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ABSTRACT
Future Square Kilometre Array (SKA) surveys are expected to generate huge data sets of
21 cm maps on cosmological scales from the Epoch of Reionization. We assess the viability
of exploiting machine learning techniques, namely, convolutional neural networks (CNNs), to
simultaneously estimate the astrophysical and cosmological parameters from 21 cm maps from
seminumerical simulations. We further convert the simulated 21 cm maps into SKA-like mock
maps using the detailed SKA antennae distribution, thermal noise, and a recipe for foreground
cleaning. We successfully design two CNN architectures (VGGNet-like and ResNet-like) that
are both efficiently able to extract simultaneously three astrophysical parameters, namely
the photon escape fraction (fesc), the ionizing emissivity power dependence on halo mass
(Cion), and the ionizing emissivity redshift evolution index (Dion), and three cosmological
parameters, namely the matter density parameter (�m), the dimensionless Hubble constant
(h), and the matter fluctuation amplitude (σ 8), from 21 cm maps at several redshifts. With the
presence of noise from SKA, our designed CNNs are still able to recover these astrophysical
and cosmological parameters with great accuracy (R2 > 92 per cent), improving to R2 >

99 per cent towards low-redshift and low neutral fraction values. Our results show that future
21 cm observations can play a key role to break degeneracy between models and tightly
constrain the astrophysical and cosmological parameters, using only few frequency channels.

Key words: methods: statistical – galaxies: high-redshift – intergalactic medium –
cosmological parameters – dark ages, reionization, first stars.

1 IN T RO D U C T I O N

The last global phase transition in the Universe, known as the
Epoch of Reionization (EoR), marks the time at which the first
stars gradually reionized the intergalactic medium (IGM) and
the Universe transitioned from highly neutral opaque to a highly
ionized-transparent state (for a review, see e.g. Loeb & Barkana
2001). This epoch represents a crucial period in the Universe’s
history, particularly with regard to the formation and evolution of
early galaxies.

Constraining the astrophysical and cosmological parameters has
been the focus for most observational and theoretical studies.
Several techniques have been developed to constrain the cosmo-
logical parameters (e.g. matter density parameter �m and Hubble
constant H0) such as using the cosmic microwave background
(CMB) anisotropies measurements (e.g. Hinshaw et al. 2013; Planck
Collaboration XIII 2016), Sunyaev–Zel’dovich cluster surveys (e.g.

� E-mail: shassan@nmsu.edu
†Tombaugh Fellow.

Battye & Weller 2003), galaxy clusters in optical and X-ray
bands (e.g. Moscardini, Matarrese & Mo 2001), gamma-ray burst
X-ray afterglow light curves (e.g. Cardone et al. 2010), lensed
GW+EM signals (e.g. Li, Fan & Gou 2019), Ly-α forest power
spectrum and COBE-DMR (e.g. Phillips et al. 2001), large-scale
clustering of SDSS luminous red galaxies (e.g. Padmanabhan et al.
2007), and a joint CMB and weak lensing analysis (e.g. Contaldi,
Hoekstra & Lewis 2003). On the other hand, several works have
attempted to constrain the astrophysical parameters (e.g. the photon
escape fraction, fesc, and ionizing emissivity evolution, Ṅion), using
Ly-α forest measurements (e.g. Becker & Bolton 2013), Lyman
continuum (LyC) radiation from local galaxies (e.g. Leitet et al.
2013), and inferred constraints by tuning different theoretical
models to other measurements (e.g. Mitra, Choudhury & Ferrara
2015; Finlator et al. 2015).

While all these methods show different levels of success to
place constraints on various parameters, tighter constraints are
expected to come from the EoR through measurements of the 21 cm
fluctuations on cosmological scales. With its strong dependence
on the ionization and density fields, the 21 cm signal carries a
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wealth of information that is important in order to understand early
stages of galaxy formation and evolution. In this light, many radio
interferometer experiments, such as the Low Frequency Array (LO-
FAR; van Haarlem et al. 2013), the Precision Array for Probing
the Epoch of Reionization (Parsons et al. 2010), the Murchison
Wide field Array (Bowman et al. 2013), the Giant Metrewave Radio
Telescope (Paciga et al. 2011), the Hydrogen Epoch of Reionization
Array (HERA; DeBoer et al. 2017), and Square Kilometer Ar-
ray (SKA; Mellema et al. 2013) are devoted to detecting reionization
in the near future. These growing observational efforts require
equivalent efforts in both the theoretical and statistical sides, in
order to prepare for extracting all possible information and constrain
the cosmological and astrophysical parameters from future 21 cm
surveys.

Several studies have already shown that combining the 21 cm
power spectrum with Markov Chain Monte Carlo (MCMC) analysis
is a powerful technique to obtain tighter constraints and break
degeneracy between models (e.g. Greig & Mesinger 2015; Liu et al.
2016; Pober, Greig & Mesinger 2016; Hassan et al. 2017; Park et al.
2019). Besides the power spectrum, future 21 cm surveys, the SKA
in particular, are also expected to generate huge imaging data sets
for the 21 cm fluctuations on large scales that will contain more
information than the power spectrum. Going beyond the power
spectrum has been the target of many studies (e.g. Bharadwaj
& Pandey 2005; Barkana & Loeb 2008; Watkinson & Pritchard
2015; Majumdar et al. 2018), in which more information can
be obtained through investigating the non-Gaussian nature of the
21 cm signal using higher order statistics such as the bispectrum.
To efficiently use the 21 cm information stored in the 2D 21 cm
maps, convolutional neural networks (CNNs) have been a very
successful deep learning tool to recover the astrophysical parameters
during reionization (Gillet et al. 2019), to learn the reionization
history (La Plante & Ntampaka 2019; Mangena, Hassan & Santos
2020), to emulate reionization simulations (Chardin et al. 2019), and
to identify reionization sources from different models (Hassan et al.
2019). However, the astrophysical parameter recovery by Gillet
et al. (2019) ignores the instrumental effects as an initial proof-
of-concept study. Accounting for these effects such as the angular
resolution, foreground cleaning, and thermal noise, are all crucial
in order to add realism to the simulated 21cm images as we prepare
for the 21 cm era.

