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ABSTRACT
This paper provides a review of past approaches to the use of
deep-learning frameworks for the analysis of discrete irregular-
patterned complex sequential datasets. A typical example of
such a dataset is financial data where specific events trigger
sudden irregular changes in the sequence of the data. Tra-
ditional deep-learning methods perform poorly or even fail
when trying to analyse these datasets. The results of a sys-
tematic literature review reveal the dominance of frameworks
based on recurrent neural networks. The performance of
deep-learning frameworks was found to be evaluated mainly
using mean absolute error and root mean square error ac-
curacy metrics. Underlying challenges that were identified
are: lack of performance robustness, non-transparency of the
methodology, internal and external architectural design and
configuration issues. These challenges provide an opportunity
to improve the framework for complex irregular-patterned
sequential datasets.
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1 INTRODUCTION
The art of improving the performance of any deep-learning
framework is a process of iterated refinements. Currently,
there is no single ideal framework that addresses the discontin-
uous, impulsive and irregular patterns of behaviour associated
with irregular-patterned complex sequential datasets [19, 42].
These extreme datasets can be found in many different do-
mains, including: health care, traffic, finance, such as stock
prices, meteorology, such as rainfall data and so forth. An
automated artefact, beyond the conventional, suitable for
solving prediction and regression problems for such datasets
will be useful for engineers and academics [35].

This paper considers the advances made towards the de-
sign and application of frameworks for irregular-patterned
complex sequential analysis based on recent scholarly work.

It was found that there are many deep-learning frame-
works aimed at the improvement of the analysis of sequen-
tial datasets but that there is no single ideal framework
for the analysis of irregular-patterned complex sequential
datasets and that the frameworks that were developed were
not extensively evaluated using multidimensional evaluation
mechanisms [13]. Frameworks based on recurrent neural net-
work (RNN) architecture centred on long short-term mem-
ory (LSTM) [27] have been widely identified as the most
suitable approach towards addressing unstable sequential
behaviour [35]. It is empirically clear that the architectural
designs of most present state-of the-art sequential frameworks
are simple extensions of the original LSTM architecture [11].
Most of these are equipped with gating mechanisms for solv-
ing vanishing gradient problems.

An exhaustive literature search of all deep-learning related
materials is not possible. The influence of the foundational
work by Hochreiter and Schmidhuber in 1997 on the original
LSTM architecture can be seen in many of these recent re-
search studies [14]. Sequential forecasting competitions have
also contributed to the development of present state-of-the-art
benchmarks, methodologies, theories and datasets [20]. Some
of the most influential competitions include the M1 to M4
Competitions by Makridakis and Hibon, the Sante Fe com-
petitions by the Santa Fe Institute, the knowledge discovery
and data mining (KDD) cup competitions by the Associa-
tion for Computing Machinery’s Special Interest Group on
KDD, the Kaggle time series competitions by Goldbloom,
the global energy forecasting competitions by Tao Hong and
the International Journal of Forecasting [17].

Algorithm performance evaluation plays a critical role
in the design of improved frameworks. Many performance
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evaluation criteria or mechanisms have been suggested. These
include: efficiency, accuracy, consistency, reliability, stability,
explainability, baseline comparison [32]. Most sequential deep-
learning frameworks are evaluated using only accuracy as a
criterion based on root mean square error as a metric [21].

It seems as if design and configuration issues of internal-,
external- and hyper-parameters hinder the optimal perfor-
mance of existing frameworks for extreme datasets. This
points to the need for the development of newer and more
transparent frameworks that reveal performance robustness
in these environments. It is important to appreciate perfor-
mance strengths and weaknesses of existing novel frameworks
on known datasets, before suggesting any new design or
architectural improvements to existing frameworks [26].

Using a systematic literature review, recent research pub-
lications were identified based on the following specific inclu-
sion criteria: keywords, publication timelines, algorithms or
framework relevance in terms of complex datasets, accredita-
tion and citation quality of the journal.

