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ABSTRACT
The propagation and evolution of cold galactic winds in galactic haloes is crucial to galaxy formation models. However, modelling
of this process in hydrodynamic simulations of galaxy formation is oversimplified owing to a lack of numerical resolution and
often neglects critical physical processes such as hydrodynamic instabilities and thermal conduction. We propose an analytic
model, Physically Evolved Winds, that calculates the evolution of individual clouds moving supersonically through a uniform
ambient medium. Our model reproduces predictions from very high resolution cloud-crushing simulations that include isotropic
thermal conduction over a wide range of physical conditions. We discuss the implementation of this model into cosmological
hydrodynamic simulations of galaxy formation as a subgrid prescription to model galactic winds more robustly both physically
and numerically.
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1 IN T RO D U C T I O N

Many lines of evidence imply that galactic winds are a critical
element of the physics of galaxy formation. Most directly, obser-
vations reveal ubiquitous outflows from star-forming galaxies at
z ∼ 2 (Steidel et al. 2010) and from starburst or post-starburst
galaxies at low redshift (Veilleux et al. 2020). Semi-analytic models
and hydrodynamic cosmological simulations that do not incorporate
strong outflows predict galaxies that are too massive and too metal-
rich (e.g. White & Frenk 1991; Benson et al. 2003). UV absorption
studies demonstrate the existence of a cool (T ∼ 104 K), enriched
circumgalactic medium (CGM) with a mass and metal content com-
parable to or even exceeding that of the galaxy’s stellar component
(e.g. Tumlinson et al. 2011; Peeples et al. 2014; Werk et al. 2014;
Tumlinson, Peeples & Werk 2017). X-ray studies reveal a hot, metal-
enriched CGM around elliptical galaxies (e.g. Anderson, Bregman &
Dai 2013), some massive spirals (e.g. Bogdán et al. 2013, 2017), and
the Milky Way (e.g. Gupta et al. 2012; Gupta, Mathur & Krongold
2017). Hydrodynamic simulations play a crucial role in interpreting
these observations, but the physical processes that govern the launch
and propagation of winds are uncertain and may occur on scales
well below the resolution limit of the simulations. In this paper we
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describe a ‘subgrid’ approach to modelling wind propagation, one
that adopts a phenomenological description of cold cloud evolution
informed by high-resolution numerical studies.

Many mechanisms have been proposed for launching galactic
winds, including radiation pressure from young stars, energy and
momentum injection from stellar winds and supernovae, and cosmic
ray pressure gradients. Different mechanisms may dominate in
different situations, and in some cases the combination of two or
more mechanisms may be crucial (Hopkins, Quataert & Murray
2012). In high-mass galaxies, observational and theoretical evidence
suggests that feedback from accreting supermassive black holes
(active galactic nucleus feedback) becomes the dominant driver of
outflows. Very high resolution simulations, some from cosmological
initial conditions, others of isolated discs or sections of the interstellar
medium (ISM), are beginning to provide insights into the ways
that these mechanisms launch outflows (e.g. Hopkins et al. 2012;
Girichidis et al. 2016; Tanner, Cecil & Heitsch 2016; Fielding et al.
2017; Kim & Ostriker 2017; Li, Bryan & Ostriker 2017; Schneider,
Robertson & Thompson 2018). Observations frequently reveal the
coexistence of molecular gas, neutral atomic gas, cool ionized gas,
and hot X-ray emitting gas in the same outflows (Veilleux et al.
2020), with the cold and cool phases often dominating the total mass.
Accurately modelling the interactions among these multiple phases
is a critical challenge. The acceleration of large amounts of cold/cool
gas to highly supersonic velocities is a particular puzzle, with
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Introduction of PhEW 2587

possible mechanisms including radiation pressure on cold clouds
(Murray, Quataert & Thompson 2005), entrainment of cold gas in
a hot wind (Scannapieco & Brüggen 2015; Schneider & Robertson
2017), the formation of the cold/cool phases out of the hot flow by
radiative cooling (Thompson et al. 2016; Schneider et al. 2018), or
many mechanisms combined (Yu et al. 2020).

Our focus in this paper is not the wind launch process itself but the
evolution of winds after ejection from the galaxy and their interaction
with the CGM. Most hydrodynamic simulations of cosmological
volumes – tens of Mpc on a side, containing many galaxies – adopt
a phenomenological model in which wind particles are launched
stochastically from each star-forming galaxy at rates and velocities
motivated by analytic models or by pressure gradients induced with
tuned prescriptions of energy or momentum injection. Examples
include our own group’s simulations (e.g. Oppenheimer & Davé
2006; Davé et al. 2013, 2019; Huang et al. 2020) and the Illustris
(Vogelsberger et al. 2013) and Illustris TNG (Pillepich et al. 2018a)
simulations. Other groups add the feedback energy as thermal energy,
e.g. Stinson et al. (2006), EAGLE (Schaye et al. 2015), and FIRE
(Hopkins et al. 2012), and allow the winds to develop as a result.
Cosmological volume simulations enable statistical comparisons to
the observed evolution of galaxy masses, sizes, star formation rates,
and gas content (e.g. Oppenheimer et al. 2010; Pillepich et al.
2018b; Davé et al. 2019), and they have played an essential role
in interpreting UV absorption observations of the CGM (e.g. Ford
et al. 2013, 2016; Nelson et al. 2018). However, given the potential
sensitivity of predictions to physical processes in the CGM below
the resolution limit of the simulations, independent of how the winds
are generated in the simulations, it is still unclear which empirical
successes of the simulations are true successes and which failures
are true failures. Simulations that deliberately amplify resolution
in the CGM offer one route to examining the impact of resolution
on predictions showing that some quantities can be significantly
affected (e.g. Hummels et al. 2019; Peeples et al. 2019; van de
Voort et al. 2019). Another approach to increase the resolution
is to use ‘zoom’ simulations to model one galaxy at a time (e.g.
Governato et al. 2007; Hopkins et al. 2014; Wang et al. 2015; Grand
et al. 2017). However, even these simulations do not resolve the
tens of pc-scale structures suggested by some theoretical models
of thermal instability (McCourt et al. 2018; Mandelker et al. 2019)
and by estimates of cool-phase cloud sizes inferred from measured
column densities and derived number densities (e.g. Pieri et al.
2014; Crighton et al. 2015; Stern et al. 2016). Furthermore, with
current computational capabilities it is infeasible to maintain even
kpc-scale resolution throughout volumes that are tens of Mpc on
a side, and standard Lagrangian or mesh refinement schemes will
not automatically resolve the regions of the CGM where gas phases
interact. Physical processes in addition to radiative hydrodynamics,
such as thermal conduction, viscosity, and magnetic fields, may also
have significant effects on cloud evolution (Marcolini et al. 2005;
Orlando et al. 2005; Vieser & Hensler 2007; McCourt et al. 2015;
Armillotta, Fraternali & Marinacci 2016; Brüggen & Scannapieco
2016; Armillotta et al. 2017; Li et al. 2020), but they are rarely
incorporated self-consistently in cosmological simulations.

In the approach proposed here, we eject wind particles as in
previous simulations but follow their evolution and interaction with
the ambient CGM using an analytic subgrid model. We model the gas
in each wind particle as a collection of cold clouds, and we calculate
the exchange of mass, momentum, energy, and metals between these
clouds and the surrounding CGM gas. A wind particle loses mass as it
evolves, and it is dissolved when its mass falls below some threshold,
or when its velocity and physical properties sufficiently resemble

the surrounding gas, or when it rejoins a galaxy and contributes its
remaining mass and metals to the ISM. This general method can be
implemented in cosmological simulations that use smoothed particle
hydrodynamics (SPH) or Eulerian or Lagrangian mesh codes. In fu-
ture work, we will present results from implementing this Physically
Evolved Wind (PhEW) model in cosmological simulations with the
GIZMO hydrodynamics code (Hopkins & Raives 2016), employing
the star formation and feedback recipes described by Davé et al.
(2019) and the wind launch prescriptions described by Huang et al.
(2020), which are themselves tuned to reproduce outflows in the
FIRE simulations (Muratov et al. 2015). In this paper, we present the
wind model itself.

This model is based on results from very high resolution simula-
tions of the ‘cloud-crushing problem’, which examine the evolution
of an individual cold clouds moving supersonically relative to an
ambient, hotter flow (see Banda-Barragán et al. 2019 for a recent
compilation of such simulations). We concentrate in particular on
the cloud-crushing simulations of Scannapieco & Brüggen (2015,
hereafter SB15), which do not include thermal conduction, and
the simulations of Brüggen & Scannapieco (2016, hereafter BS16),
which do. These simulations model idealized situations with mass
and spatial resolutions far higher than that achieved in any galaxy for-
mation or cosmological hydrodynamic simulations. PhEW provides
a method to transfer the lessons from these high-resolution studies
to a cosmological context. This method necessarily introduces new
free parameters, the most important being the individual cold cloud
mass and the strength of thermal conduction. However, traditional
implementations of galactic winds in cosmological simulations
implicitly introduce a non-physical ‘subgrid’ model that is governed
by the numerics of the interaction between wind particles and the
ambient gas with very different physical properties. The effects of
this non-physical model (e.g. the degree to which cold gas remains
cold) may be sensitive to the numerical resolution. PhEW replaces
these numerically governed interactions with a model that is physical,
approximate, makes specified and controllable assumptions, and
should be less sensitive to numerical resolution.

The paper is organized as follows. In Section 2, we describe
the set-up of the cloud-crushing problem and the various physical
processes involved and also introduce the cloud-crushing simulations
(BS16) that we use to develop the analytic model. In Section 3, we
discuss different physical regimes of the problem and the dominant
physics. In Section 4.1, we describe our analytic model and provide
a detailed calculation of how physical properties of the cloud evolve
with time. In Section 4.2, we summarize the key assumptions and
approximations in the analytic model and discuss where they might
break down. In Section 5, we compare our model predictions to
simulation results from BS16. In Section 6, we summarize the main
results from the paper, describe how to implement the analytic model
in cosmological simulations that use various hydrodynamic methods
and discuss the implications of this model in galaxy formation.

2 TH E C L O U D - C RU S H I N G P RO B L E M

We set-up the cloud-crushing problem as illustrated in Fig. 1. An
initially uniform, spherical cloud of mass Mc, density ρ3, and
temperature T3 is placed in an ambient medium of uniform density
ρ1 and temperature T1 with a relative velocity vrel. The initial density
contrast between the cloud and the ambient medium is χ0 ≡ ρ3/ρ1.

At the beginning, the cloud is in thermal pressure equilibrium with
the surrounding medium so that ρ3T3 = ρ1T1. We let the cloud move
relative to the ambient at a velocity vrel. Here, we only study the cases
where the cloud is moving supersonically as is typical in wind–CGM
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2588 S. Huang et al.

