2δ||u||2δ .
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Due to Parseval’s equation, we have from the first inequality due to 0 > λ1 > λ2 >···, 
limj→∞ λj = −∞ that (−λj)2δ/(−λ1)2δ ≥ 1, which means that the graph norm ≡  to the 
norm ∥u∥δ which can be used as a norm on Hδ.

Lemma 4 Let 0 ≤ δ ≤ 1, it follows that

Proof For all x ∈ R, we choose ex ≤ ex, x = −λj t/δ, we obtain

From the definition,

and by using the Parseval equation, we have

where s1 = (δ/e)δ t−δ and s2 = ∥u∥2. Taken together, we have

Time‑stepping method

By adopting the description in (Cox and Matthews 2002; Du and Zhu 2005; Kassam and 
Trefethen 2005; Krogstad 2005; Owolabi and Patidar 2016), Cox and Matthews fourth 
order exponential time differencing Runge–Kutta formula (Cox and Matthews 2002) 
was used to advance the resulting ODEs are:

∥
∥(−L)δeLt

∥
∥ ≤ cδt

−δ , t > 0,
∥
∥eLtu− u

∥
∥ ≤ tδ

∥
∥(−L)δu|

∥
∥, t ≥ 0, u ∈ Hδ .

−e�jtδ ≤ e−
�j t

δ

⇔ −e
�j t

δ
�jt

�
e ≤ 1

⇔ −�je
�j t

δ ≤
(
�

e

)
1

t

⇔
(
−�j

)δ
e
�j t

δ ≤
(
�

e

)

t−δ .

(−Lu)δeLtu =
∞∑

j=1

(�j)
δe�j t�u,ψj�ψj ,

||(−Lu)δeLtu||2 =
∞∑

j=1

|(�j)δe�j t�u,ψj�ψj|

≤ (�j)
δe�j t

︸ ︷︷ ︸

≤s1

∞∑

j=1

|�u,ψj�ψj|

︸ ︷︷ ︸

s2

∥
∥(−L)δeLt

∥
∥ ≤ cδt − δ.
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where

where for instance, if (27) is used in conjunction with ODE (25), L is the linear diffusion 
term, −Dk2 and F represents the term τ uα which could be linear or nonlinear.

Stability analysis

We follow the general stability idea as discussed in (Beylkin et al. 1998; Cox and Mat-
thews 2002; Fornberg and Driscoll 1999; Owolabi and Patidar 2014b) for the numerical 
scheme that incorporates the use of different methods for the treatment of both the lin-
ear and nonlinear parts of Eq. (26). To examine the stability of ETDRK4 method (27), we 
linearize the nonlinear autonomous ODE

about a fixed point u0, such that gu0 + F (u0) = 0. As a result of linearizing, we obtain

where u is the perturbation to u0 and λ =  F′(u, t) at u(t) =  u0 is either a diagonal or 
block matrix that contains the eigenvalues of F. For the fixed point u0 to be stable, it is 
required that Re(g + λ) < 0. On applying the ETDRK4 method to (29), a recurrence rela-
tion involving un and un + 1 is obtained (de la Hoz and Vadilo 2008). By introducing the 
notation x = λh, y = gh, the amplification factor is given as

where

obviously, as y → 0, approximation in (31) reduces to

(27)

un+1 = une
Lh + F(un, tn)

[

−4 − Lh+ eL�t
(

4 − 3Lh+ L2h2
)]

+ 2(F(an, tn + h/2)+ F(bn, tn + h/2))
[

2+ Lh+ eLh(−2+ Lh)
]

+ F(cn, tn + h)
[

−4 − 3Lh− L2h2 + eLh(4 − Lh)
]

/L3h2,

an = une
Lh/2 +

(

eLh/2 − I
)

F(un, tn)/L,

bn = une
Lh/2 +

(

eLh/2 − I
)

F(an, tn + h/2)/L,

cn = une
Lh/2 +

(

eLh/2 − I
)

(2F(bn, tn + h/2)− F(un, tn))/L,

(28)u̇ = gu(t)+ F(u, t),

(29)u̇ = gu(t)+ �(u, t),

(30)
un+1

un
= r(x, y) = g0 + g1x + g2x

2 + g3x
3 + g4x

4

(31)

g1 = 1+ y+ y

2
+ y3

6
+ O(y4),

g2 =
1

2
+ y

2
+ y2

4
+ 247y3

2880
+ O(y4),

g3 =
1

6
+ y

6
+ 61y2

720
+ y3

36
+ O(y4),

g4 = 1

24
+ y

32
+ 7y2

640
+ 19y3

11520
+ O(y4).
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which corresponds to the amplification factor of fourth-order Runge–Kutta method. 
Hence, we continue with our analysis by taking the real negative values of y in the com-
plex x plane where |r| < 1, by setting r = eiθ, with θ ∈ [0, 2π]. The curves in Fig. 1 cor-
respond to y = 0, −3.5, −5, −7, −9, −11 from the inner curve to the outer curve. It is 
noticeable that the stability region of the inner curve obtained at y = 0, coincides with 
the stability region of classical fourth-order Runge–Kutta method.