In this work, we take a step further to design two different CNNs
to simultaneously estimate several parameters from 21 cm maps at
several redshifts and different stages through reionization. We here
that assume all observations at different redshifts are performed
independently. We simply take maps from different redshifts and
apply the instrumental noise directly on each map assuming a single
frequency channel of a size ∼ 50 kHz (i.e. simulation resolution).
We finally combine the maps from different redshifts to create our
training data sets. We note that learning from light-cones is beyond
the scope of the current work. Our aim is to provide a network
that is able to predict parameters without requiring the redshift nor
neutral fraction as inputs, which is a more flexible design. Three
astrophysical parameters are evaluated: the photon escape fraction
(fesc), the ionizing emissivity power dependence on halo mass (Cion),
and the redshift evolution index (Dion). Additionally, we estimate
three cosmological parameters: the matter density parameter (�m),
the dimensionless Hubble constant (h), and the matter fluctuation
amplitude (σ 8). To assess the ability of future 21 cm tomography
to constrain these parameters, we follow the recipe presented
in Hassan et al. (2019) to add a physically motivated and realistic
21 cm noise to large-scale 21 cm maps that are produced using

our seminumerical model, SIMFAST21 (Santos et al. 2008, 2010).
This paper is organized as follows: we first describe our suite of
simulations of the 21 cm signal and noise in Section 2. We then
present the two network designs in Section 3 and the training data
set in Section 4. We present the main results in Section 5, and draw
our concluding remarks in Section 6.

2 SI M U L AT I O N S

2.1 Seminumerical model, SIMFAST21

We use the Instantaneous model of our seminumerical simulations
SIMFAST21, that has been developed in Hassan et al. (2016), to
improve over previous implementations of the ionizing source and
sink populations in these seminumerical simulations. In addition, it
has been recently shown that this model is in a relatively good
agreement with predictions from our radiative transfer simula-
tion (ARTIST; Molaro et al. 2019), particularly in terms of the
morphology and power spectrum of the ionization and 21 cm fields.
However, the reionization history can be quite different for the
same photon escape fraction value. This arises from violation of
photon conservation which is an intrinsic problem in the use of
excursion set formalism (ESF) in seminumerical simulations (Zahn
et al. 2007; Paranjape, Choudhury & Padmanabhan 2016; Hassan
et al. 2017). As indicated by ARTIST, as a temporary solution all
our photon escape fraction predictions can be adjusted by a factor
of 20 per cent to account for the photon conservation problem. We
here briefly describe the simulation ingredients, and defer to Santos
et al. (2010) for the full details of the simulation algorithm, and to
Hassan et al. (2016) for the Instantaneous model development.

The dark matter density is generated in the linear regime from
a Gaussian distribution using a Monte Carlo approach. Evolving
the density field to non-linear regime is performed through the
Zel’dovich (1970) approximation. Halos are then generated using
the ESF. Ionized regions are identified using a similar form of the
ESF that is based on a direct comparison between the instantaneous
rates of ionization Rion and recombination Rrec in spherical regions
of decreasing sizes as specified by the ESF. Regions are flagged as
ionized if:

fesc Rion ≥ Rrec , (1)

where fesc is the escape fraction. The Rrec is obtained from a radiative
transfer simulation (Finlator et al. 2015), in order to account for the
clumping effects below our cell size. The Rrec is parametrized as a
function of overdensity � and redshift z as follows:

Rrec

V
= 9.85 × 10−24(1 + z)5.1

[
(�/1.76)0.82

1 + (�/1.76)0.82

]4

, (2)

where V refers to the cell volume. The Rion parametrization is derived
from a combination of the radiative transfer simulation (Finlator
et al. 2015), and a larger hydrodynamic simulation (Davé et al. 2013)
that both have been shown to reproduce wide range of observations,
including low-z observations. The Rion is parametrized as a function
of halo mass Mh and redshift z as follows:

Rion

Mh

= 1.1 × 1040 (1 + z)Dion

(
Mh

9.51 × 107

)Cion

× exp

(−9.51 × 107

Mh

)3.0

, (3)

where the best-fitting values of the ionizing emissivity dependence
on halo mass Cion and redshift Dion were found to be Cion = 0.41 and
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Table 1. Summary of our assumed SKA array design.

Array design 866 compact core

Station diameter, D [m] 35

Station area, A [m2] 962.11
(

110
ν[MHz]

)2

System temperature [K] (Tsys = Tsky + Trcvr) 1.1 Tsky + 40
Total observation time tint [h] 1000
Frequency resolution �ν [kHz] 48
Redshift 10, 9, 8 ,7
Frequency [MHz] 129 , 142, 158, 178
FWHM [arcmin] 1.37, 1.24, 1.12, 0.99
Beam angle θ [rad] 0.066, 0.06, 0.054, 0.048
Default wedge slope m, equation (4) 0.27, 0.23, 0.19, 0.15

Dion = 2.28, respectively. Later, we will change these parameters
to generate the training and testing data sets. Note that equation (3)
shows that Rion scales as M1.41

h , which is consistent with the SFR−Mh

relation previously found by Finlator, Davé & Özel (2011). We defer
to Hassan et al. (2016) for the full details on the derivation of the Rion

and Rrec fitting functions and their effects on several reionization
key observables.

2.2 21 cm instrument simulation

We here describe the method used to account for various instrumen-
tal effects following the recipe developed in Hassan et al. (2019).
We briefly review this method below and refer the interested readers
to Hassan et al. (2019) for detailed information and complete steps
of how we convert a 21 cm simulated map into a mock map according
to the assumed array design. In this work, we restrict our analysis
to the SKA proposed design and leave a more detailed comparison
between different arrays, such as HERA and LOFAR, for future
works. The instrumental noise is applied separately on each redshift
assuming a single frequency channel corresponding to the map size
(∼ 50 kHz). We leave to future works learning from the light-cones
by considering many frequency channels over a large bandwidth in
the analysis.

The 21 cm Instrument simulation pipeline consists of three parts:

(i) Foreground cleaning: foreground contaminated modes of the
signal lie inside the foreground wedge in the k⊥ − k� plane. The
foreground wedge slope (m) is given by:

m = D H0 E(z) sin θ

c(1 + z)
, (4)

where H0 is the Hubble parameter, c is the speed of light, E(z) ≡√
�m(1 + z)3 + �	, and θ is the beam angle. To clean foregrounds,

we simply zero out all modes within the wedge, satisfying k� <

m k⊥. For the same experiment, the slope increases with redshift,
which means more modes are removed at higher redshifts. We quote
exact wedge slope values for the SKA at our redshifts of interest in
Table 1. This the first step of the noise pipeline to clean foregrounds
from the 3D co-eval cubes.

(ii) Angular resolution: we account for the angular resolution of
a given array by exploiting its detailed baseline distribution, via the
uv-coverage, which is a measure of the baseline intensity observing
the signal modes in directions perpendicular to the sightline. The
uv-coverage is computed using the 21CMSENSE package1 from our
assumed SKA antennae distribution. We then Fourier transform

1https://github.com/jpober/21cmSense

the simulated 21 cm map and set the signal to zero at k⊥ modes
whose uv-coverage is zero.2 We additionally smooth down the
simulated maps using a Gaussian filter whose full width half-
maximum (FWHM) is given by: FWHM = λ21cm (1 + z)/B, whereas
the maximum baseline length B = 5834 m for our assumed SKA
design, and λ21cm is the rest-frame wavelength of the 21 cm signal.
This sets the minimum angular resolution for our assumed SKA
design. For instance, our simulated maps initially have an angular
resolution of ∼ 0.3 arcmin at z = 7, that are smoothed to have a lower
angular resolution of ∼ 1 arcmin according to the FWHM at this
redshift. Exact angular resolution values as a function of redshift are
quoted in Table 1. The angular resolution recipe is applied on maps
extracted from the 3D foreground filtered boxes from the previous
step.