Figure 1. Cloud-crushing problem set-up. See text for description. Here, region 2 represents only the gas that surrounds the head of the cloud. The transition
region 5 between the oblique shock boundary I and the cloud boundary III appears broader than is likely in reality. The fluid properties within this region are
determined by the combined effects of the oblique shock and the evaporative flow.

interactions, i.e. M1 ≡ vrel/cs,1 > 1, where cs, 1 is the isothermal
sound speed of the ambient medium. The discontinuity in front of
the cloud separates into a bow shock (region 2) that moves into the
ambient medium and a cloud shock that advances into the cloud. We
note the surface at the front of the bow shock with roman numeral
I1 and the surface at the contact discontinuity with roman numeral
II. We define the cloud-crushing time-scale as τcc ≡ χ

1/2
0 (Rc/vrel)

(SB15), where Rc is the initial radius of the cloud. It takes ∼τ cc for
the cloud shock to sweep through the cloud, crushing it into a much
higher density ρ4 and pressure P4 that is comparable to the pressure
at the stagnation point PII. After the cloud shock, the cloud will re-
expand preferentially in the underpressured downstream direction.
The ambient flow between the shock front I and the boundary of the
cloud (III) is continuous and obeys Bernoulli’s equations.

In cloud-crushing simulations without thermal conduction, the
clouds are vulnerable to hydrodynamic instabilities. For example, in
many cases, perturbations grow at the cloud boundary III owing to
the Kelvin–Helmholtz instability (KHI), which eventually leads to
the fragmentation and disruption of the cloud within a few τ cc. Even
in high Mach flows where the KHI tends to be suppressed, the cloud
hardly survives beyond 30 τ cc (SB15).

Cloud-crushing simulations with thermal conduction suggest that
efficient thermal conduction significantly affects cloud evolution
(Orlando et al. 2005; Vieser & Hensler 2007; Armillotta et al. 2016,
2017; BS16; Li et al. 2020). First, the cloud evaporates when thermal
conduction is sufficiently strong. In many such simulations, cloud
evaporation is the leading cause of mass-loss. Rapid evaporation
sometimes destroys the cloud much sooner than without conduction.
Second, the evaporated material streaming away from the cloud

1The oblique shock on the sides of the cloud is weaker than the front shock
but we do not distinguish them here and use the same notation for the entire
interface.

creates a conduction zone where the pressure Pev at the cloud
surface III is larger than the thermal pressure (Cowie & McKee 1977,
hereafter CM77). This helps to confine the cloud and prevent it from
fragmentation caused by KHI. In BS16, the clouds often display a
needle-like morphology as illustrated in Fig. 2, with radius Rc and
length Lc, instead of breaking up into small clumps, which occurs
when there is no conduction (SB15). Third, the deceleration rate of
the cloud from ram pressure PII is reduced because its cross-section
(πR2

c ) shrinks owing to the additional vapour pressure. Fourth,
the jump conditions at the bow shock must be modified from the
Rankine–Hugoniot formula owing to conductive heat flux cross the
shock discontinuity. This has a significant effect on the properties of
the post-shock gas in region 2 and the ambient flow in region 5.

Since the cloud evolution depends heavily on whether or not
thermal conduction is efficient, we will treat these two regimes
separately. The heat advection rate from thermal conduction is very
sensitive to the temperature of the hot phase. Galaxy formation theory
suggests that, in the real Universe, galactic haloes separate into cold
haloes with gas at the photoionization equilibrium temperature of
∼104 K and hot haloes at the virial temperatures over 106 K (Kereš
et al. 2005, 2009; Dekel et al. 2009). Thermal conduction is therefore
expected to be only important in hot haloes.

Magnetic fields can suppress thermal conduction significantly
even if they are not dynamically important (Li et al. 2020). However,
the strength of magnetic fields in galactic haloes is poorly constrained
and the effects of tangled magnetic fields on thermal conduction are
uncertain. Therefore, we do not explicitly model magnetic fields in
this work. Instead, we use a free parameter to control the overall
efficiency of thermal conduction.

To implement this process as a subgrid model into cosmological
simulations, we will focus on explicitly calculating the rate of
deceleration and the mass-loss rate of the cloud. The deceleration
is caused by the ram pressure PII in front of the cloud and depends
on the cross-section πR2

c and the mass of the cloud Mc. Therefore, the
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Introduction of PhEW 2589

Figure 2. From left to right: Density slices from the χ300v1700, χ300v1700c5, and χ300v1700c20 simulations at ∼8.5 Myr. These simulations have different
fs values as indicated in the figure. At this time, the cloud in the χ300v1700 simulation has evaporated nearly 50 per cent of its mass, considerably more than in
the other two simulations. The cloud in the χ300v1700c20 simulation is still able to resist hydrodynamic instabilities even though thermal conduction is only
1/20 of the Spitzer value there.

deceleration rate is largely determined by the properties of the bow
shock and of the compressed cloud, though both change drastically
when one includes thermal conduction.

The mass-loss is primarily caused by hydrodynamic instabilities
or thermal conduction or a combination of these two, but their calcu-
lation is more complicated. When thermal conduction is inefficient,
the cloud loses its mass primarily from KHI and the expansion in the
downstream direction after the cloud shock. The lifetime of the cloud
is characterized by the Kelvin–Helmholtz time-scale τKH, which will
be described in Section 3.4 based on the numerical results from SB15.
In the rest of the paper, we will mostly focus on the regimes where
thermal conduction and evaporation are important. We develop a
model for this regime based on the results from BS16.

Both SB15 and BS16 study cloud evolution using a set of cloud-
crushing simulations with varying flow parameters. BS16 include
isotropic thermal conduction at the Spitzer rate fs = 1. Some of
these simulations and their parameters are listed in Table 1. The
simulations are named after the initial density contrast χ and the
relative velocity vrel. These simulations explore a variety of physical
conditions that are typical of interactions between winds and the
hot CGM, with the ambient temperatures ranging from 3 × 106

to 3 × 107 K and the initial Mach number ranging from 1.0 to
11.4. We also ran two additional simulations, χ300v1700c5 and
χ300v1700c20, to explore the effects of reduced thermal conduction.
They have the same initial conditions as χ300v1700, but have

only 1/5 and 1/20 of the original strength of thermal conduction,
respectively.

3 PHYSI CAL PROCESSES

In this section, we review the physical processes that are critical to the
evolution of the cloud in the cloud-crushing problem and describe
how to calculate relevant properties of the cloud and the ambient
medium during its evolution. In Section 3.1, we review some general
formulae about thermal conduction. In Section 3.2, we find solutions
to the bow shock and the cloud-crushing shock, with or without
thermal conduction. In Section 3.3, we describe the morphology of
the cloud after the cloud shock, the expansion of the cloud, and the
internal structure of the cloud during the expansion. In Section 3.4,
we discuss how clouds lose mass owing to the KHI and how to
determine whether or not thermal conduction suppresses the KHI.
In Section 3.5, we propose an approximate model of estimating the
mass-loss rate from a cloud owing to conduction-driven evaporation.
In Section 3.6, we discuss the effects of radiative cooling on our
analytic model.

3.1 Classical and saturated conduction

Throughout this paper, we do not consider the effect of magnetic
fields and assume isotropic thermal conduction. Thermal conduction

Table 1. Numerical simulations from BS16 and their parameters.

Name Mc (M�)a vrel (kms−1)b Rc (pc)c nc (cm−3)d na (cm−3)e Ta (K)f Nc (cm−2)g τcc (Myr)h

χ300v1000 6.7 × 104 1000 100 1.0 3.3 × 10− 3 3 × 106 1.5 × 1020 1.69
χ300v1700 6.7 × 104 1700 100 1.0 3.3 × 10− 3 3 × 106 1.5 × 1020 0.996
χ1000v1700 6.7 × 104 1700 100 1.0 1.0 × 10− 3 10 × 106 1.5 × 1020 1.82
χ3000v3000 6.7 × 104 3000 100 1.0 1.0 × 10− 3 3 × 106 1.5 × 1020 1.79
χ300v3000 6.7 × 104 3000 100 1.0 0.33 × 10− 3 3 × 106 1.5 × 1020 0.565
χ300v3000b 6.7 × 104 3000 46.4 10.0 3.3 × 10− 3 3 × 106 1.5 × 1021 0.262
χ1000v480 6.7 × 104 480 100 1.0 1.0 × 10− 3 10 × 106 1.5 × 1020 6.45
χ3000v860 6.7 × 104 860 100 1.0 0.33 × 10− 3 30 × 106 1.5 × 1020 6.23

aThe initial mass of the cloud.
bThe relative velocity of the cloud.
cThe initial radius of the cloud.
dThe initial hydrogen number density of the cloud.
eThe hydrogen number density of the ambient medium.
fThe temperature of the ambient medium.
gThe initial column density of the cloud.
hThe cloud-crushing time-scale.
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2590 S. Huang et al.

relies on electrons in the hot plasma exchanging kinetic energy with
the electrons in the cold gas. In the hot plasma, the mean free path
of an electron is λmfp ∼ 1.65 × 104 [cm] T 2

e /ne, where Te and ne are
the electron temperature and electron number density in the plasma.
In this paper, we will assume that electrons and ions are always in
thermal equilibrium and have the same temperature Th = Te = Ti

in the plasma, where Ti is the ion temperature. In the classical limit
where the mean free path, λmfp, is much smaller than the scale of the
temperature gradient LT, thermal conduction leads to a heat flux

qclass = −κh∇T , (1)

where κh is a function of the temperature and density in the hot
medium:

κh = 6.1 × 10−7T
5/2

h

(
30

ln 	κ

)
(2)

and ln 	κ ≡ 29.7 + ln n−1/2
e (Te/106 K) is the Coulomb logarithm

that depends very weakly on ne and Te. In this paper, we will always
set ln 	κ = 30 for simplicity.

When λmfp � LT, the cross-sections of electron–electron collisions
become too large for conduction to work in the classic limit. It reduces
the efficiency of heat transfer to a saturated value (CM77):

qsat = 0.4fs

(
2kBTe

πme

)1/2

nekBTe ∼ 1.715 × 10−11neT
3/2

e , (3)

where kB is the Boltzmann constant, fs ≤ 1 is a free parameter
that determines the overall efficiency of thermal conduction. fs = 1
indicates thermal conduction at the Spitzer rate.

Similar to CM77, we define a saturation parameter σ 0 that
distinguishes classical conduction and saturated conduction based
on the flow parameters:

σ0 = 2κhTh

25ρhc
3
hRc

= 1.84
λh

LT

, (4)

where ch is the isothermal sound speed of the hot medium, and λh

is the mean free path of the hot medium. Physically, σ 0 is the ratio
between qclass and qsat. We use the classical heat flux when σ 0 < 1
and the saturated heat flux otherwise.

Thermal conduction at an interface between hot and cold gas could
lead to evaporation of cold gas into the hot gas, as the cold gas near
the interface gains energy from electron collision. In the classical
limit, CM77 derive the evaporation time-scale for a spherical cloud
of uniform density in an initially uniform, infinite hot medium as

τev,class = 25kBMc

16πμmHκfsRc
, (5)

where μ is the atomic weight and mH is the mass of the hydrogen
atom. The above equation can be written numerically as

τev,class = 48.9 [Myr]

[( nc

1 cm−3

)(
Rc

10 pc

)2 (
Th

106 K

)−2.5
]

, (6)

where Rc and Mc are the radius and mass of the spherical cloud, and
fs ≤ 1 is a constant factor that determines the strength of thermal
conduction relative to the Spitzer value (equation 1).