The survey explored the following questions:
(1) How efficient are existing deep-learning algorithms for
analysing complex sequential datasets?
(2) How should current deep-learning algorithms be adapted
to deal with irregular-patterned complex sequential datasets?

The primary aims of this systematic literature survey were
to:
(1) Identify well-known state-of-the-art deep-learning frame-
works for complex sequential analysis.
(2) Identify the challenges in current methods of analysing
irregular-patterned complex sequential datasets.

This paper highlights the current state of affairs of deep-
learning frameworks for the transparent analysis of irregular-
patterned complex sequential datasets and their challenges.
Transparency in this instance refers to explainable frame-
works or models that can be easily and independently repli-
cated at any given time through experiments.

2 MATERIALS AND METHODS
A systematic literature review, shown in Figure 1, was the
preferred methodology to demonstrate the breadth and depth
of the existing body of knowledge of deep-learning frameworks
but also to identify inconsistencies and gaps in this body of
knowledge [39].

According to Peter et al. [23], applying a systematic litera-
ture review strategy offers a comprehensive, focused, reliable,
repeatable and thorough literature overview [1, 24, 37].

Referring to Figure 1, the systematic literature review
methodology used in this research had the following phases:

Stage 1—Identification of specific keywords to search for
irregular-patterned complex sequential analysis, as well as
identifying appropriate online research database platforms,
for example Google Scholar. The identified keywords were
used to search for published accredited peer reviewed journal
articles on online research database platforms [24]. The title

Figure 1: Systematic literature review methodology

of the journal article was used to identify which articles to
consider and these were then stored for later evaluation.

Stage 2—Cleaning of the comprehensive list of the identi-
fied journal articles that were collected during Stage 1. This
stage entailed a qualitative evaluation of the fitness of each
article based on the abstract of the article. The articles that
did not pass the criteria for inclusion were then deleted. If
new keywords were found in the abstracts, these were added
to the initial list of keywords and Stage 1 was repeated for
these new keywords, in a grounded theory fashion [34].

Stage 3—Eligibility of the articles was identified in Stage
2. A detailed qualitative screening exercise was applied to the
output of Stage 2, based on specific eligibility criteria [31].
This stage produced a comprehensive list of articles—those
that did not adhere to the eligibility criteria were discarded.

Stage 4—Inclusion of the state-of-the-art articles was based
on inclusion criteria. Articles identified in this stage were
recorded in a database. For this stage the whole article was
considered. Critical meta-data was qualitatively identified
and recorded in fields, for example the year of publication,
each with an appropriate column header. The articles not
included in this database were now discarded. The output of
this stage was a .csv file.

Stage 5—Analysis of the database using a quantitative
method. This empirical stage employed data analytic oper-
ations using Python libraries such as TensorFlow, Numpy,
Keras, SciPy, Theano and Pandas, within the Jupyter Note-
book environment. This stage mapped the relationship be-
tween key features of the records across identified fields.
During this stage the relationship of records was visualised
as wordles, or word clouds. Finally, the used codes, tools
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Figure 2: Processing the results of the systematic review

and the database of identified literature was uploaded on an
online platform to allow free access to other researchers.1

3 RESULTS
The results are segmented into two sections. The first section
highlights the methodological implementation results which
feeds into our last main results section which provides the
overall research findings of the systematic literature review.

3.1 Methodological implementation results
Figure 2 summarises the phases of the systematic literature
review to provide the results of the implemented methodology.

Stage 1—Initially eight search keywords were identified.
These were: deep-learning framework, sequential algorithm
optimisation, irregular patterns, time series forecasting, pa-
rameter, volatile financial prediction and extreme weather
forecasting. After the cleaning process of Stage 2, two more
keywords were identified, namely sequential learning and
financial signal processing. Thus 10 keywords in total were
used for identifying articles. The following 11 online research
database platforms were used for the search: University of the
Western Cape Electronic Library, Google Scholar, CiteSeerx,
GetCITED, Microsoft Academic Research, Bioline Interna-
tional Directory of Open Access Journals, PLOS ONE, Papers
with Codes, BioOne, Science and Technology of Advanced
Materials, New Journal of Physics, ScienceDirect and NIPS.
This stage produced a total of 412 search results in the form
of a comprehensive list of peer reviewed articles. We focused
on the results not exceeding the first 10 pages of each on-
line database platform. These articles were stored for further
processing.