(iii) Thermal noise: the thermal noise is uncorrelated between
measurements, and can be drawn from a Gaussian distribution
of unit mean and standard deviation (Zaldarriaga, Furlanetto &
Hernquist 2004) given by:

√
〈|N |2〉[Jy] = 2 kB Tsys

A
√

�ν tint
, (5)

where tint here is the integration time to observe a single visibility at
a frequency resolution �ν, and kB is the Boltzmann constant. The
total system temperature Tsys and other parameters are summarized
in Table 1. Having generated the thermal noise in 2D grid using
the above equation in Fourier space, we further suppress the noise
by the amount of the uv-coverage Nuv by a factor of ∼ 1/

√
Nuv .

We finally inverse Fourier transform the noise map and add it to
the angular resolution – foreground filtered signal map to form our
mock 21 cm map.

Using this pipeline with parameters listed in Table 1, the rms
brightness temperature (noise level) is about ∼ 3 mK at z = 8,
consistent with previous estimates (e.g. see Furlanetto, Oh & Briggs
2006; Kakiichi et al. 2017; Giri, Mellema & Ghara 2018). This
pipeline is used to add realism to our simulated training and testing
data set, in order to assess the ability of future SKA 21 cm surveys to
constrain the astrophysical and cosmological constraints. In Fig. 1,
we show an example of four randomly selected 21 cm maps (top)
with their mock versions (bottom) from our training data set for
different set of astrophysical and cosmological parameters as quoted
in the subtitles. These maps are generated from different simulations
realizations of a box size of L = 150 Mpc, number of cells N = 200,
resulting in a resolution of 0.75 Mpc. We find that most of the
large- and small-scale ionized bubbles are still present after adding
the instrumental effects. This is due to the high angular resolution
of our assumed SKA design as well as the high uv-coverage that
extends down to a very small scales (∼ 3.5 h Mpc−1) during these
epochs.

However, fully ionized (xHI < 0.01) and fully neutral maps (xHI

> 0.99), as described later in Section 4, are already excluded from
the training sample, since they are identical for different set of
parameters. Distinguishing identical maps is challenging for neural
networks, where more information, such as redshift evolution, is
required to assist parameter recovery at these extreme limits. When
the Universe is highly ionized (e.g. xHI ∼ 0.1–0.2, see column 4
in Fig. 1), the noise dominates but nevertheless the residual neutral
patches can still be seen and recognized. These residual patches are
usually different for different set of parameters, which might help

2Modes with zero uv-coverage lie outside the angular resolution of the
experiment.
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Figure 1. Examples of four randomly selected 21 cm maps (top), from our training data set, with their corresponding mock version (bottom), using our
assumed SKA design. Red and blue colour represent neutral and ionized regions, respectively. Subtitles show the astrophysical and cosmological parameters
used to generated each map. These parameters are: the photon escape fraction (fesc), ionizing emissivity power dependence on halo mass (Cion) and ionizing
emissivity redshift evolution index (Dion), matter density parameter (�m), dimensionless Hubble constant (h), and matter fluctuation amplitude (σ 8). Coloured
version is available online.

the network to distinguish between maps and parameters. On the
other hand, in the beginning of reionization, the ionized regions are
very small due to the small number of sources and ionizing photons.
The noise then contaminates and fills these small ionized regions
(e.g. xHI ∼ 0.8–0.9, see column 1 in Fig. 1), and hence maps might
look similar to those from a fully neutral Universe. This makes
recognizing the prominent signal features more challenging, and
many of the reionization realizations for a highly neutral Universe
become approximately indistinguishable. This might impact the
parameter recovery from a highly neutral IGM, which basically
exists at high redshifts where the noise is stronger.

3 N E T WO R K A R C H I T E C T U R E

We consider two types of network in this work. It is worth reiterating
that our main objective is to able to infer both astrophysical {fesc,
Cion, Dion} and cosmological {�m, h, σ 8} parameters simultane-
ously from their corresponding 21 cm maps. To this end, our main
focus is to simply explore different network designs with different
layout in width and depth as an attempt to achieve our goal.

The first architecture (network I) considered for our investigation
is given in Table 2. It is slightly similar to VGG--Net (Simonyan
& Zisserman 2014) in terms of chaining convolutional layers
before downsampling, however the key difference here is that each
stage,3 we have two convolutional layers with same number of
feature maps in a row followed by batch normalization and ReLU
activation (Conv+Conv+BN+ReLU) as shown in Fig. 2. We note
that the representation N x N + M(S) denotes the kernel size
(N x N) and the stride (M) of a convolutional layer. In total, we

3Which we refer to as mapping the input x without reducing the dimensions
(weight × height).

Table 2. The architecture of network I for this study.

Layer Output shape

1 Input (1, 200, 200)
2 3 × 3 convolutional layer (32, 200, 200)
3 3 × 3 convolutional layer (32, 200, 200)
4 Batch normalization –
5 ReLU activation –
6 2 × 2 max pooling (32, 100, 100)
7 3 × 3 convolutional layer (64, 100, 100)
8 3 × 3 convolutional layer (64, 100, 100)
9 Batch normalization –
10 ReLU activation –
11 2 × 2 max pooling (64, 50, 50)
12 3 × 3 convolutional layer (128, 50, 50)
13 3 × 3 convolutional layer (128, 50, 50)
14 Batch normalization –
15 ReLU activation –
16 2 × 2 max pooling (128, 25, 25)
17 3 × 3 convolutional layer (256, 25, 25)
18 3 × 3 convolutional layer (256, 25, 25)
19 Batch normalization –
20 ReLU activation –
21 Fully connected layer (1024)
22 Batch normalization –
23 ReLU activation –
24 Fully connected layer (1024)
25 Batch normalization –
26 ReLU activation –
27 Fully connected layer (1024)
28 Batch normalization –
29 ReLU activation –
30 Fully connected layer (6)
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Figure 2. One stage in network I. Chaining two convolutional layers with
same number of feature maps followed by a batch normalization and ReLU
function before a max pooling. Coloured version is available online.

have four stages, each with a Conv+Conv+BN+ReLU layer
followed by a Max Pooling with stride = 2 to reduce the
dimensions of the inputs,4 and four dense layers each with 1024
units with the exception of the output layer, which has only 6 units
corresponding to the number of inferred parameters. This network
design is also similar to the previous design used in our reionization
models classifier (Hassan et al. 2019), except that the convolutional
layers used here are wider and no dropout seems to be needed.
This is consistent with the disharmony observed between batch
normalization and dropout (Li et al. 2018). Similar to our previous
works in the classifier, we initialize the network weights using a
generalized form of Xavier initializer (Glorot & Bengio 2010) that
is also called the Variance Scaling initializer, in which the random
numbers are drawn from a zero mean Gaussian distribution whose
variance is equal to the inverse of the average of the number of input
and output neurons. This initializer ensures that the variance of the
input data is preserved as it propagates through the network layers.

