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Abstract—Rainfall prediction helps planners anticipate poten-
tial social and economic impacts produced by too much or too
little rain. This research investigates a class-based approach to
rainfall prediction from 1-30 days in advance. The study made
regional predictions based on sequences of daily rainfall maps of
the continental US, with rainfall quantized at 3 levels: light or
no rain; moderate; and heavy rain. Three regions were selected,
corresponding to three squares from a 5 × 5 grid covering the
map area. Rainfall predictions up to 30 days ahead for these
three regions were based on a support vector machine (SVM)
applied to consecutive sequences of prior daily rainfall map
images. The results show that predictions for corner squares
in the grid were less accurate than predictions obtained by
a simple untrained classifier. However, SVM predictions for a
central region outperformed the other two regions, as well as
the untrained classifier. We conclude that there is some evidence
that SVMs applied to large-scale precipitation maps can under
some conditions give useful information for predicting regional
rainfall, but care must be taken to avoid pitfalls.

Index Terms—a comparison study, a sequence of images, SVMs

I. INTRODUCTION

A. Role of rainfall maps in water resource management

Rainfall maps provide essential information about intensity,
temporal, and spatial location which are essential in water
resource management. Historical rainfall maps data can help
different management sectors such as agriculture to make
informed decisions about water supply management strategies
to better utilize the occurrence of precipitation events [1].
Historical data can be most effectively utilized by develop-
ing prediction models such as machine learning to capture
historical rainfall patterns.

In previous literature, prediction models based on rainfall
maps may be grouped into two main categories. The first type
involves applying deep learning to a sequence of images as
an input to predict future frames. Usually, the images used for
this type of prediction are separated by relatively small time
intervals e.g 6-10 minutes [2]–[8]. The second type consists of
single output regression or classification-based models. These
models predict rainfall on an hourly [9]–[11], daily [12], [13],

or monthly [14] basis using prior rainfall maps. Regression-
based models may use a single frame [14] or batch of frames
[10] as an input to give a numerical rainfall prediction. In
contrast, classification based models categorize local rainfall
into two or more discrete classes and predict the classes of
future precipitation events based on a single frame or a batch
of frames. [12], [13], [15]. Both regression and classification
models can be used to predict entire images one pixel at a
time [11], [16].

For purposes of comparison, we describe the work of
Boonyuen in [12] and [13]. In [12] the authors used a single
image to produce a binary classification (rain/no-rain) for
three days ahead in Thailand. Using the inception-V3 based
CNN model the authors had up to 54.84% classification
accuracy for three days ahead prediction. The study also
concluded that including neighboring countries in the images
increases the efficiency of the model compared to cropping
the image to focus only on Thailand. In [13] the authors
developed an inception-V3 model to classify predicted rainfall
into four categories (No-rain, light-rain, moderate-rain, heavy-
rain). Both batches of satellite images and single images were
used as input. The study demonstrated that using batches of
images as input makes the model more robust at classifying
upcoming rainfall. The trained model was able to predict one,
two, three days ahead with an accuracy of 70.58%. Having
the same accuracy up to three days ahead is an issue of
concern, as we suspect that the trained model has a bias
towards the majority class (no-rain), making the accuracy
to be constant. Measuring the efficiency of models using
classification accuracy on imbalanced data is not ideal, because
the results obtained may reflect the relative frequencies of the
classes more than the actual effectiveness of the model. When
imbalanced classes are involved, the f1-score can be a better
measure of the method’s effectiveness [17], as it takes the
weighted average of precision and recall and is less influenced
by class imbalance.

In The literature, various image sizes and sequence lengths
are used in different prediction models. It appears that these
parameters are usually chosen arbitrarily, or determined by
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Fig. 1. Satellite precipitation images: (left) An image from the NCEP dataset; (centre) 5 grid overlay; (right) tile 13.

trail and error. For example, the authors in [10] used up to
60 images to predict rainfall on an hourly base. the authors
in [3], [7], [8], [18]–[20], used 4, 4, 5, 10, 10, 20, .20 images
respectively. As to image size, the authors in [10] used several
image sizes between 101 × 101 and 10 × 10, and compared
the performance.

Even though most previous studies made use of deep
learning related techniques to capture rainfall patterns on the
historical images like Convolutional LSTM in [2], in some
cases the deep learning approach has significant drawbacks.
In particular, as it often overfits when the training set is
relatively small [21], [22]. In addition, those models have
many hyperparameters that need to be optimized.