In the saturated limit (σ 0 > 1), the evaporation time-scale becomes
(CM77)

τev,sat = 10.3 [Myr]
( χ

103

)(
Rc

10 pc

)(
Th

106 K

)−1/2

σ
−3/8
0 , (7)

which is obtained from their equation (64) with the parameter φs in
the equation set to 1.0.

Note, however, that the above treatment of evaporation is only
valid when the mean free path of hot electrons inside the cloud is
much smaller than the cloud radius. Otherwise, hot electrons will be
able to free stream through the cloud while at the same time heating
the entire cloud through Coulomb heating (Balbus & McKee 1982).
When the Coulomb heating rate exceeds the radiative cooling rate,
the cloud will puff up quickly and disintegrate shortly thereafter (Li
et al. 2020). This only occurs for very small clouds in a very hot
medium and puts a lower limit on the initial cloud size, which is a
main parameter of our model. BS16 show that this quick disruption
occurs when the initial column density of the cloud is smaller than
1.3 × 1018cm−2 (T1/107 K)2 and demonstrate in a test simulation that
a cloud with an initial size of Rc = 1 pc in a surrounding medium with
χ = 3000, T1 = 107 K, and vrel = 3000 km s−1 indeed evaporates
within 1τ cc. However, this lower limit is much below the physical
conditions probed in BS16 in which we are interested in this paper.

The CM77 solution for conductive evaporation also assumes that
radiative cooling is negligible. We will further discuss the effects of
cooling on thermal conduction in Section 3.6.

3.2 The bow shock and the cloud shock

3.2.1 Without thermal conduction

In the non-conductive limit, we approximate the bow shock as
adiabatic so that the physical conditions at the two sides of the shock
(boundary I) are related by the Rankine–Hugoniot jump conditions
(Appendix B). In the post-shock gas (region 2), the flow is subsonic
and is governed by the Bernoulli equations that relate post-shock
quantities at boundary I to the fluid quantities at the stagnation point
II. The pressure at the stagnation point and that in the shocked cloud
(region 4) are the same (PII = P4).

The thermal pressure of the pre-shock medium P1 and the
pressure at the stagnation point is therefore related by (McKee &
Cowie 1975)2

PII

P1
= PII

PI

PI

P1
=

(
γ + 1

2

) γ+1
γ−1

(
γ − γ − 1

2M2
1

)− 1
γ−1

M2
1, (8)

where M1 is the Mach number of the pre-shock gas in the velocity
frame of the cloud:

M1 ≡ v1

cs,1
(9)

and cs, 1 is the isothermal sound speed3 in the unshocked gas.
Equation (8) only applies in the supersonic case M1 > 1. Here,

PII is also the ram pressure that is responsible for the deceleration of
the cloud:

Pram ∼ fram(Mrel)ρav
2
rel, (10)

where Mrel is the mach number of the ambient flow relative to the
cloud, and the coefficient fram can be derived from equation (8) with
Pram = PII. It is of order unity and has a minimum value 0.5 when
Mrel = 1. For simplicity, we choose fram = 0.5 in this paper. Our
results are not sensitive to this choice of fram.

The cloud shock propagates at a speed vs that can be solved using
the jump conditions at the cloud shock front. Assuming the cloud

2The formula only applies to the pressure in front of the cloud. The pressure
behind the oblique shock is smaller than this value. In this paper, we only
consider the pressure resulting from the front shock.
3The isothermal sound speed is defined as c2

iso = γ (P/ρ) = γ kBT /(μmH).
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Introduction of PhEW 2591

shock is isothermal, we approximate the shock speed according to
the jump condition:

PII

P3
=

(
vs

cs,c

)2

, (11)

where cs, c is the isothermal sound speed of the cloud. The shock
speed is related to the cloud crushing time by vs ∼ Rc(t = 0)/τ cc.

Therefore, by assuming an adiabatic bow shock and an isothermal
cloud shock, we are able to solve for the post-shock properties of the
cloud. The cloud is compressed within a few τ cc and accelerated to
the shock speed vs. The density inside the cloud is enhanced by a
factor of ρ4/ρ3 ∼ χ−1(v1/cs, c)2, making it overpressured relative to
its surroundings.

3.2.2 With conduction

Including thermal conduction could significantly affect the bow
shock as well as the cloud-crushing shock. Either in the regime
of classical conduction, where q ∼ T2.5, or in the regime of saturated
conduction, where q ∼ neT

1.5
e , the heat flux q, the evaporation rate

ṁ, and the vapour pressure Pev are all very sensitive to the post-
shock properties of the flow. Furthermore, the post-shock flow is no
longer a constant flow determined by the Rankine–Hugoniot jump
condition, but rather displays a time-dependent profile behind the
main shock front. The picture of a radiative shock with electron
thermal conduction has been extensively studied in the literature
(Lacey 1988; Borkowski, Shull & McKee 1989). While these works
focus on plane-parallel shocks driven by a supersonic flow in a
single continuous medium, the cloud-crushing problem requires a
self-consistent solution in a two-phase medium, i.e. hot ambient gas
and a cool cloud.

Despite these complications, we extended the Borkowski et al.
(1989) prescription for a conductive shock by including a non-
negligible initial temperature. Inheriting their notation, we may
solve for the modified Rankine–Hugoniot jump conditions (see
Appendix B for the derivation). The density and temperature ratio
across the conductive shock front becomes

xs ≡ ρ1

ρ2
= 5 − √

9 + 16q̂s + 5βs(5βs − 6)

8
(12)

and
T1

T2
= βs

(1 + βs − xs)xs
. (13)

In the above equations, q̂s is a parameter that is explained in detail
below, and βs is defined as

βs ≡ 1

γM2
1

. (14)

In the extreme case where M1 � 1, the equations reduce to
equations (16) and (17) in Borkowski et al. (1989).

Equations (12), (13), and (14) introduce a parameter q̂s, which we
define as the ratio between the conductive heat flux and the kinetic
energy flux of the incoming flow across the shock:

q̂s ≡ qs
1
2 ρ1v

3
1

. (15)

q̂s measures how much of the thermal energy generated in the
shock is advected back into the pre-shock gas. q̂s = 0 corresponds to
an adiabatic shock and q̂s = 1 corresponds to an isothermal shock.
For any given pair of q̂s and M, the density and temperature ratios
between the post-shock gas and the pre-shock gas are uniquely
determined by equations (12) and (13).

Figure 3. The ratio between the post-shock density and temperature, i.e. ρps

and Tps, and the pre-shock properties, i.e. ρa and Ta, calculated for different
sets of (q̂s,M) pairs using the conductive jump conditions (equations 12 and
13). The M number is constant on each dotted line and q̂s is constant on each
dashed line. The stars correspond to measurements from BS16 simulations,
with the colours indicating particular numerical models as indicated in
the figure. We also show solid lines that correspond to the M number of
each simulation. Since the χ300v1700, χ300v1700c5, and χ300v1700c20
simulations use the same M = 6.46, we use a single blue line to indicate all
three simulations.

However, the exact value of q̂s varies among simulations and is
hard to determine from first principles. We measure these ratios from
the BS16 simulations at t90, when the cloud reaches 90 per cent
of its original mass, and compare them to the analytic solutions in
Fig. 3. We find that the measured ratios lie close to the lines that
are defined by their corresponding Mach number. However, q̂s varies
among simulations that have a similar Mach number. In general,
when thermal conduction is strong, as in the χ3000v3000 simulation
where the ambient temperature is very high, q̂s is closer to unity,
corresponding to a nearly isothermal shock. This is expected because,
as the width of the bow shock develops over time, the temperature
gradient after the shock gradually declines and the shock profile
approaches an isothermal one. On the other hand, when thermal
conduction decreases, as from the full Spitzer value fs in χ300v1700
to 0.05fs in the χ300v1700c20 simulation, q̂s decreases.

In our model, we choose a constant q̂s = 0.90 whenever thermal
conduction is non-negligible for simplicity.

In light of the conductive simulations from BS16, we further
assume that the cloud will always have a cylindrical geometry after
being compressed. We set the dimensions of the cloud as (piR2

c ) × Lc,
where Rc is the cross-section of the cloud perpendicular to the flow
and Lc is the length of the cloud parallel to the flow. We set Lc = 2Rc

immediately after the shock and can solve for Rc once the density
of the compressed cloud ρ4 is known. We also choose a coordinate
system such that the x-axis is the central axis of the cylinder with the
origin x = 0 at the head of the cloud (Fig. 4).

3.3 Expansion

After maximum compression from the cloud shock, the cloud
expands rapidly in the downstream direction into a nearly vacuum
cavity that is enclosed by the surface extended from the contact
discontinuity. In simulations without thermal conduction (SB15),
the expansion flow is often strongly perturbed by the ambient flow
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Figure 4. An illustration of our method of calculating the conductive
evaporation rate from the cloud at any given time. We assume cylindrical
symmetry. Roman and Arabic numerals have the same meanings as in Fig. 1.
We assume that thermal conduction between the cloud and the ambient flow
causes heat flux and evaporation within a conduction zone bounded by the
surface of the cloud and an arbitrarily chosen streamline (noted as Roman
numeral II) in the ambient flow. Depending on the strength of the conduction,
the region may be divided into a classic zone and a saturated zone separated
by a transition surface, where the quantities are subscribed with a star symbol
(∗).

and quickly mixes into the ambient medium. In addition, a Rayleigh–
Taylor instability at the front of the cloud often breaks up the cloud
into smaller clumps, making the mixing process even more efficient.
Therefore, in the non-thermal conduction regime, the clouds often
do not have a well-defined morphology.

In simulations with thermal conduction (BS16), the clouds often
display a coherent, cylindrical morphology (see e.g. Fig. 2). When
thermal conduction is strong enough, it helps suppress hydrodynamic
instabilities and confine the cloud with vapour pressure. Simulations
also show a strong velocity gradient within the cloud throughout
its expansion. In the velocity frame of the contact point at II, the
expansion velocity increases linearly with the distance to the contact
point and reaches a maximum at the tail of the cloud, where the cloud
gas almost freely flows into the cavity with a speed comparable to the
shock velocity vs. However, when thermal conduction become less
efficient, the cloud morphology becomes less stable and eventually
the cloud breaks up faster.

Therefore, we will only approximate the cloud as a cylinder when
thermal conduction is sufficiently strong (see Section 3.4 for more
details on determining whether or not this is true). In our model with
thermal conduction, it is important to know how the length of the
cloud evolves with time, because the total evaporation rate from the
cloud depends on the total surface area, i.e. 2πRcLc, of the cloud at
any time.

