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Abstract 

McQuillan et al. (Mon. Not. R. Astron. Soc.432:1203, 2013) presented 1570 periods P of M 

dwarf stars in the field of view of the Kepler telescope. It is expected that most of these 

reflect rotation periods, due to starspots. It is shown here that the data can be modelled as a 

mixture of four subpopulations, three of which are overlapping log-normal distributions. The 

fourth subpopulation has a power law distribution, with P −1/2. It is also demonstrated that

the bulk of the longer periods, representing the two major sub-populations, could be drawn 

from a single subpopulation, but with a period-dependent probability of observing half the 

true period. 

1 Introduction 

The primary aim of the Kepler mission (e.g. Borucki et al. 2010) is the detection of extrasolar 

planets, through the photometric signatures of their transits across the faces of their host 

stars. However, the well-sampled and near-continuous lightcurves of the thousands of stars 

in the field of view can be used for a variety of other purposes. McQuillan et al. (2013) 

extracted periods of M dwarfs from the Kepler database. Most of these periods are expected 

to reflect the stellar rotation periods. For an extension to higher temperature stars see 

McQuillan et al. (2014). Other recent relevant papers are by Hawley et al. (2014), Kado-Fong 

et al. (2016), Newton et al. (2016), Davenport (2017) and Rebull et al. (2017). 

The aim of this paper is to rigorously model the distribution of the Kepler M dwarf periods P. 

As will be seen below, this may shed light on the number of sub-populations in this sample of 

cool dwarfs, as well as their individual spread in periods. This statistical summary of the data 

can also facilitate comparison with similar data which may be obtained in other parts of the 

sky. 

Histograms of the periods, and their log-transforms, are plotted in Fig. 1. (Note that 

logarithms are to the base e: this is standard for the likelihood statistics discussed below, and 

using the same base throughout avoids ambiguity.) A cursory inspection shows at least 

three groupings: a roughly exponential distribution of periods below about 8 d; a narrow 

Gaussian centered on about 18 d; and a broad Gaussian with a mean in the range 30–40 d. 
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Since there are no periods in the range 7.44–8.42 d, the short period group is easily separated 

from the rest. 
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Sections 2 and 3 of this paper are devoted to periods longer than 8 d, while the 

distribution of periods below 8 d is studied in Sect. 4. Conclusions are drawn in Sect. 5. 

 

2 Mixture modelling 

If stars have two similar surface spots, separated by 180 degrees in latitude, then the 

measured rotation period can be half of the true period. The interested reader is referred to 

De Marchi et al. (2010) for a brief description: those authors refer to such rotating variables as 

either “R01” (single variability cycle per rotation period) or “R02” (two variability cycles per 

rotation period). Examination of the histogram in the top panel of Fig. 1 shows a primary peak 

near 18 d, with a broader secondary peak around 35 d or so. This is roughly what is expected 

if there is a single population of periods, roughly Gaussian, with mean near 35 d: the 

variance of a random subset for which P /2, rather than P , is measured, would be only 1/4 

that of the true distribution. 

 

McQuillan et al. (2013) showed informally that this is unlikely. Their method consisted of 

first separating the data into “long period” and “short period” groups, then dividing the 

long periods by two. If all the periods are indeed from a single population, they reasoned 

that this procedure should give two roughly similar distributions. However, this hypothesis 

was rejected by a two-sample Kolmogorov– Smirnov test. 

 

Aside from the obvious difficulty of dividing the data into the correct groups, another 

potential problem with this procedure is highlighted by the Gaussian kernel density 

estimates of the probability density functions (PDFs) of the data, plotted in Fig. 2. The 

specific estimator used is robust against problems caused by multimodality—see Botev et al. 

(2010). Inspection reveals that the short period tails of the densities show the presence of a 

possible third component: this is particularly evident in the estimated PDF of the log 

periods. Further evidence for the reality of this component is presented below. 

 

Given the asymmetry in the PDF in the bottom panel of Fig. 2, any powerful test statistic 

is bound to reject the null hypothesis tested by McQuillan et al. (2013) (on the log-

periods). This problem can to some extent be circumvented by avoiding the tails of the 

distribution, i.e. working only with periods in the range say 14 < P < 45 (or 2.64 < log P < 

3.81). 

 

A formal test can be based on fitting two competing models to the truncated distribution: the 

null model is 
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(In (1), the notation μ’0  and σ’0  indicates location and scale measures which are transformed 

version of μ0 and σ0. For example, if the distribution D is Gaussianon μ’0  = 2μ0 and 

σ’0 = 2σ0, whereas if D is the lognormal distribution μ’0 = μ0 + log 2 and σ = σ0.) The 

PDFs in Eqs. (1) and (2) are both mixtures of two densities D. The PDF f0 contains a 

fraction 1 − α0 of periods which have been mis-identified as half the true period. In the case 

of f1 no pre-specified relationship between μ1 and μ2 is assumed. If the probability 

densities D are assumed to be truncated Gaussians, defined over the interval [L, U ], then 

 

 
 

The models (1) and (2) can be fitted to the data by maximum likelihood estimation (MLE), 

based, as the name suggests, on maximising the log likelihood 

 

 
 

with respect to the parameters μ0, σ0, α0 (in the case of the null hypothesis) or μ1, σ1, μ2, 

σ2, α1  (for the alternative hypothesis). 