These difficulties can be avoided by using a support vector
machine (SVM) approach instead of deep learning. SVM is a
powerful machine learning technique where it is often used in
classification and regression problems [23]. SVM is a classifier
that generates a hyperplane to classify data instances [24],
[25], where optimal hyperplanes are determined by construct-
ing the largest margin of separation between the different
instances [26]. In contrast to deep learning, SVMs are suited
to be trained on small and medium-sized complex datasets
[23], [27]. SVM also has the capability to perform structural
risk minimization (SRM), which enables SVMs to avoid over-
fitting by minimizing the bound on the generalization error
[28].

Using SVMs can also avoid the need for extensive hyper-
parameter tuning. For example, the authors in [29] considered
the use of linear kernel (SVMs) in case of having the number
of features exceeds the size of the dataset. Linear kernels use
only a single parameter, the regularization parameter C, that
determines the trade-off between minimizing the training error
and the model complexity [30].

Several recent papers in the literature use SVMs on rainfall
prediction for different classifications and regression problems.
The authors in [31] investigated the use of SVMs as well as
other techniques to classify rainfall on a very small training
set 10% (2245), where the output was a binary classifica-
tion rain/no-rain daily. Another binary classification problem
(rain/no-rain) was studied in [25], which investigated the use

of SVMs on weather stationary data to classify rainfall for the
next five minutes. The data were highly imbalanced due to
the rare occasion of rain, which made the researchers perform
down-sampling on the dataset. As for regression problems, The
authors in [32] used SVM to predict daily and the accumulated
rainfall on 42 different cities from Europe and the US. The
authors in [11] investigated the use of SVMs with hourly
radar-derived rainfall to predict precipitation during typhoons.
Another study linked the observations from satellite imagery
data to predict rainfall up to 6-hours [15].

B. Scope of this research

This research aims to investigate precipitation forecasting
on a dataset from the National Center for Environmental
Prediction (NCEP) using SVMs. Our investigation has three
aspects: i) Determine the effect of image sequence input length
on class prediction accuracy, ii) Assess the effect of image size
on class prediction accuracy, and iii) Compare the accuracy of
rainfall class predictions for three selected squares (tiles) from
a 5× 5 grid covering the map area, for up to 30 days ahead.

This paper is organized as follows. Section II presents the
methodology, including a discussion of the datasets and their
preparation as well as the SVM specification and training.
Section III presents the results in tabular and graphical form
and provides analysis and discussion. Section IV summarizes
our conclusions.

II. METHODOLOGY

Following the flow chart in Figure 2, we start by discussing
the data set, followed by the pre-processing of the images and
the preparation of the data then explaining one of the models
for this prediction.

A. Data Set

1) 24-Hour-Precipitation-Forecasting: The data used for
this study are radar images taken daily at 7 a.m. Eastern
Standard Time, from Jan 2012 to Oct 2019, with a total of
2,835 images. The data comes from the NCEP, with a size
of 400×320 pixels which represents the United States. Each
image contains 16 different rainfall intensity level, Figure 1
(Left) shows a full image of the used dataset.



Fig. 2. Flow chart showing the implementation process.

Fig. 3. Overview of dataset preparation.

B. Pre-Processing

The input data set went through a pre-processing transfor-
mation as shown in Figure 2. The first transformation included
size reduction, as we reduced the size of the images from
400 × 320 to 172 × 123 (image size a), and 87 × 61 (image
size b). For both reduced data sets, we cropped the images to
remove some of the irrelevant information that exists in our
data set like the color bar on the left of Figure 1 (left map).
In this study, we did not consider the full image size due
to memory and time consideration. After resizing we trans-
formed the images into one channel by performing a grayscale
transformation on the images to reduce the complexity of the
model.

Figure 3, shows how we prepared the input dataset in
a sliding window fashion to predict the next image in a
sequence. Our use of sliding windows resembles the approach
in several previous references [8], [20], [32]–[34]. The figure
shows the case where n = 4, which stands for the size of the
window (sequence length). In general, the number of feature
(pixels) of one sample of the data set can be determined by
n × w × h, where n is the size of the window, w is the