Stage 2—Abstracts of 378 articles identified in Stage 1
were subjected to a robust qualitative cleaning exercise using
1All the experimental code is given in the Jupyter Notebook files on
the GitHub website at: https://github.com/Dandajena/SDA/.

the grounded theory approach [34] which revealed two further
keywords that were put through Stage 1 again to identify
more possible articles. This produced 34 more articles. Even-
tually 226 of the 412 articles were found not to be the right
fit for the study and were removed—186 articles were kept.

Stage 3—The remaining 186 articles were evaluated based
on eligibility criteria: identified keywords, publication time-
lines from 2016 to date, algorithms or framework relevance in
terms of complex datasets, accreditation and quality of the
journal, i.e., its citation index [32]. Abstracts of each article
were read in detail. A further 126 articles were trimmed off
after failing to meet the eligibility standards—60 articles
were kept.

Stage 4—All 60 articles in the folder were now scrutinised
and read in depth. An excel .xlsx database was created
to capture a record of each article that was deemed to be
eligible.2 Critical meta-data from the article were recorded
in identified fields such as: journal source web link, journal
name, journal title, authors, pages, timelines (day, month,
and year), editor, volume, issue number, city, country, conti-
nent, standard number, day accessed, month accessed, year
accessed, data set, data set type, data set sources, dataset
description, research problem, research objective, implementa-
tion framework, architecture properties, baseline models, best
models, methodology, evaluation mechanism or criteria, eval-
uation metric, results, novelty, future recommendations and
gaps comment. Tabulated data fields were critically identified
to suit empirical data analytics operations for visualisation
which would be implemented in Stage 5. A total of 28 ineligi-
ble articles were deleted in Stage 4 of the process since they
were not a direct fit to the aim of the literature review study.
Only 32 articles were recorded in the database and the rest
were deleted. The .xlsx database file was further cleaned
and converted to a .csv file.3

Stage 5—A program was implemented to analyse the
database—the cleaned .csv result of Stage 4. The output
of this program was the visualisation of the analysis in the
form of graphs, wordles and schematic diagrams. Finally, the
code, tools and the literature search database were uploaded
to GitHub to allow open access of all experimental study ma-
terial and code to other researchers. The literature research
database can be freely accessed from the GitHub website.
Schematic diagrams were recorded as annexures.

3.2 Systematic literature review results
The most important finding from this study is the fact that
current algorithms cannot yet optimally analyse complex
datasets. In most of the recent state-of-the-art papers, Chi-
nese publications dominate deep learning framework research.
The novelty of existing deep-learning frameworks is largely
centred on their application mechanism. From these publi-
cations it appears that researchers normally design an archi-
tecture and then uniquely apply it to a particular problem
2Accessible at: https://github.com/Dandajena/SDA/blob/master/
Database.xlsx.
3Accessible at:
https://github.com/Dandajena/SDA/blob/master/Database.csv.

https://github.com/Dandajena/SDA/.
https://github.com/Dandajena/SDA/blob/master/Database.xlsx.
https://github.com/Dandajena/SDA/blob/master/Database.xlsx.
https://github.com/Dandajena/SDA/blob/master/Database.csv.
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together with well-known architectures, such as generic re-
current neural networks and long short-term memory to
determine which of the architectures is the most optimal
for the specific application. We next discuss the results in
terms of identified challenges, frameworks, datasets and their
evaluation.

3.2.1 Complex sequential analysis challenges. The analysis of
complex sequential datasets—characterised with spontaneous
or volatile behaviour—is far from attaining a maturity sta-
tus. According to the literature, most modern deep-learning
frameworks cannot address many of the following challenges:

∙ Complexity in modelling and capturing extremely long-
term sequential patterns using traditional deep-learning
algorithms such as RNN [15]. These algorithms lack trans-
parency and explainability within the implementation of
deep-learning models [5].