Immediately after the time of maximum compression, the velocity
structure inside the simulated clouds resembles a similarity flow
(Landau & Lifshitz 1959), with the velocity at any point x, v(x),
increasing linearly with x. The flow in the cloud is a centred
rarefaction wave until the wave propagates back to the location
of the bow shock. The simulations show that the tail of the cloud
often expands at a nearly constant velocity, vexp, so that the cloud
length grows as dLc/dt = vexp. If the expansion is adiabatic, the
cloud should expand at a terminal velocity vmax, ad = 2cc/(γ − 1) ∼
45 km s−1 as expected from an adiabatic similarity flow. However,
the vexp measured from the simulations is often much larger than
this value. Here, we assume the expansion is isothermal. For an
isothermal similarity flow, the density ρc(x) and pressure Pc(x) at

any position x inside the expanding cloud are functions of the flow
velocity v(x) only:

ρc(x)

ρc(0)
= Pc(x)

Pc(0)
= exp

(
−v(x)

cc

)
, (16)

where ρc(0) and Pc(0) are the density and pressure at the head of the
cloud. Since the velocity v(x) in an isothermally expanding cloud
increases with x and does not have an upper limit, we need to
arbitrarily choose a maximum velocity as vexp, which corresponds
to the velocity at the tail of the cloud. Equation (16) indicates that
the cloud segment with a larger v has a lower density and evaporates
faster. Therefore, the further away from the head, the faster the cloud
evaporates. In our model, we choose vexp as the velocity at which
the cloud still has not fully evaporated. At any time t, the fraction of
the cloud where v > vexp, i.e. ρ(v) < ρ(vexp), has evaporated earlier.
The vexp therefore decreases with time as

vexp(ev)(t) = −cc ln

(
4.5 × 10−15 T

5/2
1 t

ρc(0)R2
c

)
, (17)

where we use equation (30) to find the evaporation rate per unit
area ˙̂mA for classical conduction and use the temperature for the
unperturbed ambient flow. The material that has velocities that exceed
the expansion velocity is assumed to have evaporated.

On the other hand, we can choose vexp as the velocity at which
the cloud pressure equals the pressure of the unperturbed ambient,
i.e. Pc(vexp) = P1. Since the pressure at the head of the cloud, Pc(0)
equals the ram pressure PII, the expansion velocity is

vexp(P) = −cc ln

(
P1

PII

)
. (18)

In practice, we choose the minimum value of these two velocities
as the expansion velocity in our model:

vexp = min{vexp(ev), vexp(P)}. (19)

3.4 The Kelvin–Helmholtz instability

The growth rate of perturbations at the interface of a shearing flow is
characterized by the Kelvin–Helmholtz time-scale τKH. A classical
analysis in the subsonic, incompressible limit shows that τKH ∝ τ cc

for linear growth (Chandrasekhar 1961; Mandelker et al. 2016). In
a supersonic flow, the KHI is damped, but the exact behaviour is
poorly understood. Moreover, it is not straightforward to apply the
classic τKH to the cloud-crushing problem, where the geometry and
long term evolution are distinct from those assumed in the classical
analysis of the KHI. Radiative cooling also has a strong effect on
the growth of the KHI (see Section 3.6 for details). Using their non-
conductive simulations, SB15 obtain an empirical result for how fast
the cloud loses mass in various situations. They find that the times at
which the cloud has a certain fraction, e.g. 90 per cent, 75 per cent,
50 per cent, 25 per cent, of its original mass are proportional to
τcc

√
1 + Mh (their equation 22). The additional (1 + Mh)1/2 factor

suggests that the clouds survive much longer in highly supersonic
flows than that predicted from a classic analysis. Therefore, we
adopt the following formula for clouds in regimes where thermal
conduction is negligible:

τKH = fKH

√
1 + M1, (20)

where fKH is a free parameter of order unity that controls how fast
clouds lose mass via KHI, and M1 = vrel/c1 is the Mach number of
the flow relative to the cloud. We calculate the mass-loss rate of the
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cloud as

Ṁc;KH = Mc

τKH
. (21)

Whether or not KHI can grow depends also on the strength of thermal
conduction. In the extreme case where evaporation dominates over
the ambient flow, it simply eliminates any velocity shear. With less
strong thermal conduction, linear perturbations on the cloud surface
can still be stabilized if the kinetic energy diffuses quickly enough
before it can generate a significant amount of local vorticity.

A full treatment of this problem requires solving the linearly
perturbed equations that include a conductive flux term in the energy
equation, which is very challenging even in ideal situations. Here,
we derive an approximate criterion based on whether or not the
diffusion time-scale owing to thermal conduction, τ diff, is shorter
than the mixing time-scale, τmix, owing to KHI.

Consider a hot phase with density ρh and temperature Th flowing
at a relative velocity of vrel to a cold phase with density ρc = χρh

and temperature Tc. A perturbation on the scale of λ in the cloud will
mix into the ambient flow over a finite width λ within τmix without
thermal conduction. We can obtain the mixing time-scale using the
dispersion relation for the growth of linear perturbations (Mandelker
et al. 2016):

τmix ∼ χ1/2λ/vrel. (22)

To calculate the diffusion time-scale, we consider how long it takes
the conductive heat flux to fully mix the kinetic and thermal energy
between a density perturbation with its surroundings on any scale λ:

τdiff = 1

1 + χ

ρcλ[v2
rel/2 + 3c2

h/2]

q
, (23)

where ch is the sound speed of the hot gas, the factor 1/(1 + χ ) is
the volume filling factor for the cold phase, and q is the conductive
heat flux. Here, we assume classical conduction and approximate it
as q = fsκh(Th/λ). There exists a critical scale λKH where τ diff = τmix.
Perturbations are able to grow only on scales smaller than λKH:

λKH = 1 + χ

χ1/2

1

Mh(M2
h + 3)

fsκh

nhT
1/2

h

(
4μmH

γ 3k3
B

)1/2

, (24)

where nh and Mh are the hydrogen number density and the Mach
number of the hot phase, respectively. In the cloud-crushing problem,
the KHI is able to grow only when Rc > λKH. Using χ � 1, and
Mh ∼ 1 for the post-shock gas, we can write λKH numerically as

λKH = 5.7 [kpc] fs

( χ

102

)1/2
(

Th

107 K

)2 ( nh

10−2 cm−3

)−1
. (25)

Mandelker et al. (2016) find a similar dependence of λKH on fluid
properties, i.e. λKH ∝ T 2

h n−1
h M−1

h . For most of the simulations from
BS16 with full Spitzer rate conduction, i.e. fs = 1, the critical length
λKH is much larger than the cloud radius Rc, so that the Kelvin–
Helmholtz instabilities are always suppressed.

However, when one reduces fs, KHI will eventually be able to
grow. In the three χ300v1700 simulations, using properties of the
ambient flow of nII ∼ 0.1 cm−3, TII ∼ 7 × 106 K, and χ ∼ 103, we
find that the critical scales for the χ300v1700, χ300v1700c5, and
the χ300v1700c20 simulations are 890, 178, and 45 pc, respectively.
Only in the χ300v1700c20 simulation is the critical scale comparable
to the cloud radius Rc ∼ 20 pc, and this is the only simulation that
indeed shows some growth of the KHI at later times that ultimately
breaks up the cloud. In Section 5, we will show that KHI indeed
causes the cloud to lose mass in addition to evaporation.

Figure 5. The radial profiles of density (upper panel), temperature (middle
panel), and pressure (lower panel) at different cross-sections of a simulated
cloud. The data are from the χ300v1700 simulation at t75. The legend shows
how far the cross-section is from the head. Note that the temperature axis in
the middle panel is shown in linear scale, so it is clear that the temperature
gradient sharpens towards the cloud, making thermal conduction more likely
to saturate.

3.5 The conduction zone

When thermal conduction is strong, cold gas evaporates from the
cloud surface and mixes into the ambient flow moving downstream.
To solve for the mass-loss rate from the cloud, we assume that the
flow is axisymmetric and that there exists a continuous conduction
zone (see Fig. 4) extending from the cloud surface III to an arbitrary
surface II in the ambient flow. Inside the conduction zone, the gas
that evaporated from any coordinate x in the cloud is heated from the
cloud temperature Tc to a corresponding ambient temperature at the
surface II, i.e. TII(x). The temperature varies along the streamlines,
dropping from the maximum value at the shock front Tps (or T2 as
in Fig. 1), to the unperturbed ambient temperature T1 far behind the
shock. We now focus on streamlines (dotted lines) along which the
evaporated material flows. Each of these paths relates fluid properties
at one point on the cloud to those at another point on the surface II.
We approximate these streamlines of evaporated material as radial
to the clouds so that we can analytically integrate over the radial
coordinate r from the cloud surface r = Rc to the ambient r = rII. The
problem is to find an approximate expression for TII(x), parametrized
by the cloud coordinate x, and to find the mass-loss rate per unit area
dA = 2πRcdx at any x of the cloud, defined as

˙̂mA = 2πrρv = const. (26)

We show a typical conduction zone from the simulations in Fig. 5.
The profiles show three distinct regions, separated by two sharp
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density discontinuities. From inside out, the three regions correspond
to the cloud, the post-shock ambient flow (conduction zone), and the
flow outside the bow shock. The conduction zone broadens with
the distance from the head (from blue to red), consistent with the
morphology illustrated in Fig. 1. The lateral dimension of the cloud,
i.e. Rc, varies little along the cloud.

In the conduction zone, the temperature gradient sharpens towards
the cloud surface, where the conductive flux will likely start to
saturate. When thermal conduction is strong enough, there exists
a critical point where the heat flux starts to saturate so that it divides
the conduction zone into a classic zone and a saturated zone, which
will be treated separately below. The flow properties at the critical
point are noted as ρ∗, T∗, etc.

In both regions, the flow along any path is governed by the time-
independent Euler equations in cylindrical coordinates:

ρ
dv

dr
+ v

du

dr
+ ρv

r
= 0, (27)

ρv
dv

dr
= −dp

dr
, (28)

and

3

2
γ ˙̂mA

(
1 + 1

5
M2

)
c2 = 2πrq. (29)

All flow quantities in the above equations are functions of r. The heat
flux q is determined by either equations (1) or (3) in the classical and
the saturated zone, respectively. In the classical zone, M2/5 � 1 so
that ˙̂mA ∝ rqclass/T . Since ˙̂mA is constant along the streamline, qclass

is proportional to T/r, which decreases with r. There might exist a
critical point r = r∗, where qsat = q∗ = qclass. At r < r∗, σ 0 > 1, this
corresponds to saturated conduction, while at r > r∗, σ 0 < 1, this
corresponds to classical conduction. We further define σ ∗ and σ c as
the value of σ 0 at r = r∗ and r = Rc, respectively. By definition, σ ∗ =
1. Therefore, the critical point exists if and only if σ c > 1.

In the classical zone, we could obtain ˙̂mA by integrating the energy
equation (equation 29) from r = r∗ to r = rII using equation (1) with
the approximation that 1 + M2/5 ∼ 1:

˙̂mA(class) = 6.1 × 10−7f −1
r

(
8πμmH

15γ kB

)
(T 5/2

II − T 5/2
∗ ), (30)

where fr ≡ ln (rII/Rc) is of order unity. We will use fr = 1 in this
paper.