Numerical simulations
To examine the efficiency and accuracy of our approach for ETDRK4 methods, we con-
sider the numerical simulations of system (6) in one and two dimensions. We further 
justify the supremacy of ETDRK4 in comparison with the existing standard schemes of 
higher-orders by reporting the root mean square norm error of the solution defined by

respectively, where ej and cj are the exact and computed values of the solution u at point 
j, and n is the number interior points.

Test 1: one‑dimensional nonlinear KiSS model

In one-dimension, we consider the KiSS model of Kierstead and Slobodkin (1953) and 
Skellam (1951), subject to initial and zero-flux boundary conditions

(32)r(x) = 1+ x + x2

2
+ x6

6
+ x4

24
,

(33)||L2|| =

√
√
√
√

∑n
j=1 (ej − cj)2
∑n

j=1 (ej)
2

,

(34)

∂u
∂t

= D
∂2u
∂x2

+ τuα , −l ≤ x ≤ l, t > 0,

u(x, 0) = sin(2πx), −l ≤ x ≤ l,

u(0, t) = u(l, t) = 0, t > 0,
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Real(x)

Im
ag

(x
)

Fig. 1 The boundary of stability regions of the ETDRK4 method in the complex plane x for some negative 
values of y
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where u(x, t) is the density of the organisms at spatial domain x and time t, τ and α are 
both positive parameters, and D is the diffusion coefficient that measures the rate of dis-
persal. The particular choice of boundary conditions indicates that the organisms cannot 
boom or live beyond the domain. This assumption is taken to ensure that the experiment 
is not influenced by any external factor. All simulations here run for N = 200.

In Fig. 2, the successive profile in (a) is obtained at T = 0.01(0.005)0.05. Panel (b) and 
the contour plots (d) are obtained for [0, 20], T = 0.05. Surface plot (c) is obtained at 
parameter values T = 0.05, in the interval [−2, 2]. Panels (e) is obtained at parameter 
value T = 0.1 in the interval [0, 1] while (f ) obtained at final time T = 0.05 on domain 
[−1, 1]. The results presented have shown various behavioral patterns that could evolved 
when the patch size of one-dimensional KISS model (34) is varied in spatial domain.

The plots in Fig. 3 indicate the results from initial time (t0) to final time T showing the 
density profiles u(x, t) versus position x on a closed interval −l ≤ x ≤ l for the choice of 
growth rate τ = 0.5 and critical exponent α = 2. The successive profile in (a) is obtained 
at T = 0.01 with D = 0.5 on [−1, 1]. For panel (b), large D = 2, T = 0.05 on [0, 3]. For (c), 
D = 0.1, T = 0.01 on [0, 1]; plots (d) is obtained on [−4, 4], T = 0.02 for large diffusion 
coefficient D = 1.5. Panel (e) is obtained on the spatial domain [0, 5] with T = 0.1 and 
D = 0.05. Contour plot (f ) is obtained with parameter values D = 0.2, T = 0.1 on domain 
of size [0, 4]. The results presented here have equally revealed some of the dispersal-
driven patterns that arise as a result of diffusion.

It is clear from the result presented in Fig. 4, that ETDRk4 has the best convergence 
when compared to other exponential time differencing schemes, such as ETDM4, 
ETDM5, ETDM6 and ETDADAMS4 methods (for details of these schemes, see Hoch-
bruck and Ostermann 2011; Hochbruck et al. 2010). In Table 1, we illustrate the tradeoff 
between the computational [CPU (s)] time and the accuracy as time step k is refined for 
each of the methods with parameter values T = 1, D = 0.5, τ = 0.5 and α = 2 on interval 
[−1, 1] for N = 200. We display accuracy as a function of CPU time respectively for each 
of the schemes, to add a competing factor in differentiating between the methods.