∙ The analysis of highly variable, noisy and volatile datasets
(the problematic aspects of sequential datasets) Ma et
al. (2019) [19], Zhang et al. (2018) [43] leads to perfor-
mance disadvantages such as consistency or inconsistency,
sensitivity to outliers, extreme values and computing inef-
ficiency [3, 4].

∙ Most state-of-the-art deep-learning frameworks [9] expe-
rience efficiency performance problems when exposed to
different sequential datasets [36].

∙ Model reliability and generalisation, is a problem when
predictive neural frameworks are used. These associated
problems are caused by the stochasticity of stock features
in financial stock price datasets [10].

∙ Precision challenges when forecasting within financial en-
vironments. This is associated with extreme sequential
financial market datasets [26].

∙ Lack of accurate, reliable, and interpretable modern deep-
learning models for uncertainty estimation over continuous
variables [18].

∙ Lack of a comprehensive comparison analysis of existing
deep-learning models for sequential learning. Recent re-
search focused on one-step forecasting, based on smaller
datasets [27].

∙ Accurate sequential forecasting is a challenge when using
existing uncertainty estimation models. This is a problem
when dealing with its probabilistic formulation which is
difficult to tune, scale and it adds exogenous variables, i.e.,
other variables outside the existing variables [44].

∙ The simultaneous forecasting of the inflow and outflow of
crowds in regions of a city is complex because of spatial de-
pendencies, temporal dependencies and external influence
factors [42].

∙ The complexity of sequential stock price datasets which
require extensive analysis resources [40].

∙ The deficiency of traditional models towards the capturing
of complex nonlinear or dynamic dependencies between
time steps and between multiple time series [16].

∙ Predictive performance challenges associated with existing
models and the lack of well-established and explainable

literature for sequential predictive machine learning meth-
ods [38].

∙ Dealing with robust and accuracy challenges which are
associated with existing sequential forecasting [22]

∙ The ever-growing requirement of computing power, time
and resources of sequential forecasting modelling. This
is particularly associated with unstable extreme weather
patterns [6].

∙ Performance deficiency of sequential neural network mod-
els [13] when forecasting in multivariate dataset environ-
ments [7].

3.2.2 Identified sequential deep-learning frameworks. To ad-
dress some of the aspects of these research challenges and
gaps, various researchers have applied different techniques
and methods to find solutions. The resources needed to de-
ploy deep-learning frameworks with good performance, is a
problem as well as poorly configured internal and external
parameters and hyperparameters for such analysis. Existing
research work focuses on the need to further explore and ad-
vance existing deep-learning models. Some of these are: long
short-term memory, adversarial LSTM, CapsNets, LSTM-
convolutional neural networks, gated recurrent unit, and
attention, bidirectional and temporal convolutional neural
networks [9].

There is a need to explicitly combine the aspect of sequen-
tial dataset complexity as an optimisation technique in the
design of more advanced deep-learning predictive algorithms
or models or frameworks. These frameworks require a multi-
dimensional evaluation mechanism which considers existing
complex datasets [33].

In terms of on-going research, most researchers are citing
the need to develop state-of-the-art optimised algorithms
that address challenges associated with complex sequential
environments. There is a wide range of sequential analysis
frameworks as illustrated in Annexure 1 which were designed
to resolve these challenges.

Figure 2 points to the fact that deep-learning frameworks,
based on the recurrent neural network architecture, long
short-term memory by Hochreiter and Schmidhuber [14]
dominate the field of sequential forecasting. These gated
architectures address exploding and vanishing gradient prob-
lems associated with neural networks. Gated architectures
are made up of input, forget and output gates or modules
to provide them with sequential learning capabilities which
decide which critical information to keep or discard during
sequential modelling. In sequential modelling, Tang et al. [35]
indicated that LSTM networks are excellent for capturing
features with longer sequences or time span unlike the gated
recurrent unit of Cho et al. [8].