In the saturated zone, integrating the energy equation (29) shows
that the Mach number has a constant value Msat that is determined
by

Msat

(
1 + 1

5
M2

sat

)
= 2fs, (31)

where Msat ∼ 1.4 throughout the saturated zone for thermal con-
duction at the full Spitzer rate, i.e. fs = 1, and becomes smaller with
a reduced fs.

With a constant Msat, we can solve for the temperature profile
in the saturated zone by integrating the continuity equation (equa-
tion 27) and the equation of motion (equation 28) in cylindrical
coordinates:(

T

Tc

)
=

(
r

Rc

)2/(1+M2
sat)

. (32)

To provide a boundary condition at r∗ for the saturated zone, we
further assume that the pressure gradient in the classical zone is
negligible as indicated by the simulation (Fig. 5), so that

n∗T∗ = nIITII. (33)

We can solve for the mass-loss rate in the saturated zone with
equations (29), (31), and (33):

˙̂mA(sat) = 1.715 × 10−11

(
4π

3 + M2
sat

)(
μmH

γ kB

)

× T −1/2
∗

(
nIITII

Rc

)(
Tc

T∗

)(1+M2
sat)/2

. (34)

We can find the temperature at the critical point T∗ by iteratively
solving the equation σ ∗ = 1, where the saturation parameter, σ ∗, is
by definition the ratio qclass/qsat at r∗:

σ∗ = 3.6 × 104f −1
r

(
6 + 2M2

sat

15

)

×
[

(T 5/2
II − T 5/2

∗ )T 1/2
∗

nIITIIRc

](
Tc

T∗

)(1+M2
sat)/2

. (35)

A solution for T∗ is physical only if T∗ ≥ Tc. It is clear from
equation (35) that σ ∗ increases with r so that σ ∗ ≥ σ c. Therefore,
the criterion that a saturated zone exists is σ c ≥ 1. Using a fiducial
set of parameters, fr = fs = 1, this criterion becomes

σc = 2.4 × 104

[
(T 5/2

II − T 5/2
c )T 1/2

c

nIITIIRc

]
≥ 1. (36)

We then obtain the total evaporative mass-loss rate of the cloud
through integration over x:

Ṁc,ev =
∫ Lc

0
2πRc ˙̂mA(x)dx = 1

fm
2πRcLc ˙̂mA(0), (37)

where we introduce fm as a parameter that simplifies the integral. We
approximate the integral by using a constant value for the mass-loss
rate along the cloud ˙̂mA(0) and apply a correction factor fm to account
for actual variations along the cloud. Since the temperature gradient is
strongest near the head (x = 0), the conduction rate and the mass-loss
rate are also highest there. Therefore, fm > 1. Appendix C estimates
that fm = 3.5 under the simplified assumption that thermal conduction
is nowhere saturated. We adopt this value fm = 3.5 throughout this
paper.

3.6 The effects of radiative cooling

For simulations that include thermal conduction, radiative cooling
dominates over conductive heating over distances larger than the
field length, LF (Field 1965):

LF =
(

κhTh

n2
c	c

)1/2

, (38)

where κh and Th are the conductive coefficient and the temperature of
the hot ambient medium, respectively, and nc and 	c are the density
and the cooling function of the cloud, respectively. Both analytic
(Begelman & McKee 1990) and numerical (e.g. Armillotta et al.
2016) works suggest that clouds much larger than the field length (Rc

� LF) will condense as radiative cooling dominates and that clouds
much smaller than the field length (Rc � LF) will evaporate as thermal
conduction dominates. Both processes need to be considered when
the two scales are comparable to each other. It is unclear whether or
not clouds will evaporate in this physical regime, especially if the
cloud is moving relative to the ambient medium. Previous works that
compare these two scale lengths often assume that the cloud is static.
In this case, a temperature gradient of scale lT is allowed to develop at
the initially discontinuous interface. Since the energy exchange rate
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owing to thermal conduction scales as T /l2
T, conduction becomes

less efficient as the gradient grows until lT ∼ LF, where it is balanced
by cooling. When the cloud is moving, however, the ambient flow
will prevent such a gradient from growing thus keeping thermal
conduction efficient. Therefore, the cloud likely still evaporates when
Rc ∼ LF.

In most of the simulations from BS16, the cloud radius after the
initial shock is smaller than LF, except for the χ300v1000 simulation.
Therefore, we assume that conduction-driven evaporation dominates
over cooling-driven condensation in our model. However, one should
be cautious about the effect of radiative cooling when applying our
model to cosmological simulations.

Radiative cooling can also strongly affect the growth of the
KHI. The evolution of KHI in shearing flows with cooling have
been studied using numerical simulations that assume different
geometries, e.g. 2D, 3D, slab, cylindrical, etc. Strong radiative
cooling prevents the mixing layer at the interface from growing
and penetrating into the cloud (Vietri, Ferrara & Miniati 1997) and
suppresses the linear growth of the KHI. However, whether or not
cooling can enhance (Stone, Xu & Hardee 1997; Xu, Hardee & Stone
2000) or suppress (Rossi et al. 1997; Vietri et al. 1997; Micono et al.
2000) the long term non-linear evolution of KHI is likely sensitive to
the details of the numerics, flow parameters, and cooling functions.
Many of these earlier studies focus on the context of the ISM, e.g.
between protostellar jets and their surrounding medium of ∼104 K,
where the physical conditions are very different from the hot halo
environment.

The effect of radiative cooling has also been directly studied
in cloud-crushing simulations. In general, efficient cooling helps
compress the cloud to higher densities, making it more resistant
to hydrodynamic instabilities (Klein, McKee & Colella 1994;
Armillotta et al. 2016; Li et al. 2020), but the effects are hard to
quantify. This again motivates us to use a parametrized formula
(equation 20) to describe the KHI-driven mass-loss rate of the
cloud. Recent simulations also suggest that radiative cooling could
drive thermal instabilities and cause the cloud to fragment to
characteristic scales (McCourt et al. 2018; Sparre, Pfrommer &
Vogelsberger 2019), but the stripped gas from the cloud could
also condense and reform cloudlets in the downstream flow under
certain conditions where cooling is efficient (Gronke & Oh 2018;
Li et al. 2020). However, we do not model these processes in this
paper.

4 MO D E L L I N G TH E E VO L U T I O N O F TH E
C L O U D

In this section, we give a step-by-step recipe for evolving the cloud
analytically (Section 4.1). Remember that we assume that each wind
particle is a collection of clouds, each with a mass Mc, whose number
depends on the wind particle mass and Mc. We also summarize our
main assumptions and approximations and discuss the robustness of
these assumptions in Section 4.2.

4.1 The analytic model

When a cloud with initial mass Mc enters into the ambient medium at
supersonic speed as shown in Fig. 1, we first calculate the properties
related to the bow shock and the cloud shock.

4.1.1 Cloud shock

The jump conditions (equations 12 and 13) determine the post-shock
pressure

PII

P1
∼

[
2γ

γ + 1
M2

1 − γ − 1

γ + 1

]
ηsτs, (39)

where ηs and τ s are the corrections to the jump conditions for density
and temperature owing to thermal conduction (equations B4 and B5)
and should both be 1 when thermal conduction is inefficient. The
pressure across the contact discontinuity II is the same, i.e. PII = P4.
We can solve for the post-shock cloud density ρ4 and cloud radius Rc

under the assumption of an isothermal cloud shock (Teq = 104K):

ρ4kBTeq

μmH

= PII (40)

and

2ρ4Rc(πR2
c ) = Mc. (41)

Here, we assume that the cloud shock is nearly isotropic so that at
maximum compression the two dimensions of the cylindrical cloud
are comparable to one another, i.e. Lc = 2Rc. The cloud shock in
general takes 1 to 2 cloud-crushing time to complete.

4.1.2 Confined expansion

This only applies when thermal conduction is sufficiently strong
to maintain the coherence of the cloud. When thermal conduction is
weak, we proceed to calculate the mass-loss rate and the deceleration
of the cloud. The overpressured cloud expands in the downstream
direction at a speed vexp, which we determine from equation (19).
The length of the cloud evolves with time as Lc(t) = Lc(t = 0) +
vexpt. We also allow the lateral dimension of the cloud Rc to change
with Mc:

Rc =
(

Mc

πμmH ncLc

)1/2

, (42)

where Nc is the total column number density along the flow direction,
which is kept constant over time, i.e. Nc = n4Lc(t = 0). The Rc

calculated from equation (42) is consistent with the radius of the
clouds in the numerical simulations.

4.1.3 Mass-loss

The cloud loses mass owing to both the KHI (equation 21) and
evaporation (equation 37). To calculate the evaporative mass-loss
rate per unit area at the head, i.e. ˙̂mA(0), we first determine whether
or not a saturated zone exists using the criterion from equation (36).
If it does exist, we calculate T∗ by iteratively solving the equation
σ ∗ = 1 using equation (35) and then find the mass-loss rate using
equation (34). If it does not exist, we find the mass-loss rate using
equation (30) with T∗ set to Tc in the equation.

We calculate the total mass-loss rate as

Ṁc = Ṁc,KH exp(−Rc/λKH) + Ṁc,ev, (43)

where Ṁc,KH and Ṁc,ev are mass-loss rate from the KHI and evapora-
tion alone, respectively. Since strong thermal conduction suppresses
the KHI, we suppress Ṁc,KH by a factor of exp (− Rc/λKH), where
λKH is determined by equation (24). Therefore, the contribution from
KHI decreases sharply when Rc � λKH and only becomes important
when Rc � λKH.
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4.1.4 Deceleration

The cloud slows down as a result of the ram pressure PII. At anytime
t, the cloud decelerates as

v̇rel = PIIπR2
c (t)

Mc(t)
. (44)

Following the above procedures, we can solve for the cloud properties
ρ4(t, x), Mc(t), vrel(t), Rc(t), and Lc(t) at any given time by numerical
integration.

4.2 Simplifications

Here, we discuss the key simplifications in our model in the limit
of strong thermal conduction. These simplifications are largely
corroborated by the numerical simulations of BS16, and are essential
for the model to reproduce their results even qualitatively.

4.2.1 Isothermal cloud

In BS16, the cloud is initially in thermal equilibrium with a tempera-
ture Teq ∼ 104 K. At this temperature, radiative cooling is so efficient
that during the evolution, the cloud remains nearly isothermal.
Therefore, we assume that the cloud temperature Teq is invariant
in our model. This also assumes that the cloud shock is isothermal,
which allows the cloud to be shocked to high density. However, this
assumption breaks down if the field length is comparable to the cloud
size.

In some simulations, the tail of the cloud expands so fast that
during the first few τ cc after the cloud shock parts of the cloud can
be much colder than Teq. However, the adiabatically cooled tail soon
heats up and hence this deviation does not significantly affect the
behaviour of the bulk of the cloud since most of the cloud mass
concentrates in the dense, slowly expanding front of the cloud.