Our second architecture, which we simply name network II, is
based on a combination of residual layers (He et al. 2016) and
inception modules (Szegedy et al. 2015) as shown in Table 3. The
inputs, as described in Section 2, are first fed into a convolutional
layer followed by a batch normalization (Ioffe & Szegedy 2015) be-
fore a ReLU activation (Conv+BN+ReLU). This is then followed
by four residual layers, each composed of three, six, six, and three
residual blocks, respectively. It was shown in He et al. (2016) that
the resulting error (both training and testing) of deeper architecture
tends to be larger than that of shallower architecture. Therefore, they
proposed a residual layer which allowed them to increase the depth
of the model in order to gain better performance. In contrast with

4In other words, the ouputs from the previous stage.

Table 3. The architecture of network II for this study.

Layer Output shape

1 Input (1, 200, 200)
2 Convolutional layer (16, 200, 200)
3 Batch normalization –
4 ReLU activation –
5 Residual layer (3 residual blocks) (16, 100, 100)
6 Residual layer (6 residual blocks) (32, 50, 50)
7 Residual layer (6 residual blocks) (64, 25, 25)
8 Residual layer (3 residual blocks) (128, 13, 13)
9 Inception module (240, 13, 13)
10 Max pooling (240, 7, 7)
11 Inception module (240, 7, 7)
12 Inception module (256, 7, 7)
13 Inception module (288, 7, 7)
14 Max pooling (288, 4, 4)
15 Fully connected layer (1024)
16 Batch normalization –
17 ReLU activation –
18 Fully connected layer (1024)
19 Batch normalization –
20 ReLU activation –
21 Fully connected layer (1024)
22 Batch normalization –
23 ReLU activation –
24 Fully connected layer (6)

Figure 3. Residual block in network II. Left-hand panel: the downsampling
only occurs at the first convolutional layer (blue3x3+2(S)), but the dimen-
sion is kept the same at the second convolutional layer (blue 3x3+1(S)).
To match the dimensions of the output from the chain of convolutional layers
(blue ones), the input is fed to a convolutional layer with strides = 2 (red
3x3+2(S)). Right-hand panel: when there is no downsampling, the input
is simply added to the output from the chain of convolutional layers (blue
ones). Coloured version is available online.

network I, instead of using simple convolutional layers we stack
residual blocks, which are achieved with the schematic shown in
Fig. 3 (right-hand panel) where the residual learning is constructed
using a Conv+BN+ReLU+Conv+BN+ReLU+Conv+BN layer.
Depending on whether there is downsampling (Fig. 3 left-hand
panel) through the chain of convolutional layers in a residual block,
the input needs to be downsampled using a Conv+BN layer to
match the dimension of the output of the chain of convolutional
layers.

In each residual layer, the downsampling occurs at the first
residual block. There are variants of deep residual networks, but in
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Figure 4. Inception module considered in this study. The red convolutional
layers (1x1+1(S)) are used for dimensionality reduction. Coloured
version is available online.

Table 4. The hyperparameters and optimizers used to train the algorithms.

Optimizer Learning rate Batch Cost function

I Nesterov 0.005 128 �1 norm
II Adam 0.01 128 rmse

essence what we consider here is such that the network performance
is optimized for our specific task.

As proposed by Szegedy et al. (2015), in order to improve the
recognition of more complex features at the higher levels of the
network, we make use of four inception modules after the residual
layers. The prescription suggested in Szegedy et al. (2015) is to
deal with the computational complexity related to the depth of the
network, that is increasing the size of the network while maintaining
the computational cost. The inception module used in this network
design is shown in Fig. 4. The idea behind convolving the inputs
with a 1 × 1 filter before the convolutional layers with 3 × 3 and
5 × 5 kernels is to reduce the number of feature maps from the
inputs as computations are more expensive with larger kernel size.
The features at different scales – captured by different kernel sizes
1 × 1, 3 × 3 and 5 × 5 – can be learned simultaneously (Szegedy
et al. 2015). It is worth noting that we opt for He initialization (He
et al. 2016) for all layers in network II.

For training, as usual for any machine learning tasks, one needs to
fine-tune the hyperparameters, summarized in Table 4, in order for
the algorithm to generalize well and hence achieve the best possible
performance, where the distance between the ground truth and
network predictions is minimum. To that end, as shown in Table B1
in Appendix B, we use two completely different approaches in
terms of optimization for the two architectures. Although the two
networks produce similar results, as will be presented in Section 5,
network I converges faster. This can be explained by the capacity
of network I with its number of trainable parameters of about 167
millions which translates to ∼2.05 × 109 floating point operation
per second (flops) at inference time, whereas network II has ∼10
millions of trainable parameters corresponding to ∼1.39 × 109 flops
at inference time.

For reproducibility, we have used TENSORFLOW package (Abadi
et al. 2016) to develop network I which has been trained for 50 000

training steps (about 100 training steps per epoch) which spend ∼
15 h on a single GPU. Each training step with a batch size of 128
images takes about ∼ 1 s. The network converges from the first few
epochs but reaches minimum (RMSE∼ 0.001) at epoch = 40 (see
Fig. A1 in Appendix A). This indicates that same results can be
obtained in about 6 h with a single GPU. For network II, we have
used PYTORCH (Paszke et al. 2019) resorting to three GPUs to speed
up the convergence. Each epoch, in which each GPU processes in
parallel a batch of 128 images at a time, takes about 2 min which is
translated to 40 h for 1200 epochs.

4 TRAI NI NG DATA SET

We generate the training data set from a large simulation box of
a size L = 150 Mpc with N = 2003 cells. We run 1000 different
reionization simulations realizations with 1000 different random
seeds for the initial density field fluctuations. The prior range
assumed to our parameters of interest is as follows:

(i) Cosmology:

(a) Matter density parameter: 0.2 ≤ �m ≤ 0.4.
(b) Hubble constant: 0.6 ≤ h ≤ 0.8.
(c) Matter fluctuation amplitude: 0.7 ≤ σ 8 ≤ 0.9.