According to Zhang et al. [43] there are other compet-
ing modern frameworks that can deal with this problem
effectively. These are: deep convolutional neural networks
(CNNs), capsule neural network, dilated RNN, dilated CNN,
ensemble CNN-LSTM-attention, DEQ-trellisNet and DEQ-
transformer, attention-based mechanisms by Young, et al. [41],
bidirectional recurrent neural networks by Schuster and
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Figure 3: Results of state-of-the-art deep-learning framework
for sequential challenges

Paliwal [29], temporal convolutional networks by Bai et
al.(2018) [2], deep Bayesian neural network, deep sequential
spatio-temporal residual neural network, dual self-attention
network and memory-based ordinal regression deep neural
networks.

The attention mechanism of any deep-learning framework
has the ability to select hidden states and patterns within
a particular dataset which makes them more attractive for
modelling complex situations. This mechanism may even
produce an unexpected performance when combined with
unidirectional, bidirectional or multidirectional mechanisms.
The sequential robustness of any framework is correlated with
the nature of the problem set being resolved, the selected
dataset and the evaluation criteria.

It is clear that the art of identification, selection, con-
figuration, deployment and evaluation of any deep-learning
framework has not been exhausted. Furthermore many of
these frameworks have not been explained adequately and
thus the experimental work is unclear.

3.2.3 Complex sequential datasets. The majority of existing
sequential data types listed in Annexure 2 were either univari-
ate or multivariate or both and were sourced from different
domains such as: traffic, financial stock markets, meteorolog-
ical weather and climate information, energy consumption,
natural language sentiment processing, telecommunications,
astronomy, etc.

Figure 4 shows experimental data analysis results showing
irregular sequential patterns of the financial dataset from
NASDAQ stock market (2 January 2012–26 December 2016)
by [26] and the wordle analysis of sequential datasets.

Figure 4: Irregular patterns of the financial dataset

3.2.4 Evaluation. Performance evaluation of most modern
deep-learning frameworks is based on one of the following
mechanisms: prediction accuracy, efficiency, correlation, base-
line, consistency, visualization sharpness, robustness and com-
putational complexity. There is no single framework that has
been evaluated in terms of its multidimensional performance
in which critical issues such as efficiency, accuracy, consis-
tency, reliability, stability and transparency were considered.

In terms of performance metrics, there are over 40 metrics
listed in Annexure 3 which were applied in the evaluation pro-
cesses of the different frameworks. The systematic literature
review process revealed that several of the accuracy metrics
were most often used. The majority of these accuracy metrics
are categorised and measured based on absolute, squared,
relative, symmetric and percentage error types Bal et al. [3].
Mean absolute error (MAE), mean square error (MSE) and
root mean squared error (RMSE) dominated this space since
they are easy to compute [28]. RMSE and MSE in particular
have sensitivity challenges associated with the stability of
the selected frameworks [35]. Any results that yield the best
(lowest) RMSE value, demonstrate the stability of such an
algorithm or framework as they are less sensitive to outliers.

Selection of the correct performance evaluation metrics
is central to the identification of a proper framework for
any given problem. A particular framework can be deemed
sub-optimal because the wrong evaluation metrics were cho-
sen [12]. When comparing the performance of state-of-the-art
baseline frameworks it may be necessary to consider applying
different combinations of evaluation criteria.

3.3 Existing recommendations
Future work recommendations from current studies point
to the need to improve on: the interpretability of modern
deep-learning models, resolving prediction problems associ-
ated with volatile time series data, and lowering performance
computing costs. They also suggest the exploration of mod-
ern deep-learning frameworks such as: adversarial networks,
temporal convolution networks, transformer networks, and
CapsNets, by combining them with other architectures such
as the dilated CNNs. Furthermore model optimisation should
be explored through its manipulation of both internal and ex-
ternal architectural properties, deploying future frameworks
on complex univariate and multivariate cases with exogenous
environments.
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4 DISCUSSION
Existing work on deep-learning frameworks for sequential
analysis has produced a large pool of publications covering
wide range of issues such as methods, experimental design,
optimisation techniques, input signal issues in the form of
datasets, application areas and theories and many others,
however, there are important systematic gaps, limitations and
inconsistencies in these studies. It is clear that researchers
have different objectives when designing and analysing deep-
learning frameworks. This creates an unnecessary discord in
identification of a systematic evaluation methodology.