4.2.2 Constant q̂s parameter

We use a constant value (0.9) for the q̂s parameter, i.e. ratio between
the kinetic energy flux and the conductive heat flux across the
bow shock, whenever thermal conduction dominates. In general,
q̂s decreases from our chosen value when thermal conduction is
sufficiently weak. However, this transition from high q̂s values (e.g.
0.9), to q̂s ∼ 0 (non-conductive) is very sharp, because the strength
of thermal conduction is very sensitive to temperature. Therefore,
deviations from this simplification will only affect a small range of
temperatures. Moreover, since thermal conduction is weak in these
situations, the evolution of the cloud is much less sensitive to the
value of q̂s than where constant q̂s is a good approximation.

4.2.3 Cylindrical geometry

In our model, when thermal conduction is efficient, we let the cloud
expand only in the downstream direction so that over time the cloud
becomes elongated with Lc � Rc as seen in the simulations of BS16.
The elongation helps keep the cross-section of the cloud small, which
keeps the cloud from slowing down too fast. It also results in a larger
surface area between the cloud and the ambient flow, which makes
the cloud evaporate much faster.

4.2.4 Similarity flow in the cloud

We approximate the flow inside the cloud as an isothermal similarity
flow, which parametrizes the density and the pressure anywhere
inside the cloud with the flow velocity only (see Section 3.3 for
details). This implies that cloud density declines logarithmically
from the front to the end of the cloud, which is approximately true in
BS16. However, some of their simulations show that some density
substructures emerge in the cloud later in the evolution, and that the
cloud eventually breaks up into smaller aligned clumps.

4.2.5 KHI suppression

The KHI, as well as other hydrodynamic instabilities that lead to
the fragmentation of the cloud, are suppressed by efficient thermal
conduction. This is clearly demonstrated in BS16, where clouds, as
long as they do not evaporate too soon, are able to maintain a coherent
structure for much longer than those in the same physical conditions
but without conduction (SB15).

4.2.6 Small vapour pressure

We approximate that the vapour pressure is negligible compared to
the post-shock thermal pressure so that the internal pressure of the
cloud is balanced by thermal pressure only. Simulations indicate that
at least in the front shock, the thermal pressure calculated from the
conductive jump conditions are comparable to the cloud pressure
except for the M = 1 cases. Inside the oblique shock (region 5),
whether or not vapour pressure is important is uncertain as it is hard
to compute.

4.2.7 Post-shock ambient flow

The flow between boundary I and boundary III is a mixture of the
shocked ambient gas and the evaporated material from the cloud.
The flow properties here are crucial to calculating the evaporation
rate from the cloud, because the conductive flux is very sensitive to
the temperature gradient. To solve for the time-dependent Eulerian
equations with boundary conditions at both the oblique shock front
(boundary I) and the cloud surface (boundary III) is very complicated.
Therefore, we simplify the problem with several approximations
that are detailed in Section 3.5. Namely, we assume that the flow
is continuous everywhere and can be described using Bernoulli’s
equations. However, when thermal conduction is too strong, e.g. in
the χ3000v3000 simulation where T1 = 3 × 107 K, the evaporation
becomes supersonic and creates shocks in the ambient flow, violating
the continuity assumption. We note that the condition for supersonic
evaporation is likely similar to that for vapour pressure to be
dominant. In both cases, the thermal conduction must be very
saturated (σ 0 � 1).

4.2.8 No self-gravity

The Jeans mass of the shock compressed cloud, assuming a number
density of 10 cm−3 and a temperature of 104 K, is 8 × 107 M�, much
larger than Mc. Therefore, self-gravity is almost never important in
this study, unless the cloud is allowed to cool to much below the
equilibrium temperature.
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Figure 6. Each panel shows the fraction of dense gas that remains in the cloud as a function of time in units of the cloud-crushing time τ cc. Stars, triangles, and
circles indicate values at t75, t50, t25, i.e. when the cloud has reached 75 per cent, 50 per cent, and 25 per cent of its original mass, respectively. The black symbols
are results from the cloud-crushing simulations of BS16. They provide an analytic formula (their equation 17) for the mass-loss rate. We show this prediction
as the grey dashed lines. The blue symbols are predictions from our fiducial model assuming a constant q̂s = 0.90. The purple symbols are predictions from the
simple spherical model (Section 5.1). The names of the simulations are indicated in the bottom right corner of each panel.

Figure 7. The total mass-loss rate as a function of time for three sim-
ulations with varying thermal conduction efficiencies. The χ300v1700,
χ300v1700c5, and χ300v1700c20 simulations are shown in blue, orange,
and red, respectively. Here, we compare the solid lines from the simulations
to the dashed lines from our model predictions. The brown dashed line shows
the model prediction for the χ300v1700c20 simulation without considering
mass-loss from KHI. It is the only simulation where KHI plays a non-
negligible role while the other simulations have Rc � λKH. The χ300v1700c5
and the χ300v1700c20 simulations are terminated at t50 and t75,
respectively.

5 TESTS

In Figs 6, 7, and 9, we compare the analytic results to simulations.
For comparison, we also calculate the cloud evolution using a simple
spherical model as described below.

5.1 A spherical model

Semi-analytic models for clouds entrained in hot winds or clouds
that travel in the haloes often assume the clouds are spheres with
a uniform density (Zhang et al. 2017; Lan & Mo 2019). Here, to
compare with the cylindrical model, we examine whether or not a
simpler spherical cloud model can reproduce the simulation results.

We define the properties of the cloud and the ambient medium
using the same diagram as in Fig. 1. Many quantities are determined
the same way as in the cylindrical model, except that now ρ4 is
constant over the cloud and Rc is the radius of the sphere changing
with time.

The properties of the bow shock and the cloud shock are deter-
mined by equations (39) and (40). After the cloud shock, the cloud
radius is determined by

Rc(t) =
(

3Mc(t)

4πρ4(t)

)1/3

. (45)

At each time-step after the cloud shock, we assume that the cloud is
always in pressure equilibrium with the post-shock ambient gas, so
that P4 = PII. The cloud density at any time can then be derived from
the pressure using equation (40).
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Figure 8. Same as Fig. 6, except that we show model predictions with three different q̂s. Increasing q̂s results in cooler post-shock gas and less evaporation in
general. The two simulations in the bottom panels are not affected by changing q̂s because M1 = 1 in these simulations.

To calculate the evaporation rate at any given time, we use the
CM77 formulation (equations 6 and 7), which is derived for a
spherical cloud in a static medium. Since here we only compare
the model to conductive simulations from BS16, we assume that
KHI is always suppressed.

The deceleration of the cloud is governed by equation (44).

5.2 Mass-loss

In Fig. 6, we compare our model predictions of the mass evolution
of the cloud to results from the simulations of BS16, in which the
cloud mass at any given time is defined as the total mass above a
density threshold ρ th = ρ1/3, where ρ1 is the original density of the
cloud. This threshold is sufficient to capture most of the cold gas
remaining in the cloud because the cloud shock has compressed it to
a much higher density than ρ1. Mass-loss is dominated by conductive
evaporation in these simulations. In our fiducial analytic model, the
cloud mass Mc(t) evolves with time according to equation (37).

The spherical model presented above significantly overestimates
the lifetime of the cloud in most cases. The larger surface areas
of the elongated clouds in our fiducial model play a critical role
in quickly evaporating the cloud. The spherical model agrees with
the simulations only in the two extreme cases, χ1000v1700 and
χ3000v3000. In both of these cases, the shocked ambient gas is so
hot (T5 > 107 K) that some of our simplifications for the fiducial
model might break down. First, thermal conduction is so strong that
the evaporation time-scale is shorter than the dynamic time-scale
for expansion. Second, the vapour pressure dominates over thermal
pressure in driving the cloud shock, which in these cases compresses
the cloud to higher densities nearly isotropically. Both of these effects
tend to make the cloud more spherical in morphology. Therefore, the

CM77 solution for spherical clouds describes the evolution of the
cloud better than in the other simulations.

Our fiducial model qualitatively agrees with the simulations in all
the cases shown here. The model overestimates the mass-loss rate for
the χ1000v1700 and χ3000v3000 cases for the reasons discussed
in the last paragraph. In the other simulations, the cloud loses mass
more rapidly during the first few τ cc, reaching t75 earlier than in our
model, but this is because we only allow mass-loss from the cloud
after the cloud shock. During the expansion phase, our model slightly
overestimates the mass-loss rate, e.g. in the χ300v3000b case. This
is likely because of differences in the internal structures of the cloud
at later times. In the simulations, density perturbations develop in the
cloud with time and eventually break the cloud into smaller, denser
clumps, but in our model we assume that the cloud always maintains
a coherent cylindrical geometry with a logarithmic density structure,
resulting in a larger total surface area and stronger evaporation.

In Fig. 6, we also compare our model predictions to the analytic
results derived in BS16. They assume a constant mass-loss rate from
the cloud (their equation 17) until it completely mixes with the
surroundings over an evaporation time-scale tevap (their equation 18).
The mass of the cloud therefore decreases linearly with time in their
model. We calculate the mass-loss rate according to their equations,
using their fiducial parameters, i.e. A = 0.01, Tevap = 3 × 106 K,
and ηc = 0.5, which are constrained by fitting their equations to
simulation results. We show their predictions for the evolution of
cloud mass as dashed lines in Fig. 6. In half of these cases, the
calculations from BS16 agree with our models, but in the other
cases, BS16 overestimate the mass-loss rate by a factor of a few.

Fig. 7 demonstrates how lowering the efficiency of thermal
conduction affects the mass-loss rate. Since the cloud in the
χ300v1700c5 and the χ300v1700c20 simulations evaporates very
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Introduction of PhEW 2599

Figure 9. The evolution of the velocity of the cloud as a function of time. In each panel, we compare model predictions �v(t) + vs/3 to the cloud speed
measured from simulations. Stars, triangles, and circles indicate values at t75, t50, t25 as in Fig. 6. The predictions from our fiducial cylindrical model with
q̂s = 0.90 and the spherical model are shown in blue and purple, respectively. Black symbols show results from the simulations (BS16). Grey dashed lines show
their analytic predictions for velocity evolution (their equation 23).

slowly, we terminate those simulations at t50 and t75, respectively.
In the first τ cc, there is some mass-loss during the cloud shock
in each simulation, which our model does not attempt to capture.
Afterwards, our model agrees with the low-conduction simulations
very well and also agrees with the χ300v1700 well before t50 =
9.19τ cc. After t50, the cloud in the χ300v1700 simulation starts to
break into clumps, shortening Lc and lowering the total mass-loss
rate as a result. Since our model always assumes that the cloud
is coherent, the mass-loss rate from our model continues to grow
with time as the cloud expands. In fact, for the same reason, we
always overestimate the late time mass-loss in other simulations as
well.

To first order, equation (37) suggests that the mass-loss rate scales
linearly with the heat flux, so that reducing fs will also reduce Ṁc by
the same factor. Moreover, reducing fs changes the jump conditions
at the bow shock, which determines the post-shock gas properties.
When fs is small enough, however, KHI will also start to cause
additional mass-loss and fragmentation in the cloud. This is indicated
by comparing the red dashed line to the brown dashed line in Fig. 7.
The χ300v1700c20 simulation is the only one with Rc ∼ λKH so that
KHI causes a noticeable fraction of the mass-loss.