Test 2: two‑dimensional nonlinear KiSS model

Our major aim in this paper is to examine the behavior of system (6) numerically in 
two-dimensional space, that is, when the Laplacian operator ∇2 = ∂2/∂x2 + ∂2/∂y2. One-
dimensional form of KiSS equations are relatively simple to undertake using method of 
lines coupled with spatial adaptive schemes. In-fact, solutions of the form (6) have been 
sought theoretically (Allen 2007; Kot 2001; Okubo 1978). Unfortunately, in two space 
dimensions, numerical solutions of KiSS model (22) still requires some attentions, since 
simulations based upon the more conventional ideas become more time consuming. 
In the spirit of (Owolabi 2015a; Owolabi and Patidar 2015, 2016), we consider the two-
dimensional case

(35)

∂u
∂t = D

(
∂2u
∂x2

+ ∂2u
∂y2

)

+ τuα , (x, y) ∈ Ω = (l1 ≤ x, y ≤ l2), t > 0,

u(x, y, 0) = u0(x, y), l1 ≤ x, y ≤ l2,

u(0, t) = u(l2, t) = 0, t > 0,
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where u(x, y, t) is the density of organisms at spatial coordinates x, y and time t. D > 0 
remains the diffusion coefficient, while τ > 0 and α ≥ 1 are the respective growth rate 
and critical exponent.
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Fig. 2 Numerical solutions of one-dimensional KiSS model (34). Time dependent density profiles u(x, t) 
versus position x on interval −l ≤ x ≤ l for D = τ = α = 1
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The initial data and parameter values were carefully chosen to make the Figures repli-
cate some of the existing patterns. In all cases, the space step h was kept equal to l, that 
is, hx = hy = l in the spatial domain −l ≤ x, y ≤ l. Figures 5, 6, 7 show various patterns 
formation process that could emerge as a result of variation of the initial data.

The two-dimensional results presented in Figs. 5, 6, 7 are much more meaningful in 
the contexts of mathematical biology and ecology. It is clear from the numerical results 
that the increase in the spatial domain l is the factor responsible for the spread of the 
phytoplankton plants living in the ocean.

Fig. 3 Diffusion-driven spatial patterning in one-dimensional KISS model (34) as it changes with both spatial 
domain x with varying time t
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Conclusion
In this paper, we have further justified the assertion made by Kassam and Trefethen 
(2005) on the efficiency and suitability of ETDRK4 schemes in conjunction with spa-
tial discretization methods by comparing it with exponential time differencing method 
(ETDADAMS4) of Adams type and exponential time differencing multistep (ETDM4, 
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Fig. 4 Performance of ETDRK4, ETDM4, ETDM5, ETDM6 and ETDADAMS4 methods for solving the KISS 
Eq. (34) with parameter values T = 1, D = 0.5, τ = 0.5 and α = 2 on interval [−1, 1] for N = 200

Table 1 Error norm ||L2|| at some selected time steps for solving KiSS Eq. (34)

Method Time step (k) ||L2|| CPU time (s)

ETDM4 1/32 0.2150 1.5086

1/64 0.0301 1.5467

1/256 3.3910e−004 1.7189

1/1024 3.4784e−006 3.8817

ETDM5 1/32 0.2170 1.9896

1/64 0.0195 2.0277

1/256 1.7793e−005 2.3538

1/1024 1.7923e−006 4.6010

ETDM6 1/32 0.0664 2.0405

1/64 8.5299e−004 2.0515

1/256 4.2840e−004 2.2500

1/1024 1.8248e−007 8.2387

ETDADAMS4 1/32 0.0050 1.4850

1/64 0.0028 1.5511

1/256 1.3334e−004 1.8339

1/1024 2.3963e−006 4.4020

ETDRK4 1/32 7.2013e−004 1.1146

1/64 5.0921e−005 1.0236

1/256 3.5038e−007 1.3198

1/1024 4.4086e−009 3.8726
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Fig. 5 Solutions of two-dimensional KISS model (35) on different spatial domain. The initial and param-
eter values: u0(x, y) = sinc[√(x/π)2 +√ (y/π)2], with D = 1, τ = 0.01, T = 0.5 and α = 2 on a l = 10 and 
b l = 20. Plots c T = 1.2, l = 10 and d T = 2, l = 20 are obtain with initial data u0(x, y) = cos(x) cos(y) 
exp(−√(x22 + y2/4))

Fig. 6 Solutions of two-dimensional KISS model (35) on different spatial domain. The initial and parameter 
values: u0(x, y) = exp(1/10)(cos x + sin y), with T = 0.05 D = 1, τ = 0.01 and α = 2 on a l = 8 and b l = 14
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ETDM5, ETDM6) methods all are of the higher orders. This approach was tested with 
the reaction–diffusion equation, a nonlinear form of KiSS model that was named after 
Kierstead and Slobodkin (1953) and Skellam (1951), which was originally developed to 
investigate the size of nutrient patches needed to sustain phytoplankton blooms. We 
carried out numerical simulations in both one- and two-dimensional space on spatial 
domain x ∈  [−l, l], that are chosen large enough to support the boom. Our numerical 
results revealed that the population size increases if the domain size l also increased. 
Some initial data and parameter values are chosen to mimic some existing patterns. The 
methodology presented in this paper can be extended to higher-order fractional deriva-
tive (Atangana and Nieto 2015; Atangana 2015) and time-dependent parabolic problems.
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