 

We follow McQuillan et al. (2013) in working with the log-transformed data: inspection of 

the top panel of Fig. 1 shows an extended tail to long periods, which is characteristic of a 

lognormal, rather then normal distribution. Fitting of (1) and (2) to truncated data with a 

variety of choices of lower (13 ≤ L ≤ 15) and upper (42 ≤ U ≤ 46) cut-offs reveals that 

(1) provides inadequate to marginal fits— the Kolmogorov–Smirnov goodness-of-fit 
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statistics (e.g. D’Agostino and Stephens 1986) have p-values from 2–7%. Corresponding 

figures for model (2) are 64–95%. It may be concluded that (1) does not, in fact, fit the data, 

whereas (2) does. 

 

An alternative worth considering is that only some fraction of the “short period” group may be 

due to longer periods which have been mis-identified, i.e. the combination 

 

 

where μ1
’ and σ’1 are fully determined by μ1  and σ1  [see the remark following Eq. (1) 

above]. We pursue this in the context of modelling the distribution of all periods longer 

than 8 d, by fitting various mixtures of Gaussians to the (log-transformed) data. Up to three 

independent components are considered, with and without further dependent components 

with double periods. The results are summarised in Table 1. 

 

Of course, the greater the number M of parameters used to model the period distribution, 

the better the fit and the higher the log likelihood log L. Hypothesis testing can be used to 

compare models, compensating for this effect. Such tests are routinely based on a 

comparison of statistical likelihoods through the likelihood ratio statistic 

 

 
 

where L0 and L1 are likelihoods maximised under models 0 (the simpler) and 1 (the more 

complex), respectively. 

 

Subject to certain regularity conditions likelihood ratio statistics have chi-square 

distributions (e.g. Andrews 2001). However, in the case of this particular problem, the 

regularity conditions are not satisfied—for example, some of the parameters estimated 

under the alternative hypothesis are not identified at all under the null. The implication is 

that the true distribution of the likelihood ratio is nonstandard—see the references in 

Miloslavsky and van der Laan (2003). McLachlan (1987) suggested establishing the 

distribution of the likelihood ratio statistic by Monte Carlo simulation under the null 

hypothesis, and this is done here. 

 

Significance levels may then be determined as follows: 

 

i. Fit the two models and calculate the likelihood ratio statistic Λ∗. 

ii. Simulate data from the null model, using the parameter values estimated in (i). 

iii. Repeat step (i), for the data simulated in step (ii), and note the value Λ1 of the 

resultant likelihood ratio statistic. 
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iv. Repeat steps (ii)–(iii) a large number K of times, giving a collection Λ1, Λ2,..., ΛK of 

simulated likelihood ratio statistics. 

v. The significance level follows by comparing Λ∗ to the collection of Λj  generated in 

step (iv). 

 

Before embarking on the exercise sketched above it is useful to look at the plot of 

maximised likelihoods given in Table 1, against the number of model parameters—see Fig. 

3. It is clear that there are substantial gains in the likelihood as the number of parameters is 

increased up to M = 8, but that improvements thereafter are relatively small. To confirm 

this, we test the two hypotheses 

 

 
 

The null hypothesis in (6) is rejected at a level of 0.4%. It is noteworthy that more than half of 

the simulated log likelihood ratios is negative. This may seem wrong, since the expectation 

is that the likelihood should always increase as the number of model parameters are 

increased. The reason for this peculiar result is that the null model has four modes, whereas 

the alternative has three: hence there are aspects of the null which cannot be reproduced 

by the alternative model. Nonetheless, in the case of the actual data, Λ∗ is very large, implying 

that the alternative is far superior to the null model. 

 

It is noted in passing that the M = 7 and M = 8 models are non-nested, i.e. neither is a 

special case of the other. 
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Fortunately this does not preclude use of the likelihood statistic—see e.g. the easy-to-read 

exposition by Lewis et al. (2011). 

 

The null hypothesis in (7) is maintained at a level of 53%. Taken together, the results of the 

tests (6) and (7) therefore suggest that the eight-parameter model 

 

 
is the “best” of those entertained. 
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The Kolmogorov–Smirnov goodness-of-fit statistic of this model is not significant (p = 

88%), showing that the fit is acceptable. 