(ii) Astrophysics:

(a) Photon escape fraction: 0.01 ≤ fesc ≤ 1.
(b) Rion–Mh power dependence: 0 ≤ Cion ≤ 1.
(c) Rion redshift evolution index: 0 ≤ Dion ≤ 2.

The ranges considered for the astrophysical parameters are
motivated from our previous MCMC estimates to reproduce various
reionization observables (Hassan et al. 2017), and those of the
cosmology are inspired by the recent parameters estimates from the
Planck Collaboration 2018 (Aghanim et al. 2020). From these pri-
ors, we select 1000 values for each parameter using Latin Hypercube
Sampling in order to efficiently explore our 6D parameter space and
ensuring that the simulation does not run twice using the same set of
parameters. From each simulation run, we store the 21 cm brightness
temperature at several redshifts z = 10, 9, 8, and 7 in order to have a
sufficiently large number of maps to ensure training. Balancing the
training data set is important to ensure equal learning at all redshifts
and all neutral fraction values. This can be achieved by flattening
the distribution according to the neutral fraction at each redshift.
Flattening the distributions has previously been used in learning
cluster masses (Ntampaka et al. 2015) to reduce the bias towards
low-mass clusters. To flatten our distribution, we take the following
steps: first, we ignore highly ionized (xHI < 0.01) and highly neutral
(xHI > 0.99) 21 cm boxes. Second, at each redshift, we bin the
boxes according to their neutral fraction. Since the neutral fraction
changes strongly with different parameters at different redshifts, the
number of boxes in each neutral fraction bin is also different. One
has to choose a fixed number to select boxes from bins to flatten the
distribution. We here choose 20 boxes. These 20 boxes are randomly
selected from each bin. If the neutral fraction bin has less than 20
boxes, then we consider all boxes in this specific bin. If all neutral
fraction bins have 20 boxes at the four different redshifts, then the
total number of all boxes is 800. However, few bins have less than
20 boxes which reduces the total number of boxes to 763. Each
selected box has 200 different maps along each of x-, y-, and z-
directions. This means each redshift has 200 × 3 × 1000 = 600 000
possible different 21 cm maps. However, close maps in the same box
would contain similar features, and from our own experience (e.g.
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Figure 5. The distribution of training sample at z = 7, 8, 9, and 10 (top to
bottom) as a function of neutral fraction. We intentionally ignore all current
reionization history constraints to check the CNNs’ viability to recover
parameters without imposing any priors. Coloured version is available
online.

Hassan et al. 2019), we have found that ∼ 2 Mpc separation between
maps is sufficient to obtain distinct maps. To be more conservative,
we consider ∼ 4 Mpc separation between maps to only select 40
slices along two directions (e.g. x, y) for training, and take 10 slices
on the third direction (e.g. z) for testing and validation each. This
results in 763 × (40 × 2 + 10 + 10) = 76 300 total number of
images, in which 80 per cent is used for training, 10 per cent for
validation, and the remaining 10 per cent for testing. In Fig. 5, we
show the histogram of the training data set as a function of neutral
fraction at each redshift. The distribution is approximately flat by
construction and includes all possible neutral fraction values at each
redshift. We here ignore all current reionization constraints to allow
specific neutral fraction values at each redshift such as allowing
only high neutral fractions at high redshifts and vice versa. This
is an important initial test when constraining parameters, which is
to verify the method viability to recover these parameters without
imposing any priors and constraints. It is worthwhile to mention
that the time dependence between maps is included through the
following:

(i) Each set of the six parameters corresponds to four boxes at
redshifts z = 10, 9, 8, and 7. This shows that the network sees the
same six parameters for four different maps from four different
redshifts.

(ii) The redshift information is encoded in each box through
the density field contribution on small scales. This shows that the
network sees four different levels of density field contribution in the
neutral regions in all maps.

However, an explicit inclusion of this effect is through creating
light-cones for each set of the six parameters to account for ionized
bubbles growth along the sightline (i.e. the k� modes), redshift-
space distortion and angular scales. However, we here assume that
all observations at different redshifts are performed independently
and apply the noise using a single frequency channel (resolution)
corresponding to the map size. The light-cone is more relevant
when the full bandwidth is considered. This study sets the baseline
for a more detailed analysis to compare the results from 2D maps
(single frequency channel) versus 3D light-cones (full bandwidth).
Indeed, it is expected that more information exists in the reionization
window (e.g. Liu, Parsons & Trott 2014) which contains the bubble

evolution along the frequency axis through constructing the light-
cone. This we leave for future works as its beyond the scope of the
current paper.

While our box size, 150 Mpc, might be small to capture the
large-scale fluctuations and cosmic variance (Iliev et al. 2014), we
have previously found that our simulation produces a convergent
21 cm power spectrum with respect to the volume (see fig. 8 in
Hassan et al. 2016), such that the 150 Mpc volume produces similar
power to that from 300 Mpc volume. This indicates the ionized
bubbles distribution in 150 Mpc volumes is similar, on average, to
those in large volumes. In addition, it has also been found that such
a volume produces a convergent reionization history (Iliev et al.
2014). However, the resolution (number of cells) is more important
for the neural network performance, since higher resolution maps
contain more information and structures. Our maps are composed of
200 x 200 pixels which are able to resolve the small- and large-scale
fluctuations reasonably well. We leave investigating the network
performance in terms of box size and resolution for future works.

5 R ESULTS

To assess how well the algorithms perform in terms of predicting the
parameters from learning the input features, we use the coefficient
of determination, also known as R2 score, which is given by

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n

i=1(yi − ȳ)2
, (6)

where ŷi , yi, and ȳ are the predicted value, the actual value and
the average of all the actual values in the test sample, respectively.
The numerator of the second term in equation (6) – residual sum of
squares – quantifies the variation of the predicted values ŷi around
the actual values yi, and the denominator accounts for the variation
of actual values yi around their mean ȳ. This metric quantifies the
strength of the correlation between the inferred and true values of
the parameters, in other words unity R2 indicates that the network
predictions are identical to the ground truth. The R2 also quantifies
the fraction by which the predicted variance is less than the true
variance. For each architecture, we carry out two types of training
depending on the input features that the regressors are meant to
learn from in order to infer our astrophysical and cosmological
parameters (fesc, Cion, Dion, �m, h, σ8):

(i) feature extraction from a simulated 2D 21 cm map
(clean/noiseless map hereafter), this involves training and testing
using clean maps

(ii) feature extraction from a simulated 2D 21 cm map which
was convolved with a simulated SKA like noise (noisy/mock map
hereafter, see Section 2), this consists of training and testing the
networks using noisy maps.

It is worthwhile to mention that we train our networks to
predict standardized parameters, meaning that we first subtract the
mean and divide by the standard deviation for each array of the
parameters. After training, we scale back the predictions to the prior
range. Standardizing parameters is important, particularly when the
parameters range is different, to prevent the highest parameter range
from dominating the loss function. This step is commonly used in
multiparameters regression deep learning tasks.

