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Abstract  

In the category of pointed topological spaces, let F be the homotopy fibre of the 

pinching map X ∪ CA → X ∪ CA/ X from the mapping cone on a cofibration A → X 

onto the suspension of A. Gray (Proc Lond Math Soc (3) 26:497–520, 1973) proved 

that F is weakly homotopy equivalent to the reduced product (X, A)∞. In this paper 

we prove an analogue of this phenomenon in a model category, under suitable 

conditions including a cube axiom. 

 

1 Introduction 

In the paper [5] we have defined reduced powers Xn of an object X in a model 

category C and, assuming a certain cube axiom holds in C, established the weak 

equivalence, 

 

 
so generalising an influential result on reduced product spaces due to James [7]. 

See also the generalizations in [3]. Although the argument began by constructing 

an analog of (X, A) (i.e. of Gray’s relative version of the James construction on a 

cofibration A →  X [4]). We were not able in [5] to recover in C a weak equivalence 

 
where F is the homotopy fibre of the pinching map X ∪ CA → :E A. The situation is 

remedied here by showing that the desired result indeed holds under a mild 

additional assumption. 

 

2 The Cube Axiom 

Quillen [8] described an abstract approach to homotopy theory enabling analogous 

theories to be defined in categories other than the category of topological spaces and 

continuous maps. A model category consists of a category C with all small limits and 

colimits together with three distinguished classes of morphisms, we, cof, f ib, called 
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weak equivalences, cofibrations and fibrations, respectively. These are required to 

satisfy certain axioms which reflect typical properties of the classes of such maps in 

topology. We use the axioms as modified by Hovey, [6] and assume that C is pointed, 

i.e. that the initial object 0 and the terminal object ∗ are isomorphic. e. that the initial 

object 0 and the terminal object * are isomorphic. 

 

A commutative diagram in C 

 

 
 

is a homotopy pullback if the induced map (shown dotted) in the following diagram is a 

weak equivalence. 

 

 
 

Here it is to be understood that the square with source A ×B C is a pullback. The 

special case C = ∗ of Eq. 2.1 is of some significance, for then we call D the homotopy f 

ibre of f and denote it by F f . If both C = A = ∗ then we say that D is a loop object of B 

and denote it by ΩB. 

 

Dually, we define the notions of homotopy pushout square and homotopy cof ibre (i.e. 

mapping cone): specifically the square (2.1) is a homotopy pushout if the induced dotted 

arrow in the following diagram is a weak equivalence. 
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In the case C = ∗ of diagram (2.3), we call C a cone on D and A ∨D C a mapping cone 

of k. If there is a weak equivalence X → ∗ then we say that X is weakly 

contractible. In particular each mapping cone of 1 : X → X is a cone on X and is 

weakly contractible. A mapping cone of the final map X → ∗ is called a suspension of 

X. 

 

Cube axioms in abstract categories with homotopy structure feature in the book [1] 

of Baues. The specific forms we require are stated below, as in [5].  

 

2.1 Cube Axioms 

Suppose that we have a commutative diagram as follows. 

 

 
 

1. If the top and bottom faces are homotopy pushouts and the left and rear faces 

are homotopy pullbacks, then the remaining two faces are homotopy pullbacks. 

2. If the bottom face is a homotopy pushout and four vertical faces are homotopy 

pullbacks, then the top face is a homotopy pushout. 

 

Besides the cube axioms 2.1(a) and (b) it was necessary in [5] to assume also the 

following. 
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Condition 2.1 

(we)            Given any object  X  and weak equivalence  f : A → B in C, then the 

morphism X × f : X × A → X × B is a weak equivalence. 

(cof)         Given any object X and cofibration f : A → B in C, then the morphism 

X × f : X × A → X × B is a cofibration. 

 

(cotriad)          Given any commutative diagram of solid arrows as below, in which every 

morphism is a cofibration and the upper quadrilateral is a pushout, then the induced 

map B +A C → D is a cofibration. 

 

 
 

(lim)          Given any sequence of cofibrations A1 → A2 → A3 → ... in which An is 

weakly contractible for each n > 0, then lim( An) is weakly contractible. 

 

3 On Fibrations 

Analogues in abstract categories of the well-known five-lemma are fairly commonly 

used, such as for instance in the paper [2] of Bourn and Janelidze. In order to 

prove the equivalence of Gray, a further such assumption is necessary. We assume 

throughout this section that we are working in a model category. In the formulation 

of the condition we use the concept of a f ibration sequence. 

 

Definition 3.1 The top row in diagram (3.1) is a f ibration sequence if the composite 

map F → B is null-homotopic and the resulting induced map from F to the homo-

map F → B is null-homotopic and the resulting topy fibre of p is a weak homotopy 

equivalence. 
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Condition 3.2 (On a fibration p : X → B in a model category C) Suppose that we have a 

commutative diagram in C such as diagram (3.1) above, in which the horizontal sequences are f 

ibration sequences. If the vertical arrows i and k are weak equivalences, then the arrow j is also a 

weak equivalence. 

 

Remark 3.3 If p : X → B is a fibration in a model category and B is weakly contractible, 

then p satisfies Condition 3.2. 

 

The  method  we  follow  is  very  similar  to  that  of  [4].  Thus  we  introduce  the owing 

terminology. 