width of the image, and h is the height of the image, which
depends on the size of the images. For optimization, the study
tested different size window sizes n, where n ∈ {2, 4, 6, 8}.
We divided that data into 90% training and 10% testing for
the whole experiment. Moreover, we divided the US map into
a 5×5 grid squares (tiles), as We trained on specific grid tiles
which are 1, 13, 25.
Initially, we divided the 16 classes on the color bar by Figure 1
left image equally into three classes light, moderate, heavy. For
each image, tiles were classified according to the highest level
observed within the tile: for example, if the tile had one or
more pixels showing heavy rainfall, the entire tile was classi-
fied as heavy rain for that image. However, this equal division
produced highly unbalanced data, due to the rare occasion of
very heavy rainfall. Consequently, our classification accuracy
on the testing test was constant for predictions up to 30 days
ahead, which is similar to what was observed in [13] as
discussed in the Introduction. To circumvent this problem, we
made an unequal division between the classes by designating
the lowest three classes as no/light rain, the next three classes
as moderate rain, and all remaining classes as heavy rain. This
improved the balance between the three classes: for the three
tiles, we observed the following frequencies (no/light rain,
moderate rain, heavy rain): (25%, 49%, 26%) for tile 1, (38%,
30%, 32%) for tile 13, and (36%, 37%, 27%) for tile 25.

The three tiles show quite different seasonal behavior, as
shown in Figure 4. For Tile 13 (central), there is a clear dis-
tinction between the light rain and heavy rain class frequencies
between summer months (May-Aug) and winter months (Oct-
Mar). For Tile 25 (southeast), the light/no rain class shows
strong seasonality, while the other two classes less so. For Tile
1 (northwest) the seasonality for all classes is less distinct.

To summarise, the input to our model is a set of full images,
with different images sizes and windows (sequence length),
while the prediction of the rainfall intensity happens on three
specific tiles corresponding to three local regions within the
U.S.



TABLE I
TILE 1 (F1-SCORE ACCURACY ON THE TESTING SET). WITH k DAYS AHEAD (DA), WITH DIFFERENT n INPUT IMAGES AND SIZES.

Image Input F1-score of Days Ahead (DA) (%)
Scale Images 1DA 2DA 3DA 4DA 5DA 6DA 7DA 14DA 30DA Mean

Img(size a) 2 60 31 27 30 26 23 34 22 22 30.55
4 52 37 40 26 24 32 22 22 22 30.77
6 50 37 37 32 31 22 22 22 22 30.66
8 44 31 30 29 27 25 22 22 22 28

Img(size b) 2 55 33 40 25 25 33 30 22 22 31.66
4 57 43 30 35 37 25 22 22 22 32.55
6 51 42 32 32 32 22 22 29 23 31.66
8 53 34 36 35 24 25 23 22 22 30.44

Mean 52.75 36 34 30.5 28.25 25.875 24.625 22.875 22.125

TABLE II
TILE 13 (F1-SCORE ACCURACY ON THE TESTING SET). WITH k DAYS AHEAD (DA), WITH DIFFERENT n INPUT IMAGES AND SIZES.

Image Input F1-score of Days Ahead (DA) (%)
Scale Images 1DA 2DA 3DA 4DA 5DA 6DA 7DA 14DA 30DA Mean

Img(size a) 2 51 49 49 42 42 42 43 38 44 44.44
4 58 50 45 41 44 44 45 46 45 46.44
6 51 50 42 39 44 44 40 48 41 44.33
8 54 45 46 43 44 44 46 45 44 45.66

Img(size b) 2 55 46 48 46 41 40 48 46 37 45.22
4 55 47 43 45 43 41 43 43 40 44.44
6 57 48 46 43 49 43 43 42 41 45.77
8 60 49 48 42 44 41 45 42 45 46.22

Mean 55.125 48 45.875 42.625 43.875 42.375 44.125 43.75 42.125

TABLE III
TILE 25 (F1-SCORE ACCURACY ON THE TESTING SET). WITH k DAYS AHEAD (DA), WITH DIFFERENT n INPUT IMAGES AND SIZES.

Image Input F1-score of Days Ahead (DA) (%)
Scale Images 1DA 2DA 3DA 4DA 5DA 6DA 7DA 14DA 30DA Mean

Img(size a) 2 41 40 40 37 40 46 49 44 39 41
4 45 35 46 36 43 44 36 40 49 41.55
6 46 48 39 46 39 41 39 42 49 43.22
8 53 37 41 46 42 41 42 39 42 42.55

Img(size b) 2 48 41 39 37 41 42 41 45 34 40.88
4 42 38 42 48 41 47 41 42 42 42.55
6 56 50 49 44 46 39 41 41 41 45.22
8 49 42 42 46 42 43 41 43 42 43.33