5.1 Learning from clean maps

The top two rows in Fig. 6 show the test results when training the
networks with the clean maps. The red and blue areas encompass
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5768 S. Hassan, S. Andrianomena and C. Doughty

Figure 6. Correlation between the true and predicted parameters. On the top two rows, the networks have been trained with the maps without noise, whereas
on the bottom two rows, simulated SKA like noise has been injected into the maps which have been used to train the networks. Red and blue shaded areas
encompass the 15.9 per cent and 84.1 per cent percentiles (i.e. ∼ 1σ level) of the true values given the predictions from network I and network II, respectively.
Solid black lines represent the identity line, that is true parameters versus true parameters. In all cases, the astrophysical parameters recovery is better than
those of the cosmology. Adding the noise reduces the accuracy but the parameter recovery is still promising. The network II outperforms network I, particularly
with the mock images, since more complex architecture seems to be needed to extract more information. Large fluctuations are due to low number statistics.
Coloured version is available online.
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Figure 7. Variation of the resulting coefficient of determination R2 as a function of redshift (left-hand panel) and neutral fraction (right-hand panel). Solid and
dashed lines correspond to network I and network II, respectively. The accuracy of parameter recovery increases slowly towards low redshift, where the noise
is smaller, and rapidly towards low neutral fraction values, where the images features can still be recognized (see Fig. 1). Coloured version is available online.

the 15.9 per cent and 84.1 per cent percentiles (i.e. ∼1σ level) of
the true values given the predictions at each bin for network I and
network II, respectively. Overall, the constraints on each parameter
are very tight. The high value of the R2 score (≥ 99 per cent for
both network I and network II) corresponding to each parameter
fitting denotes very strong correlation between the true and inferred
parameter, suggesting that the algorithms are able to learn the salient
features from the data. On comparing the performance of the two
architectures, their R2 score for each fitting suggests that they are
in a fairly good agreement, and hence perform equally well.

5.2 Learning from noisy maps

The test results after training the algorithms on the noisy maps are
presented in the bottom two rows in Fig. 6. The constraints on all
parameters are slightly weaker as compared to those obtained from
training the fitters using the clean maps . The overall decrease in
performance denoted by the lower values of R2 score corroborates
that finding. This can be accounted for by the fact that the relevant
features are in this case convolved with noise, therefore extracting
them is a bit more challenging.

Despite being convolved with noise, which essentially causes the
quality of their features to degrade, all parameters are successfully
recovered with an accuracy of R2 ≥ 92 per cent for network I and
R2 ≥ 95 per cent for network II, which is remarkably promising.
In contrast to training the algorithms with the clean maps, it
can be noticed that, overall, network II outperforms network I, as
demonstrated by the R2 scores of the former, which are a bit higher
than those of the latter on all parameters.

5.3 Dependence on redshift and neutral fraction

In real observations, both foreground contamination and the thermal
noise become stronger with increasing redshift. One would then

expect some form of dependence of the constraints on redshift.
To investigate that possibility, we bin the maps according to their
redshift in the test sample and do the predictions by considering
each bin separately using the regressors trained with the noisy
maps. The results presented in the left-hand panel of Fig. 7 suggest
the parameter recovery improves with decreasing redshift. While
network II tends to have a slightly higher accuracy for each
parameter as a function of redshift than network I, the dependence
on redshift is fairly mild. This weak dependence is due to the fact
that there are all possible neutral fraction values at each redshift,
without imposing any prior knowledge to the training data set by
allowing certain neutral fraction values for each redshift, following
the current reionization history constraints.

As mentioned and seen earlier, the observed features in a
21 cm map are more dependent on xHI. To address this effect on
the performance of the algorithms, we now bin the slices according
their value of xHI. It is noticeable in Fig. 7 (right-hand panel) that the
performance of each fitter on all parameters declines with increasing
value of the neutral fraction. This is expected, as previously seen
in Fig. 1, the noise always dominates the ionized regions. When
the Universe is highly ionized, the prominent features, which are
probably the recombining clumps of the remaining dense gas, can
still be seen in the presence of noise. This is in contrast to the case
where the Universe is highly neutral, and the bubbles are small.
Here, the ionized bubbles extend to much smaller scales where the
noise dominates, and hence recognition of the bubbles becomes
challenging. At this limit, different realizations (with different sets
of parameters) of a highly neutral Universe would look similar.
This also explains the rapid increase of the accuracy of parameter
recovery towards low neutral fraction values. Similar trends have
been recently found with using deep learning to constrain the
reionization history (e.g. Mangena et al. 2020). It is worthwhile
mentioning that this interesting dependence on the neutral fraction
cannot be used in future observations since the exact neutral fraction
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is not known prior observations, although some constraints can be
obtained independently from Lyα forest observations (e.g. Fan,
Carilli & Keating 2006). However, it is beyond the scope of
current networks to use this dependence to constrain parameters.
It is rather an interesting theoretical finding and consistent with
redshift dependence trends since the Universe is highly ionized at
low redshifts.

Having established that the constraints are tighter at lower redshift
and lower neutral fraction, that is ionized case, we now apply some
conditions on the test sample as follows

(i) select examples with xHI < 0.5,
(ii) select examples with lower neutral fraction at lower redshift,

xHI < 0.5 and z < 9.

We show in the top two rows of Fig. 8 the resulting constraints on
all parameters when considering maps with xHI < 0.5. The results
show how the constraints greatly improve by selecting examples
with lower neutral fraction from the test sample. For this specific
case, the coefficient of determination value ≥0.94 for network
I and ≥0.96 for network II on all parameters indicates that the
performance of the algorithms, despite considering mock maps for
their training, is comparable to their performance when trained with
noiseless maps.

Restricting ourselves to lower z, together with only selecting
maps with low neutral fraction, in the test data set further improves
the predictions on all parameters as indicated by R2 ≥ 0.99 for
both network I and network II (see Fig. 8, bottom two rows).
Inferring parameters from noisy maps at higher redshift is more
challenging, since the noise is stronger (see Fig. 7, left-hand panel).
Therefore one would expect further improvement of the predictions
by combining the two criteria xHI < 0.5 and z < 0.9. This is an
exciting result for future 21 cm surveys that tighter constraints can
be obtained from low-redshift observations (z ∼ 6 and 7), where
the Universe is highly ionized. This finding is supported by the fact
that the noise is higher at high redshifts, and further confirmed by
our additional tests in Appendix B. Using this technique, the SKA
will be able to place their first constraints on the astrophysical and
cosmological parameters in the near future and from the first cycle
of imaging.