Fig. 8 shows how sensitive the mass-loss rate is to the q̂s parameter.
At a constant Mach number, increasing q̂s reduces the post-shock
temperature and increases the post-shock density (Fig. 3). As a
net effect, evaporation is less efficient with larger q̂s as thermal
conduction primarily depends on the temperature. Even though we
always assume a constant q̂s in our model, it actually evolves with
time. The broadening of the front shock and conduction between
the shock and the cloud tends to increase q̂s, making the shock
more isothermal over time. However, we do not attempt to include

this behaviour in our model, as we consider the model sufficiently
accurate for our purposes.

5.3 Velocity evolution

Fig. 9 shows how the cloud’s speed evolves with time. We define
�v(t) as the difference between the average velocity of the cloud at
any time t after the cloud shock and the cloud velocity immediately
after the cloud shock. In our models, �v(t) is governed solely by
equation (44), with �v(t = 0) = 0 right after the cloud shock by
definition.

In the simulations, the cloud gains momentum from the cloud
shock. To make fair comparisons between the model predicted �v

and the cloud speed measured from the simulations, we calculate
how much velocity the cloud gains during the cloud shock and add
it to �v. As an approximation, we set this initial velocity to (π /8)vs,
where vs is the shock velocity calculated by assuming a pressure-
driven plane-parallel cloud shock. The factor π /8 comes from the
fact that the cloud shock is not exactly plane-parallel to the cloud.
Instead, the front half of the cloud is compressed by shocks from all
sides that ultimately converge. We calculate the net momentum that
the cloud gains from the cloud shock in the direction of the flow as

1

2

(
2π

∫ Rc

0

∫ π

0
ρ3vs sin θr2 sin θdrdθ

)
= π

8
Mcvs, (46)

where θ is the angle between the radial direction of the cloud and
the polar direction, which is the direction that is perpendicular to the
flow. The constant factor 1/2 takes into account the fact that only the
front half of the cloud gains momentum from shocks.
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Despite the uncertainties in the systematic offset, the velocity
evolution from our models agrees very well with the simulation
results. The slope, which corresponds to the deceleration rate, is well
reproduced for most cases. The success of modelling the deceleration
relies on correctly calculating the ram pressure Pram and the cloud
radius Rc, according to equation (44). The ram pressure is robustly
determined by the shock jump condition and is much less sensitive
to the choice of q̂s than density or temperature. Therefore, correctly
evolving Rc, and thus the cross-section for ram pressure, is key
to predicting the velocity evolution. It is crucial that we calculate
Rc assuming cylindrical geometry and allow it to change only
with Mc according to equation (42). The spherical models slightly
overestimate the deceleration rate in most cases because of their
relatively larger Rc, according to equation (45).

BS16 also calculate the velocity evolution of the clouds (their
equations 22 and 23). We show their results in dashed lines in Fig. 9.
Their predictions for the cloud velocities are very similar to ours and
agree with simulations equally well, even though their derivation
for the velocities is very different from ours. As discussed above,
this agreement between our calculations further indicates that the
velocity evolution of the cloud depends critically on a few quantities
such as Rc and Pram that can be robustly computed.

6 SUM M A RY A N D DISCUSSION

Hydrodynamic simulations of galaxy formation often employ sub-
grid kinetic wind models to model feedback from star-forming
galaxies, however, none of the current simulations robustly evolve
the outflowing wind material after they leave their host galaxies and
enter into the circumgalactic/intergalactic medium. In this paper, we
propose an analytic model (PhEW) that calculates how cold clouds
that are launched with galactic winds evolve and propagate in such
environments. We develop our analytic model based on findings
from high-resolution cloud-crushing simulations with (SB15) or
without including isotropic thermal conduction (BS16) that simulate
cold dense clouds travelling supersonically through a hot ambient
medium.

These simulations suggest that thermal conduction plays a critical
role in cloud evolution. BS16 show that strong thermal conduction
changes the shock jump conditions, suppresses KHI, confines the
cloud into a cylindrical geometry, and evaporates the cloud. There-
fore, we build our model in two separate scenarios, depending on
whether or not thermal conduction dominates. When thermal conduc-
tion is insignificant, our model predicts mass-loss rates according to
the empirical scaling relations from the non-conductive simulations
of SB15. Using these results for guidance, we self-consistently solve
for the properties of the bow shock, the cloud shock, and the evolution
of the cloud. Since the strength of thermal conduction is very sensitive
to temperature, real wind–CGM interactions in the Universe very
likely fall into either of these scenarios. Nevertheless, we use a
continuous but sharp transition from KHI-dominated mass-loss to
evaporation-dominated mass-loss.

The PhEW model in thermal conduction dominated scenarios is
able to predict the mass-loss rate and the deceleration rate of the cloud
at any time. These predictions agree with simulation results except
for systems where thermal conduction is very saturated. We also find
that a model that assumes that the clouds are spheres with uniform
density significantly underestimates the mass-loss rate unless the
evaporation time-scale is comparable to τ cc.

In addition to the simulations from BS16, we performed two
simulations with reduced thermal conduction efficiency (1/5 and
1/20 of the Spitzer rate) to t75. We find that even with much weaker

thermal conduction, the KHI is still suppressed for very long times,
consistent with the findings of Marcolini et al. (2005), where the
cloud does not undergo any significant fragmentation for fs = 1/25.
The clouds in these simulations survive much longer because of their
lower conductive evaporation rate. In the PhEW model, the KHI is
nearly completely suppressed when fs = 1/5 and is only partially
suppressed when fs = 1/20. Despite this difference, the PhEW model
reproduces the mass-loss rate of both clouds very well.

Many problems in galaxy formation struggle to have cold clouds
survive sufficiently long in a hot medium. For example, entrainment
of cold gas in supernova remnants has been proposed as a mechanism
to generate galactic winds, but it is often found that the clouds disrupt
too fast to be accelerated to wind velocities. Even after they are able
to leave the galaxy, their subsequent evolution in the hot CGM is
significantly limited by how fast they disintegrate. In BS16, most
clouds evaporate on a few τ cc, or a few Myr, a time-scale too short
to be important for galaxy formation. Even the cloud that survives
the longest can travel no more than 50 kpc, a distance that is much
shorter than the virial radius of massive, hot haloes. Furthermore, the
initial mass of the cloud in their simulations is 6.7 × 104 M�, which
is likely much larger than an average cloud in the CGM. Since smaller
clouds evaporate faster under the same physical conditions, the cloud
survival problem becomes even more severe than that suggested by
the BS16 simulations.

Our findings on the effects of lowering thermal conduction
efficiency suggest that one may significantly lengthen the lifetime of
clouds by keeping the thermal conduction very weak yet still strong
enough to suppress hydrodynamic instabilities and keep the cloud
structure coherent. For example, suppressing thermal conduction by
a factor of 10 will in principle help the cloud survive nearly 10 times
longer and hence travel much further into the galactic halo.

Neither the BS16 simulations nor our models explicitly include
magnetic fields, even though an important consequence of adding
magnetic field is suppression of thermal conduction. Strong magnetic
fields are known to also suppress hydrodynamic instabilities and
significantly affect the geometry and lifetimes of clouds (Mac Low
et al. 1994; Orlando et al. 2008; McCourt et al. 2015), though Cottle
et al. (2020) suggest that magnetic draping does not significantly
enhance cloud lifetime. Even a very weak magnetic field as probable
in the CGM could strongly affect cloud evolution depending on the
alignment between the flow and the field (Cottle et al. 2020; Li et al.
2020). However, our understanding of the properties and the effects
of magnetic fields in the CGM is still very poor. Even though we do
not explicitly model a magnetic field, we may capture its effects by
varying the parameters fKH and fs, which are, in reality, affected by
the magnetic field.

It is straightforward to implement the PhEW model into hydrody-
namic simulations of galaxy formation that employ kinetic feedback.
In simulations that use a particle-based hydrodynamic method, e.g.
SPH simulations (Springel 2010), a common practice of modelling
galactic winds is by statistically ejecting gas particles from galaxies
(Springel & Hernquist 2003; Oppenheimer & Davé 2006; Huang
et al. 2020). The wind algorithm in each simulation determines the
initial velocity of the ejected particles (wind particles) often as a
function of their host galaxy properties. In some simulations, the
wind particles temporarily decouple from the other SPH particles
hydrodynamically after launch but soon recouple to the hydrody-
namics when the recoupling criteria are satisfied. After recoupling,
their evolution is again governed by the SPH equations as for a
normal gas particle.

In the PhEW model, one would launch the wind particle and let
it evolve as before during the decoupling phase. Once it meets the
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original recoupling criteria, one would start evolving it as a PhEW
particle instead of letting it recouple. One could consider a PhEW
particle of mass mi as a collection of Ni identical cold clouds, each
of them having an initial mass Mc. The cloud mass Mc is a free
parameter of the model but by mass conservation, mi = NiMc.

The choice of Mc affects both the velocity evolution of the cloud
and the mass-loss rate. Under pressure equilibrium, Rc scales with
M1/3

c so that the deceleration rate scales as v̇rel ∝ M−1/3
c (equa-

tion 44). When the KHI dominates the mass-loss, τKH ∝ τcc ∝ M1/3
c .

When evaporation dominates the mass-loss, the evaporation time-
scale τev ∝ Mc/Rc ∼ M2/3

c . Therefore, increasing the cloud mass
Mc helps clouds survive longer. Together with fKH and fs, these
parameters control the evolution of PhEW particles in cosmological
simulations.

To apply our PhEW model (Section 4.1) to the clouds, one would
first evaluate the density ρ1 and temperature T1 of their surroundings
and the relative velocity vrel. In SPH simulations, this is conveniently
done by performing a kernel weighted average over the neighbouring
SPH particles. We would choose a time-step for the PhEW particle to
that required for accurate integration. At each time-step, one would
calculate the amount of mass (along with the metals), momentum,
and energy lost since the last time-step and deposit it into the
neighbouring SPH particles in a kernel weighted fashion. At the
same time, one would reduce the mass and the velocity of the PhEW
particle accordingly.

As a PhEW particle travels away from the galaxy into the less
dense regions, it will gradually expand in the radial direction and
could heat up as well. These long-term behaviours are not modelled
in the analytic model presented above but would need to be captured
in cosmological simulations. In practice, one would allow the cloud
radius to adjust with the ram pressure Pram in the simulation and
maintain pressure balance at the head of the cloud, i.e. Pram = nckBTc.
One would obtain the cloud radius under pressure equilibrium at any
time using equation (42):

Rc,peq =
(

γMc

πPramLc

)1/2

cc. (47)

At each time-step �t, one would let the cloud radius adjust on a
sound-crossing time-scale, i.e. τ sc ≡ Rc/cc:

Rc(t + �t) = Rc,peq + (Rc − Rc,peq) exp

(
−�t

τsc

)
. (48)

The work done by the cloud in �t during expansion is approxi-
mately:

Wexp = 2πPramcc

[
Rc + 2(Rc,peq − Rc)

�t

τsc

]
�t, (49)

which, along with the cooling and heating rate of the cloud,
determines how the internal energy of the cloud changes over time.