 

Definition 3.4 An action of A on X is a morphism α : A × X → X for which the 

following square is commutative. Here φ1 is the relevant folding map. 

 

 
Definition 3.5 A fibration p : E → B, with fibre i : G → E, is a principal f ibration if 

there is an action α of G on E making the following diagram commutative. 

 

 
 

Proposition 3.6 Suppose that p : E → B is a f ibration with E contractible and such 

that for the fibre G, the canonical (wedge-) map w : G ∨ E → G × E is a cof ibration. 

Then p is a principal fibration. 

 

Proof Let us denote the inclusion of the fibre by  j : G → E. We consider the g 

diagram, which can be seen to be commutative. 
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Since w is a cofibration and E is contractible, it follows that w is a trivial cofibration. 

Thus by the lifting property we can fill in an arrow α : G × E → E in diagram (3.4) and 

the resulting diagram will still be commutative.                                               N 

 

The following proposition is easy to prove and we omit the proof. 

 

Proposition 3.7 A pull-back of a principal f ibration is a principal f ibration. 

 

4 Cones and Pinching Maps 

We continue working in a fixed model category. For notational convenience we 

describe in detail the mapping cone of a cofibration and we introduce the pinching 

map. 

 

4.1 The Mapping Cone 

Fix a cylinder Z A on A together with a cofibration j : A ∨ A → Z A (and thus by 

implication two cofibrations j0, j1 : A → Z A) and a retraction rZA : Z A → A such 

that rZA ◦ j0 = 1 = rZA ◦ j1. Then in the following pushout square, 

 
M is a mapping cylinder of i, and k0 is a trivial cofibration. Since Eq. 4.1 is a pushout 

square and in diagram (4.2) below we have i ◦ rZA ◦ j0  = i, there exists a left inverse ρ : 

M → X  of k0 for which diagram (4.2) is commutative. 
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Then h = it ◦ j1 is a cofibration h : A → M such that the object obtained as the push-out 

of the cotriad (4.3) below, is a mapping cone for i and we denote it by X ∪      . 

 

 
 

4.2 The Pinching Map 

Let p be the map obtained by forming the pushout of the cotriad formed by the map 

k0 of diagram (4.1) together with the trivial map X → * 

 
 

5 Gray’s Construction and the Main Theorem 

We assume throughout this section that we are working in a fixed model category C. 

In full detail, the construction in [5] of the reduced products is rather lengthy. We 

include here only a summary of the essential points. 
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For a cofibration i : A → X, the following pushout square defines the objects 

(X, A)n 

 
 

We note that the upper horizontal map is the analogue of the inclusion of the fat 

wedge and the φn can be regarded as folding maps. There is also a multiplication 

νn:   X  x  An-1         (X, A)n, where ν2 = μ2  and νn+1  (n ≥ 2) is determined 

uniquely by pushout in the following. 

 

 
 

An equivalent definition of the objects (X, A)n is given by the following result. 

Proposition 5.1  [5, Theorem 3.4] The square 

 

 
 

in which the horizontal arrows are the obvious cof ibrations, is a homotopy push-out. 

 

As a final step in defining the reduced products, (X, A)∞  is defined to be lim (X, 

A)n. 
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For the purpose of the following result we work with a cofibration i : A → X and we 

consider the diagram (5.4) below. We also fix a mapping cylinder for i together with a 

cofibration h : A → M, as in Section 4.1. In diagram (5.4) the upper row is the 

fibration sequence constructed in [5], based on the cofibration h : A → M. The lower 

row of maps is a fibration sequence with p the pinch map. The map r : F → X ∪ CA 

is the inclusion of the homotopy fibre of p. We regard this map r as (having been 

replaced appropriately by) a fibration. The map γ on the left hand side is the 

homotopy equivalence constructed in [5]. The map  E is to be constructed. Its 

existence is proved in Theorem 5.2. We note that the solid arrows in Eq. 5.4 

constitute a commutative diagram. 

 

 
Theorem 5.2 Suppose that the model category C satisfies the necessary conditions 

from [5] to ensure the weak equivalence A∞≃ΩΣA. 

3. There exists a map E : (M, A)∞ → F making the diagram (5.4) commutative. 

4. If the category C also satisf ies Condition 3.2, then E is a weak equivalence. 

Proof 

(a)   Note that γ : A∞ → Q:E A induces maps δn : An → Q:E A. Note also that there is a 

map E1 : M → F such that r ◦ E1 coincides with the restriction η|M, η|M being the 

composition of the inclusion M ⊂ (M, A)∞ followed by η. We observe that η|M  = q, 

with q as in diagram (4.3). 

 

We note that r is a pull-back of the principle fibration obtained from the map 

 

 
 

and therefore is itself a principal fibration by Propositions 3.6 and 3.7. 

 

Now given any nЄN, we obtain a map ξn+1 : M x An  F as the following composition, 
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where α is the action of the principal fibration, and then r ◦ ζn+1 coincides with the 

map 

 

 
 

In view of the alternative description of objects of the type (M, A)n+1 in 

Proposition 5.1, there exists a map En+1 : (M, A)n+1 → F such that r ◦ En+1 

coincides with the map induced by η. The sequence of maps (En) has a limit, E, 

which is in fact the map that we want, making the diagram commutative. 

 

(b)    Applying  Condition  3.2  to  diagram  (5.4)  we  conclude  that  E  is  a  weak 

equivalence. 
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