5.4 Generalization error

For the sake of completeness and in order to able to compare our
results to other similar studies, we compute, for each parameter, the
resulting root mean square error, RMSE, as follows:

rmse =
√

1

N

∑
(ypredicted − ytrue)2 , (7)

where the summation runs through the whole test data set. This
metric, among others, tells us about the generalization error inherent
to our parameter estimation, in other words the level of accuracy,5

the fitters can achieve on average when estimating the parameters
from encoding the inputs. We show the RMSE values obtained for
each parameter when considering both noiseless and noisy maps in
Fig. 6 (two top and two bottom rows, respectively). By comparing
the RMSE values resulting from training on clean maps and those
obtained from training on mock maps, we find that in the idealized
scenario the prediction is subject to smaller average error for each
parameter in contrast to the realistic one. This finding is expected

5Not to be confused with accuracy, the metric used in classification tasks.

and consistent with our results based on the R2 metric in that the
inference is more challenging for each parameter when the data
considered for training/testing are contaminated by noise. Although
the results based on the two metrics are found to be consistent, it is
tempting to expect that for any two different parameters, irrespective
of the case (noisy or clean maps), if the R2 score of one of them is
higher than that of the other, it implies that its RMSE must be lower.
This trend is seen for all parameters as quoted in the legends.

Gupta et al. (2018), by training a CNN with ∼26 millions
parameters to predict cosmological parameters from simulated
noiseless convergence maps, arrived at a generalization error of
35 × 10−3 for �m and 40.3 × 10−3 for σ 8. Ribli, Pataki & Csabai
(2018) improved the constraints with a different neural network
architecture of about ∼1.4 millions parameters, by also using
simulated lensing maps, achieving RMSE = 5.5 × 10−3, 13.5 × 10−3

for �m and σ 8, respectively. In terms of encoding features from a
2D map using CNN to infer cosmological parameters, our results –
RMSE = 5 × 10−3 and 3 × 10−3 on �m and σ 8 from network I and
network II, respectively – are comparable to those obtained in these
previous works. More importantly, our results corresponding to the
realistic case, with/without imposing constraints (see Fig. 6 bottom
row and Fig. 8), where the input maps are noisy are very promising
and exciting for future 21 cm surveys.

6 C O N C L U S I O N S

We have demonstrated in this work the feasibility of simultaneously
inferring both astrophysical and cosmological parameters (fesc, Cion,
Dion, �m, h, σ 8) using 21 cm maps from the EoR, considering
future H I surveys with the SKA. To this end, we have generated
thousands of realizations each with a different set of parameters
using SIMFAST21, then compiled a data set composed of 2D maps
(see Section 4 for details). The approach is to train our two
proposed algorithms – CNN-based – to extract the features from
the maps in order to predict the underlying astrophysical and
cosmological parameters. We have considered an optimistic case
where we train the networks with noiseless simulated maps and a
real world-mimicking scenario in which the networks are trained
with simulated maps contaminated by simulated SKA-like noise.
We have used R2 – coefficient of determination – as a performance
metric.

We summarize our findings as follows:

(i) The overall results for the idealized case, with R2 ≥
99 per cent for both network I and network II on all parameters,
suggest that the algorithms considered in this work are capable of
learning the salient features from the maps in order to constrain the
corresponding parameters with a remarkably excellent accuracy.

(ii) In a more realistic setup, where maps from observations are
subject to noise contamination, the constraints on all parameters
are slightly weaker, with an accuracy of R2 ≥ 92 per cent for
network I and ≥ 95 per cent for network II. This is expected
since disentangling the relevant information from noise is more
challenging. It has been found that network II, leveraging the
combination of residual layers at lower level and inception module
at higher level of the architecture, outperforms network I despite the
former’s lower capacity. This then points towards deploying similar
architectures to network II in a real world scenario.

(iii) In the case of learning from the noisy maps, the predictions
are dependent on both the underlying neutral fraction of the map
and its distance from an observer. The performance of the methods
improves with decreasing neutral fraction and, as foreground
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Figure 8. Correlation between the actual and the predicted parameters using the validation sample. On the top two rows, the networks have been trained with
the noisy maps but a test sample with a neutral fraction <0.5 has been used for predictions. On the bottom two rows, the same noisy data have been used to
train the networks but some cut on both the neutral fraction <0.5 and redshift z < 9 have been applied on the test sample. Red and blue shaded areas encompass
the 15.9 per cent and 84.1 per cent percentiles (i.e. ∼ 1σ level) of the true values given the predictions from network I and network II, respectively. Solid black
line represents the identity line, that is true parameters versus true parameters. Imposing constraints on the neutral fraction and redshift of the testing sample
increases the accuracy and performance is comparable to the case without including any instrumental effects as seen in top rows in Fig. 6. Large fluctuations
are due to low number statistics. Coloured version is available online.
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contamination is more important at higher redshift, the constraints
are tighter at lower z. The results obtained from the test sample is
R2 ≥ 94 per cent with network I and R2 ≥ 96 per cent with network
II when only selecting maps with xHI < 0.5. Recovery improves with
imposing constraints on both neutral fraction and redshift (xHI <

0.5 at lower z <9), resulting in R2 > 99 per cent with both network
I and network II. This indicates that even in the presence of noise
in maps, our methods can still estimate the relevant parameters to
an excellent level of precision, which is indeed quite promising.

(iv) We have computed the prediction error on average – RMSE –
on each parameter in both optimistic and realistic cases. It has been
found that the RMSE is smaller in the former, in good agreement with
the results when using the coefficient of determination as a perfor-
mance metric. Compared to other previous works, our approach has
also shown a great potential for inferring the underlying parameters
of what is observed in future cosmological experiments, such as
H I intensity mapping.

We here considered a redshift range that is consistent with an
early reionization scenario, which has been increasingly favoured
by galaxy-dominated models of reionization, although more recent
work by Kulkarni et al. (2019) shows that galaxies can produce low
optical depth and a late reionization scenario. However, late reion-
ization as usually favoured by active galactic nucleus-dominated
scenarios is currently disfavoured (e.g. see Qin et al. 2017; Hassan
et al. 2018; Mitra, Choudhury & Ferrara 2018; Parsa, Dunlop &
McLure 2018). Regardless of the redshift range, the main result, that
the accuracy increases with decreasing redshift and neutral fraction,
would qualitatively remain valid if lower redshifts are included in
this study, such as z = 5 and 6, since the instrumental effects are
always higher at a higher redshift.

In our analysis, we have generated our training samples based on
1000 different reionization simulations to constrain six parameters.
For instance, Gupta et al. (2018), La Plante & Ntampaka (2019),
and Gillet et al. (2019) have used 96, 1000, and 10 000 model
evaluations to constrain 2, 1, and 3 parameters. Schmit & Pritchard
(2018) further have shown that 100 model evaluations is sufficient
to constrain three parameters. In comparison to these works, the
number of simulations used in this study is low, which limits the
presented results. The prior range assumed in this study is also small
(i.e. 0.2–2) which places additional limitation to our results. Higher
accuracy than reported in this study is expected with larger training
samples and more model evaluations, which we will explore in
future works.