Mean 47.5 41.375 42.25 42.5 41.75 42.875 40.375 42 42.25

C. Classification

In this study, we used linear kernel SVMs, based on [29]
which advised using a linear kernel when the number of
features exceeds the size of the dataset. These were trained on
the training set, which comprised 90% of the data. Training
was accomplished using the sklearn.svm.SVC class in scikit-
learn (www.scikit-learn.org). Since we are working with a
linear kernel, we had only one parameter to optimize which
is the regularization parameter C. We tried values C = 2k

for k ∈ −15, ...6 with 10-fold cross-validation on the training
set, and we chose the best C value separately for each input

configuration and each day ahead prediction, for each of the
three tiles. (It was observed that in most cases the value of
C thus obtained was in the 2−13–2−10 range.) The models
obtained were then applied to the testing set, and confusion
matrices were obtained which were used to compute macro
f1 scores. The macro f1-score was calculated as the average
of the f1 scores of each class, where the per-class f1 score is
computed as follows:

f1-score =
2× Precision× Recall

Precision + Recall
(1)

www.scikit-learn.org


TABLE IV
F1-SCORE RANGES FOR 8 DIFFERENT SVM INPUTS FOR DIFFERENT DAYS AHEAD (DA), FOR THREE REGIONS (%)

F1-score range of Days Ahead (DA) (%)
Region 1DA 2DA 3DA 4DA 5DA 6DA 7DA 14DA 30DA

tile 1 16 12 13 10 13 11 12 7 1
tile 13 9 5 7 7 8 4 8 10 8
tile 25 15 15 10 12 7 8 6 6 15

Fig. 4. Seasonality on a monthly basis for Tile 1 (left), Tile 2 (middle), and Tile 3 (right).

III. RESULTS AND DISCUSSION

Tables I, II,III show the macro f1-score accuracy on the
testing set for tile 1 (northwest), tile 13 (central) and tile 25
(southeast) respectively. Each table gives results for different
days-ahead predictions for 8 different SVM inputs (four dif-
ferent input sequences and two different image sizes). The
bold numbers in each column represent the highest macro f1-
score among the 8 SVM inputs for that specific days-ahead
prediction for the given tile.

In the following discussion, we will first compare the
prediction performance for the different SVM inputs. Then we
will compare the prediction performance for the three different
geographical regions.

A. Comparison between different SVM inputs

From Tables I, II, and III we do not find that any one input
configuration is clearly better than the others. In Table I for
example, we find that 5 different input configurations attain
the best accuracy for different days-ahead predictions. There
is considerable variation within each column of the tables,
as well as from column to column for each row. Table IV
shows the f1 score range (maximum − minimum) among the
8 predictions for each days-ahead, for the three regions. From
the table, it is clear that Tile 13, in general, has the lowest
variability in the 1-6 day range, while the variability for Tile
1 reduces to almost 0 after 30 days.

The observed variabilities may be attributed at least partially
to the relatively small size of the testing set, which consists
of about 300 images. For purposes of comparison, a sequence
of 300 Bernoulli trials with success probability p = 0.5 will
have a standard deviation of ±3 percentage points. So a 95%
confidence interval of ±2 standard deviations will have a width
of 12 percentage points. So in this Bernoulli trial scenario, the
probability of getting 8 independent trials within a range of
12 is roughly 0.958 = 0.66.

Fig. 5. Mean macro f1-scores as a function of days ahead for different input
image sequence length, averaged over all image sizes and tiles.

Figures 5 and 6 isolate the effect of input sequence length
and image size, respectively. In Figure 5 the macro f1 scores
for all predictions for all tiles for each days-ahead were
averaged, and the results plotted as a function of days-ahead.
The figure shows that no particular input sequence length is
superior to the others. Figure 6 similarly averages macro f1
scores separately for each image size. There appears to be
a slight advantage of about 1 percentage point when using
the larger image size (172 × 123) instead of the smaller size
(87 × 61). Both figures show a clear decrease in accuracy as
days-ahead increases. in contrast to the constant classification
accuracy found in [13].

B. Comparison between regional predictions

Figure 7 shows the macro f1 scores averaged over 8 inputs
(4 sequence lengths × 2 images sizes) for each day ahead,
for each image separately. These f1 scores are compared to
f1 scores obtained from an untrained predictor that simply



Fig. 6. Mean macro f1 score as a function of days ahead for the two different
image sizes, averaged over all input sequence lengths and tiles.

uses the class of the final image in the sequence as the
predicted class for 1, 2, 3, . . . 30 days ahead. From the figure, it
is clear that the SVM significantly underperforms the untrained
benchmark predictor for Tiles 1 and 25. For Tile 13, the SVM
outperforms the untrained predictor by about 1-3 percent.