A PhEW particle may eventually recouple if either of the following
happens. First, it has lost over 90 per cent of its original mass. In this
case, one would remove the particle from simulation and deposit
its remaining mass and momentum in the neighbouring particles.
Second, the clouds become similar enough to the ambient medium,
i.e. ρ4 ∼ ρ1, T4 ∼ T1, and vrel < c1.4 Third, the particle crosses a
galaxy in its path. In this case, which can happen in a cosmological

4This is not a necessary criterion. Instead one could let the particles remain
as PhEW particles. In our test simulations with PhEW, we find that most
PhEW particles get destroyed by mass-loss before they satisfy this recoupling
criteria.

simulation, the physics of PhEW would break down so we let the
particle recouple and become a normal gas particle. We will describe
the mathematical details of this implementation in future work.

Similarly, one can combine the PhEW model with grid-based
simulations. For example, the Illustris TNG simulations (Vogels-
berger et al. 2013; Pillepich et al. 2018a) model galactic winds
by temporarily turning a cell into a particle that decouples from
hydrodynamics until recoupling. To apply the PhEW model to the
wind particle, one would first track the cell where the particle is
located at each time-step. Then we could use the cell properties as
the ambient and exchange mass as well as other conserved quantities
between the particle and the cell. Finally, one would recouple the
particle to the grid similarly as in the SPH implementation.

In summary, we developed an analytic model, PhEW, that cal-
culates the evolution of individual clouds over a wide range of
physical conditions that reproduces very high resolution simula-
tions of individual clouds. This model can be implemented into
hydrodynamic simulations of galaxy formation and will provide
a more robust way of evolving cold galactic outflows in galactic
haloes of various properties. The PhEW model explicitly models
physical processes that occur at gas interfaces such as bow shocks,
hydrodynamic instabilities, fluid mixing, and thermal conduction.
The PhEW model has a few parameters such as the mass of
individual clouds, the Kelvin–Helmholtz coefficient fKH, and the
thermal conduction coefficient fs that affect the properties and the
evolution of the clouds. Including these underresolved and often
neglected processes in galaxy formation simulations will be a crucial
step towards a more realistic and controlled interpretation of the
observations of multiphase gas substructures in the CGM within the
framework of galaxy formation and evolution. We will present the
results of including this model in a GIZMO (Hopkins 2015) based
cosmological simulation (Davé et al. 2019) in a future paper.
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Bogdán Á., Forman W. R., Kraft R. P., Jones C., 2013, ApJ, 772, 98
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Davé R., Katz N., Oppenheimer B. D., Kollmeier J. A., Weinberg D. H., 2013,

MNRAS, 434, 2645
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APPENDI X A : N OMENCLATURE

We list the main variables used in this paper here.

Flow properties in the cloud-crushing problem.
ρ1, T1, P1 – density, temperature, and pressure of the pre-shock

ambient flow
ρ3, T3, P3 – density, temperature, and pressure of the cloud before

the cloud shock
χ0 – initial density ratio between the cloud and the ambient

medium
vrel – relative velocity between the cloud and the ambient medium
cs, 1 – sound speed of the pre-shock ambient flow
M1 – Mach number of the ambient flow relative to the cloud
Mc – cloud mass
x – coordinate in the cloud along the long axis, with x = 0 at the

cloud head
χ – density ratio between the cloud and the ambient medium
nc, n4 – hydrogen number density of the cloud
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ρc, ρ4 – cloud density at the cloud head, i.e. short for ρ4(0)
Pc, P4 – internal pressure at the cloud head, i.e. short for P4(0)
Tc, T4 – cloud temperature
Teq – cloud temperature at thermal equilibrium between radiative

cooling and heating
cc – sound speed inside the cloud
Rc – cloud radius perpendicular to direction of motion
Rc, peq – cloud radius under pressure equilibrium
Lc – cloud length along direction of motion
Pram – ram pressure ahead of the cloud
PII – pressure at the contact point II, which is equal to the ram

pressure
Pev – vapour pressure owing to evaporation
vexp – expansion velocity of the cloud
rII – radius of the streamline that is arbitrarily chosen as the outer

boundary of the conduction zone in the post-shock flow
uII – velocity along the streamline
nII – hydrogen number density along the streamline
ρII – density along the streamline
TII – temperature along the streamline
cII – sound speed along the streamline

Properties of the bow shock and the cloud shock.
vs – velocity of the cloud shock
ρa – density of the pre-shock gas
Ta – temperature of the pre-shock gas
ρps – density of the post-shock gas
Tps – temperature of the post-shock gas
ηs – correction factor for the density jump across a conductive

shock
τ s – correction factor for the temperature jump across a conductive

shock

Thermal conduction.
nh – hydrogen number density in the hot gas in a two-phase

medium
ρh – gas density in the hot gas in a two-phase medium
Th – temperature of the hot gas in a two-phase medium
ch – sound speed of the hot gas in a two-phase medium
Mh – Mach number of the hot gas in a two-phase medium
λmfp – mean free path of electrons in the hot medium
qclass – classical heat flux from thermal conduction
qsat – saturated heat flux from thermal conduction
σ 0 – conductive coefficient, defined as the ratio between the

classical and the saturated heat flux
σ c – conductive coefficient at the cloud surface
τ ev, class – time-scale for classical evaporation from CM77
τ ev, sat – time-scale for saturated evaporation from CM77

The conduction zone.
Msat – Mach number in the saturated zone
r∗ – radius of the transition point where thermal conduction

saturates
n∗ – hydrogen number density at the transition point
ρ∗ – density at the transition point
T∗ – temperature at the transition point
q∗ – Heat flux at the transition point

Mass-loss rates.
˙̂mA – mass-loss rate per unit area owing to conductive evaporation

on the cloud surface
Ṁc,KH – total mass-loss rate from KHI
Ṁc,ev – total mass-loss rate from conductive evaporation
Ṁc – total mass-loss rate of the cloud from both KHI and

conductive evaporation

Various scales.
τ sc – sound crossing time-scale
τ cc – cloud-crushing time-scale
τ diff – diffusion time-scale owing to thermal conduction
τmix – mixing time-scale owing to KHI
τKH – Kelvin–Helmholtz time-scale
λKH – Kelvin–Helmholtz scale. Perturbations on scales below it

are suppressed by thermal conduction
LF – field length

Parameters and fixed-value factors.
fs – parameter that determines the efficiency of thermal conduction.

fs = 1 corresponds to conduction at the Spitzer value.
fKH – parameter that determines the general growth of KHI mass-

loss
q̂s – the ratio between the heat flux and the kinetic energy flow

across a conductive shock front, approximated as 0.90 in this paper
fram – factor that affects the ram pressure according to equa-

tion (10), approximated as 0.5 in this paper
fr – factor defined as fr ≡ ln (rII/Rc), approximated as 1.0 in this

paper
fm – factor that affects the total evaporation rate according to

equation (37), approximated as 3.5 in this paper

APPENDI X B: MODI FI ED SHOCK J UMP
C O N D I T I O N S

The Rankine–Hugoniot jump conditions relate post-shock gas prop-
erties to the pre-shock gas properties across an adiabatic, non-
conductive plane-parallel shock. When thermal conduction is ef-
ficient, the shock front will be smoothed by the enthalpy flow in
the upstream direction. The jump conditions can be obtained by
considering that fluid quantities are conserved across the shock:

ρ1v1 = ρ2v2, (B1)

ρ1v
2
1 + P1 = ρ2v

2
2 + P2, (B2)

and

1

2
ρ1v

3
1 + 5

2
P1v1 = 1

2
ρ2v

3
2 + 5

2
P2v2 + qs, (B3)

where, following the notation of Borkowski et al. (1989),
we introduce dimensionless parameters ηs ≡ ρ2/(4ρ1), τs ≡
16kBT /(3μmHv2

1), and q̂s ≡ qs/(ρ1v
3
1/2).

Equations (B1)–(B3) are identical to equations (8)–(10) in
Borkowski et al. (1989) except for the pre-shock terms P1 and
5P1v1/2 that are ignored in their paper. Even though P2 � P1

in equations (B2) and (B3), P1v1/P2v2 ∼ T1/T2 is not necessarily
infinitesimal, unless the shock Mach number M � 1. Therefore,
including these two terms, especially the second, should largely
improve the accuracy in low Mach number shocks.

Solving these equations, we obtain

ηs = 5(1 + βs) + √
9 + 16q̂s + 5βs(5βs − 6)

8(1 − q̂s + 5βs)
, (B4)

and

τs = 1

2
− 4q̂s

3
+ 1

6
(1 + βs)

√
9 + 16q̂s + 5βs(5βs + 6)

+ 5

6
βs(βs − 6), (B5)

which immediately yields equations (12) and (13) in the text.
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APPENDIX C : INTEGRALS

To integrate equation (37), one needs to know the mass-loss rate per
area, ˙̂mA, at each point along the cloud, which in turn relies on the
properties of the ambient flow. We relate each point along the cloud
to another point on the streamline (noted as boundary II in Figs 1
and 4) in the ambient flow. Along the streamline, fluid properties are
parametrized by flow velocity according to Bernoulli’s equations:

ρII(0)

ρII(x)
=

(
1 − γ − 1

2

u2
II(x)

c2
II(x)

) 1
γ−1

, (C1)

PII(0)

PII(x)
=

(
1 − γ − 1

2

u2
II(x)

c2
II(x)

) γ
γ−1

, (C2)

and

TII(0)

TII(x)
= 1 − γ − 1

2

u2
II(x)

c2
II(x)

, (C3)

where uII(x) and cII(x) are the flow speed and the sound speed at the
point on the streamline that corresponds to coordinate x in the cloud.
The cloud head at x = 0 corresponds to the stagnation point where
uII = 0.

To simplify the integral, we assume that

dx

du2
II

= x

u2
II

. (C4)

Also, we assume that at the tail of the cloud x = Lc � Rc, the
ambient flow becomes identical to the unperturbed flow: TII(Lc) =
T1, cII(Lc) = c1.

Combining equations (C3) and (C4):

dx =
(

Lc

u2
II(Lc)

)
du2

II

=
[

(γ − 1)Lc

2c1

(
1 − T1

TII(0)

)−1
]

du2
II

= −Lc

(
1 − T1

TII(0)

)−1 dT

TII(0)

= −Lc
dT

TII(0) − T1
. (C5)

Therefore, assuming classical conduction, the integral governing
the total mass-loss rate becomes:∫ Lc

0

˙̂mA(x)dx = A(T1, TII(0), Rc)
Lc

TII(0) − T1

∫ TII(0)

T1

T 5/2dT

∼ 1

3.5
A(T1, TII(0), Rc)Lc

TII(0)7/2 − T
7/2

1

TII(0) − T1

= 1

3.5

⎡
⎢⎣1 −

(
T1

TII(0)

)3.5

1 −
(

T1
TII(0)

)
⎤
⎥⎦Lc ˙̂mA(0). (C6)

Comparing the above results to equation (37) indicates fm = 3.5
when TII(0) � T1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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