Our results are entirely limited to the set of assumptions and
approximation implemented in our 21 cm instrument simulation.
A more refined and sophisticated recipe to account for all of the
implemented instrumental effects, such as the angular resolution,
foreground cleaning and thermal noise, might alter our concluding
remarks. The approximation and assumptions implemented in the
seminumerical simulations, through the use of the ESF to identify
the ionized regions, as well as the choice of our dynamic range
and resolution, place additional limitations to the presented results.
While limited to the SKA, our analysis can be easily extended
to include instrumental effects from other 21 cm surveys such as
HERA and LOFAR, which we leave for future works to perform a
detailed comparison between different array designs and different
observing strategies. Inferring parameters from the 3D light-cones
might improve recovery in the presence of noise without the need to
impose constraints on the neutral fraction or redshift. Our analysis
also can be easily extended to include all of the astrophysical

parameters from the source and sink models, and all cosmological
parameters, which we leave for future works.

This study has not only highlighted the constraining power
of our methods, probing deep into EoR in the near future with
the arrival of more advanced H I instruments like SKA, but also
shown how future 21 cm surveys and H I intensity mapping can
help break the degeneracy between models by combining them
with other experiments, such as Planck, to better the constraints on
cosmological parameters in an era of precision cosmology.
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B. D., 2015, MNRAS, 447, 2526
Furlanetto S. R., Oh S. P., Briggs F. H., 2006, Phys. Rep., 433, 181
Gillet N., Mesinger A., Greig B., Liu A., Ucci G., 2019, MNRAS, 484, 282
Giri S. K., Mellema G., Ghara R., 2018, MNRAS, 479, 5596
Glorot X., Bengio Y., 2010, Proc. 13th Int. Conf. Vol. 9, Artificial Intelli-

gence and Statistics. PLMR, p. 249
Greig B., Mesinger A., 2015, MNRAS, 449, 4246
Gupta A., Matilla J. M. Z., Hsu D., Haiman Z., 2018, Phys. Rev. D, 97,

103515

MNRAS 494, 5761–5774 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/494/4/5761/5828733 by U
niversity of the W

estern C
ape user on 08 February 2021

https://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1807.06209
http://dx.doi.org/10.1111/j.1365-2966.2007.12729.x
http://dx.doi.org/10.1103/PhysRevD.68.083506
http://dx.doi.org/10.1111/j.1365-2966.2005.08836.x
http://dx.doi.org/10.1017/pas.2013.009
http://dx.doi.org/10.1111/j.1365-2966.2010.17197.x
http://dx.doi.org/10.1093/mnras/stz2605
http://dx.doi.org/10.1103/PhysRevLett.90.221303
http://dx.doi.org/10.1093/mnras/stt1274
http://dx.doi.org/10.1088/1538-3873/129/974/045001
http://dx.doi.org/10.1146/annurev.astro.44.051905.092514
http://dx.doi.org/10.1088/0004-637X/743/2/169
http://dx.doi.org/10.1093/mnras/stu2668
http://dx.doi.org/10.1016/j.physrep.2006.08.002
http://dx.doi.org/10.1093/mnras/stz010
http://dx.doi.org/10.1093/mnras/sty1786
http://dx.doi.org/10.1093/mnras/stv571


Astro-Cosmo constraints with 21 cm CNN 5773
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APPENDI X A : THE LOSS FUNCTI ON
E VO L U T I O N D U R I N G T R A I N I N G

Fig. A1 shows the loss evolution of networks I (left) and II (right)
for training (blue) and validation (red) samples as a function of
training epoch for the case of training on the noisy data set. In both
cases, the loss is decreasing as training progresses, which indicates
a reduction in the error rate and predictions are approaching the
target labels. The fluctuations in the training and validation curves
are due to random selection of batches during training. Regardless

Figure A1. Left-hand panel: progression of the training of network I, where the loss function RMSE varies as a function of training epoch. Right-hand panel:
progression of the training of network II showing the loss function �1 norm as a function of number of epochs. Coloured version is available online. The two
plots are related to the training on the noisy data.
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of these fluctuations, the loss evolution for validation converges
and stays constant on average, which indicates that the networks
are not overfitting. It is worth noting that the sudden drop in
training/validation error while training network II is owing to the
fact that the learning rate is updated to 10 per cent of its initial value
in order to escape the plateau.

APPENDIX B: R EDSHIFT EVO LUTION

Our main result which suggests that the accuracy increases with
decreasing redshift has been derived from a model trained on mixed
maps from all redshifts. To confirm whether accuracy increases
towards low redshift, we here perform additional learnings by
restricting the training sample to have maps only from the minimum
(z = 7) or maximum (z =10) redshifts considered in this study
(referred to as only). We also compare with predictions at these

redshifts from training with the whole data set, including all other
redshifts (referred to as whole), for the case of noisy maps as
reported in Table B1. In all cases, we find that the accuracy at
z = 7 is always higher than that of at z= 10. This shows, regardless
of training with whole mixed maps or maps at a given redshift, the
qualitative trend that the accuracy increases towards low redshifts
is still seen as summarized in Table B1. In addition, the quantitative
results are also similar with a minimal difference of about �
2 per cent of accuracy for some parameters as summarized in
Table B1 for training with maps at individual redshifts (only) versus
those derived using a trained model on mixed maps (whole). Such
a minimal difference is expected due to the different number of
samples used in the case of ‘only’ versus ‘whole’ tests. This shows
that our networks are successful to recover the same qualitative
and quantitative results without explicitly including the redshift
information as an input to the network (e.g. fitting parameters to
four maps from the four different redshifts, z = 10–7).

Table B1. Networks accuracy comparison between training only with data set from z = 7 and 10 (referred to as only) versus predicting at
these redshifts from training with whole data set (including all other redshifts, referred to as whole), for the case of noisy maps. For all
parameters with all networks, accuracy increases towards low redshift.

Network I Network II

z = 10 (only) z = 10 (whole) z = 7 (only) z = 7 (whole) z = 10 (only) z = 10 (whole) z = 7 (only) z = 7 (whole)
�m 0.86 0.84 0.97 0.97 0.86 0.88 0.96 0.98
h 0.87 0.84 0.95 0.95 0.88 0.91 0.95 0.96
σ 8 0.86 0.84 0.95 0.96 0.88 0.89 0.96 0.96
fesc 0.90 0.88 0.95 0.94 0.90 0.92 0.95 0.96
Cion 0.91 0.89 0.98 0.98 0.90 0.91 0.98 0.98
Dion 0.93 0.91 0.95 0.95 0.92 0.93 0.95 0.96
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