 

3  Proposed alternative mixture model 

The means of the two dominant subgroups of periods are μ1 = 34.5 and μ2 = 18.5 d, and 

the respective standard deviations are σ1 = 7.6 and σ2 = 3.5 d. The relative fractions of 

periods in the two groups are E = 0.54 and 1 − E = 0.46, respectively. The specific forms of 

some of the models in Table 1 were suggested by the closeness of μ1/μ2 and σ1/σ2 to 2, as 

would have been the case if there were a single population with distribution D(μ1, σ1), but 

the probability of measuring periods at half their true values was about 0.46. We now 

consider a variation on this theme, which accounts for the fact that μ2 is slightly larger than 

μ1/2, namely allowing the probability of measuring the period as half the true value to 

increase with increasing period, i.e. 

 

 
where p(x) (bounded by 0 and 1) is an increasing function of x. 

 

No attempt will be made to fit the model (9) to the Kepler M dwarf periods; instead, it will 

just be demonstrated that this is a plausible explanation for the bulk of the data. Guided 

by the results in Sect. 2, it is assumed that the PDF f in (9) is the log-normal form. It follows 

that 
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by (9)–(11). This is easily done by comparing moments of the two PDFs (9) and (12). Use can 

be made of the standard result that for x log-normally distributed with parameters μ and σ 
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For the numerical values of the five parameters μ1, μ2, σ1, σ2 and E in (12) the parameters 

of the alternative model specified by (9)–(11) are μ = 3.553, σ = 0.206, β = 0.0204 and γ = 

0.873. Figure 4 compares the PDFs in (12) (solid line) and 
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(broken line). The agreement is clearly very good. 

 

4 The short periods 

The doubly-truncated power law 

 

 
turns out to provide an excellent description of the distribution of short periods. The log 

likelihood function is 

 

 
 

For the collection of periods less than 8 d, we set a = min(P ) = 0.368 d, b = max(P ) = 

7.438 d, and obtain the numerical solution ô  = 0.56. An approximate standard error follows 

from the Fisher information as 

 

 
 

The log  likelihoods  for  α = 0.56  and  α = 0.5  are −1.8581 and −1.8592 respectively, giving 

a likelihood ratio statistic Λ = 0.002. According to asymptotic theory Λ should have a chi-

squared distribution with one degree of freedom (Mood et al. 1974). This implies that the 

null hypothesis that α = 0.5 cannot be rejected, and 
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is an excellent description of the 133 periods shorter than 8 d. The significance level (p-

value) of the Kolmogorov– Smirnov statistic for the fit to the data of the PDF (14) is 92%. 

 

5 Conclusions 

The collection of 1570 Kepler M dwarf periods can be modelled as a mixture of four 

distributions. Three of these are overlapping log-normal distributions. There are two 

dominant populations (41% and 49% of all the periods) with means (standard deviations) 

of 18.5 and 34.5 d (3.5 and 7.6 d) (that is, before applying the logarithmic transformation). 

The third distribution, with mean 10.2 d and standard deviation 1.0 d, makes up only 2.1% of 

the total. The fourth distribution is a truncated power law with exponent statistically 

indistinguishable from −0.5, defined on the interval [0.37, 7.44] d. These short periods are 

8.5% of the total. 

 

McQuillan et al. (2013) present some evidence that the proper motions differ between the 

stars with periods in the two dominant groups. Their Fig. 12 shows a weak relation between 

proper motion and measured period. Scrutiny of the diagram suggests that the apparent 

correlation is probably primarily due to a dearth of non-zero proper motions for the longer 

period—and hence cooler and thus intrinsically fainter—stars. The role of selection effects is 

not explored, and neither is the influence of zero proper motion measurements (which 

appears to apply to the bulk of the stars). 

 

Alternatively (or additionally), stars in the primary group could have a single large spot on the 

surface, whereas those in the secondary group have two spots separated by 180 degrees. 

There would only be a slight difference in the mean rotation periods: ∼34.5 d for the first 

group, ∼37 d for the second. Standard deviations would also be similar, 3.5 and 3.8 d 

respectively. 

 

Section 3 presented what is, in effect, a generalisation of the eventuality investigated by 

McQuillan et al. (2013): there is a single population of “long” periods, with mean near 35 

d. For a subsample of the stars periods are erroneously measured as half their true values, 

due to the fact that two minima are observed during each rotation: this happens 

preferentially for stars with longer periods. In this scenario the bimodality is essentially a 

consequence of two different starspot configurations. 

 

The models summarised in the preceding two paragraphs can be combined, in the sense that 

the function p(P ) in (11) can be interpreted as a “probability” that a star has two spots, rather 

than one, on its surface. 

 

It is worth noting that the methodology in Sect. 2, in particular, is general, i.e. it can be applied 

in any large survey to uncover potential subpopulations. There are two important caveats: 

the first is that mixture modelling is a mathematical exercise, designed to give a concise 

description of the data—there is no guarantee that different components correspond to 

distinct physical groupings. The second is that mixture models are not unique: it is not 
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uncommon to find quite distinct models which all fit the data almost equally well (see Koen 

and Bere 2012 for an example). 
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