The deep-learning algorithms listed in Annexure 1 are
suboptimal and not efficient in analysing complex sequential
environments. They lack transparency, interpretability, and
their performance evaluation is not exhaustive. These issues
have not yet been adequately documented and publications
contradict one another. For example how can any experiment
conclude that the designed state-of-the-art framework archi-
tecture is the best when it only uses performance accuracy
based on one criterion?

Historical sequential datasets from financial stock mar-
kets have produced understandable volatile, non-linear and
chaotic characteristics. The financial stock market domain
is very sensitive to changes such as the Covid-19 pandemic.
It is highly correlated to these financial events. This makes
the domain an interesting environment for developing an
enhanced deep-learning framework for accurate analysis of
sequential irregular patterns.

It is possible that a deep-learning framework that has been
trained on complex datasets, when exposed to normal or
ordinary environments, will outperform other frameworks in
terms of robustness and efficiency.

There is room for exploring better optimised sequential
frameworks that have the potential of producing a better
sequential analysis performance. Current deep-learning algo-
rithms can be adapted to analyse irregular-patterned complex
sequential datasets as a means of improvement. These new
approaches need to focus on a more detailed cross cutting
approach that address efficiency, accuracy, consistency and
reliability issues.

5 ANNEXURES
The annexures can be found on the GitHub website. https://
github.com/Dandajena/SDA/blob/master/Annexures.pdf

6 CONCLUSION AND FUTURE
RECOMMENDATIONS

The goal of this research was to determine which deep-
learning frameworks are currently being used to analyse
irregular-patterned complex sequential datasets. Using a sys-
tematic literature research methodology the issues associated
with the performance of well-known state-of-the-art deep
learning frameworks for irregular-patterned complex sequen-
tial analysis and their respective challenges were identified.

It was found from existing literature that several researchers
feel that deep-learning algorithms are suboptimal and not

efficient in analysing complex sequential datasets [25]. It is
thus clear that there is a need to improve the existing perfor-
mance evaluation methods into a unified multidimensional
evaluation method. It cannot be claimed that a state-of-
the-art framework is optimal without applying an extensive,
transparent and traceable performance evaluation procedure
on the results of such a framework.

To address this deficiency it is worth considering a com-
bination of: (1) selecting a proper algorithm architecture
and redesigning it; (2) sensitively tuning it; as well as (3)
evaluating its performance in a multidimensional mode based
on complex irregular-patterned complex sequential datasets.

This will provide a potential approach towards the devel-
opment of a new breed of robust deep-learning frameworks
which are efficient, accurate, consistent, reliable, stable and
transparent. This can only be achieved by selecting an exist-
ing sequential dataset on which research has already been
done as a way of minimising the experimental variables and
parameters. It will allow comparison.

The systematic literature review results show that the
financial stock market domain—particularly from well-estab-
lished financial markets—provides irregular-patterned sequen-
tial datasets. Furthermore, it is important to rank their
volatility before selecting and adopting these datasets in
complex sequential modelling experiments. Improving the de-
sign of algorithms based on such extreme complex sequential
datasets provides much needed theoretical, methodological
and experimental contributions on the performance explo-
ration of deep-learning frameworks. Extreme scenarios are
associated with big data and it has engulfed our lives. Faster
analysis through state-of-the-art frameworks may offer the
much needed scientific, engineering, academic and business
solutions to make the world a better place [30].

Finally, to enrich a future experimental setup, it is ad-
visable to consider some best properties of the sequential
recurrent neural networks proposed by Zhang et al. [43] as
baseline architecture. This process could be coupled with
other novel architectures such as temporal convolution net-
works, transformer networks, CapsNets, unidirectional as well
as attention, bidirectional or multidirectional mechanisms.
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