The SVM performance for Tile 1 is particularly poor, espe-
cially for longer-range predictions. Upon closer examination
of the confusion matrices produced by the simulation, we
found that for predictions longer than 4 days ahead, almost
all of the SVM inputs were producing a classifier that always
predicted the most frequent class (moderate rain) regardless
of the SVM input. An elementary calculation based only on
class frequencies (25%, 49%, 26%) shows that a predictor
which ignores inputs and always chooses the majority class
will have a macro f1-score of 21.5%, which is consistent with
our observed result.

The SVM performance for Tile 25 is also worse than
the untrained predictor. The confusion matrices for Tile 25
shows that for larger-DA predictions, most predictors simply
choose between light and moderate classes, and never predict
the heavy class. This result is understandable based on the
seasonal behavior of Tile 25, shown in Figure 4 (right).
During the winter months (Nov.-Dec.), the light class is by
far the most frequent. So if the input images show the tile
as belonging to the light class, the chances are that the class
will remain light for the next 30 days. On the other hand,
in the summer months (May-Sep), the light class is virtually
nonexistent, and moderate and heavy are about equal. Since
moderate is a more frequent class than heavy (37% versus
27%), the classifier favors moderate over heavy. Apparently,
the untrained benchmark predictor more closely matches the
seasonal pattern, which is why the untrained predictor per-
forms better. We note that for Tile 25, a predictor that always
chooses the majority class will have a macro f1 score equal
to 18%, so the SVM does represent a large improvement over
a majority-class predictor.

Tile 13 showed the best SVM performance among the three
tiles and was the only tile where the SVM outperformed the

Fig. 7. Per-tile average of f1-scores for 8 SVM inputs as a function of days
ahead, compared to untrained benchmark predictor.

untrained benchmark classifier. We also noted from Table IV
that there was a smaller variation in macro f1 scores among
the 8 different SVM inputs, for predictions between 1-5 days
ahead. It is reasonable that the SVM’s in Tile 13 are finding
useful features and converging, while the SVM’s for the
other tiles are not locating truly useful features, so they are
overfitting the training set which means that they no longer
give consistent accuracy when applied to the testing set. It
may be argued that Tile 13 has better input data than the
other tiles because the input images contain information from
all regions surrounding Tile 13 which is not the case for the
other two tiles.

IV. CONCLUSION

Our study points out some of the limitations and poten-
tial pitfalls in using SVMs with linear kernels for weather
prediction up to 30 days in advance. We have shown that
some classifiers used by previous researchers (e.g. [12] and
[13]) which seem to show good performance may be largely
due to unequal class divisions rather than the classifier itself.
We have also shown that unequal classes may cause linear
SVMs to converge on majority-class classifiers, or to com-
pletely neglect classes of low frequency. Among the three
geographical regions predicted, only the central region had
an SVM-based classifier that performed better than a simple
untrained classifier that used the tile’s class in the final image
of the input sequence as the prediction. We conjecture that
SVMs may be performing better on the central tile because
the input sequence contains precipitation information for all
surrounding tiles, which is not the case for tiles at the corners
of the map (such as Tile 1 and Tile 25).

In this study, we propose to divide the map of the US onto
25 tiles, as for the optimization we used different input config-
urations. The support vector machine was used to classify the
image sequences as no/ light-rain: a) Our study shows that f1-
score for tile 13 has a generally better f1-score than tile 1 and
tile 25, which goes back to the position of the tile. b) Taking a
bigger size scale as an input appears to provide slightly better
performance than the smaller scale, but with higher time cost.



c) The f1-score shows a decay while predicting days ahead,
but the decay does not appear as prominent with imbalanced
tiles e.g tile 1.

We have argued that the variability in the results obtained
from day to day and from input method to input method
was at least partially due to the insufficient amount of data
for training and testing. Much of the variation in observed
f1 scores is attributable to the small testing set size. Recent
research has shown that using data augmentation to augment
the set of training images may improve the efficiency of the
trained model [5]. With an augmented training set, a larger
portion of the actual data may be used for testing.

Another significant drawback of the SVM classifiers used
was that they did not take seasonality into account. This is why
a simple untrained classifier that took advantage of seasonality
was able to substantially outperform the SVM classifiers on
two out of the three regions examined. It is possible that SVMs
that take seasonality into account my perform much better: this
is a possible area for future research.

In the current research we did not attempt to include addi-
tional engineered features, because the number of features used
was already very large. For future investigation, a possible
approach would be to use PCA to reduce the number of
features, and then apply feature engineering. In addition to
time stamp, Gaussian Mixture Models may be used to capture
spatial means and variances, which could be used as global
features.
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