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ABSTRACT
Wide-area imaging surveys are one of the key ways of advancing our understanding of cosmology, galaxy formation physics,
and the large-scale structure of the Universe in the coming years. These surveys typically require calculating redshifts for
huge numbers (hundreds of millions to billions) of galaxies – almost all of which must be derived from photometry rather
than spectroscopy. In this paper, we investigate how using statistical models to understand the populations that make up the
colour–magnitude distribution of galaxies can be combined with machine learning photometric redshift codes to improve redshift
estimates. In particular, we combine the use of Gaussian mixture models with the high-performing machine-learning photo-z
algorithm GPz and show that modelling and accounting for the different colour–magnitude distributions of training and test data
separately can give improved redshift estimates, reduce the bias on estimates by up to a half, and speed up the run-time of the
algorithm. These methods are illustrated using data from deep optical and near-infrared data in two separate deep fields, where
training and test data of different colour–magnitude distributions are constructed from the galaxies with known spectroscopic
redshifts, derived from several heterogeneous surveys.
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1 IN T RO D U C T I O N

Many of the current key open questions in cosmology and extra-
galactic astronomy require extremely wide (probing large areas of
the sky/volumes of the Universe) and deep (probing to extremely faint
and/or distant sources) galaxy surveys to answer e.g. observations
with Euclid (Laureijs et al. 2011) and the Vera C. Rubin Observatory
(hereafter Rubin; formerly the Large Synoptic Survey Telescope,
LSST) (LSST Science Collaboration 2009). To probe the time
evolution/third dimension of the Universe, estimates of the redshift
of each galaxy are typically required.

Galaxy, and active galactic nuclei (AGN), redshifts can be cal-
culated from their spectrum in two main ways, from spectroscopy
or from photometry. Spectroscopic redshifts (‘spec-z’s’) are calcu-
lated by measuring the wavelength of a known spectral (normally
emission) line or feature, and comparing it to the known rest-frame
wavelength of the line or feature. Photometric redshifts (‘photo-z’s’)
are calculated by measuring the brightness of the galaxy in N broad
wavelength ranges, and mapping these brightnesses on to a redshift.
Typically, spec-z’s are far more precise than photo-z’s, but can only be
measured for much smaller populations of galaxies as spectroscopic
observations are more costly, and generally reach shallower depths,
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see Fernandez-Soto et al. (2001) for a comparison of the strengths
and weaknesses of both classes of measurement.

Photometric redshifts themselves can be calculated in two main
ways: ‘template fitting’ methods and ‘machine learning’ (ML)
methods. Template fitting methods are essentially ‘theory’ based
methods – we attempt to use our understanding of the physics behind
galaxy spectral energy distributions to map photometry to a spectrum.
This in practice can take a number of forms, but typically consists of
using a number of model template spectra (either using synthetic
spectra or spectra extracted at low redshift from galaxies with
observations at many wavelengths), and using a χ2-minimization-
like method to find the ‘best’ redshift. Notable template-fitting based
codes include Photometric Analysis for Redshift Estimate (LEPHARE;
Arnouts et al. 1999; Ilbert et al. 2006), Bayesian photometric redshifts
(BPZ; Benitez 2000; Benitez et al. 2004; Coe et al. 2006), the Zurich
Extragalactic Bayesian Redshift Analyzer (ZEBRA; Feldmann et al.
2006), EAZY (Brammer, van Dokkum & Coppi 2008), and PHOSPHO-
ROS (Paltani et al., in preparation). ML photo-z methods are typically
entirely data based; an ML algorithm is given a set of galaxies with
photometry and known (usually spectroscopic) redshifts, and is then
tasked with predicting the redshift of galaxies without known spec-
z’s. Widely used ML photo-z codes include Artificial Neural Network
Redshifts (ANNZ2; Collister & Lahav 2004; Sadeh, Abdalla & Lahav
2016), Trees for Photo-Z (TPZ; Carrasco Kind & Brunner 2013),
self-organizing map redshifts (SOMZ; Carrasco Kind & Brunner
2013), Machine-learning Estimation Tool for Accurate PHOtometric
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Redshifts (METAPHOR; Cavuoti et al. 2017), FRANKEN-Z (Speagle
et al., in preparation)1, and many more. The resulting photometric
redshifts are required for a variety of science goals (see Desprez et al.,
in preparation, for a recent photo-z code comparison in the context of
Euclid objectives, and Schmidt et al., 2020, in the context of Rubin),
but one of the most important, with the most stringent requirements,
is weak lensing, where the matter power spectrum is measured by
the shear on galaxy shapes, but accurate unbiased redshift estimates
are needed for unbiased cosmological inferences, e.g. Banerji et al.
(2008), Abdalla et al. (2011), Hearin et al. (2010), Hildebrandt et al.
(2017), and Hoyle et al. (2018). Finally, Salvato, Ilbert & Hoyle
(2019) present a comprehensive review of contemporary photometric
redshift methods, applications and challenges, and a discussion of
what advanced approaches must be developed for surveys to best
meet their scientific goals in the future.

In this work, we consider how using Gaussian mixture models
(GMMs), a Bayesian approach to dividing a set of objects into
subpopulations, can support the ML photo-z code GPz (Almosallam,
Jarvis & Roberts 2016a; Almosallam et al. 2016b) – although the
approach could be employed with other algorithms. In particular,
we investigate using GMMs to (i) help account for the different
colour space distributions of the training and test data, and (ii)
exploit the fact that galaxies and AGN naturally fall into different
populations. The approach has some similarities to that described
in Fotopoulou & Paltani (2018), who divide their galaxies into
separate galaxy populations as part of the photometric redshift
calculation process (but for a template fitting method), and also Lima
et al. (2008), who use weighting schemes to estimate the redshift
distribution, accounting for differences in colour distributions to a
reference sample.

The structure of this paper is as follows. In Section 2, we describe
the algorithms used in this study, namely GPz and a GMM algorithm,
and the data used. In Section 3, we discuss the methods developed.
In Section 4, we present our results, discuss the consequences in
Section 5, and conclude in Section 6.

2 PRELIMINARIES

2.1 GPz

GPz is an ML regression algorithm originally developed for the
problem of calculating photometric redshifts; the details of the
algorithm and the key developments in ML theory are described in
Almosallam et al. (2016b), Almosallam et al. (2016a). The algorithm
is ‘sparse Gaussian process’ (GP) based, e.g. see Rasmussen &
Williams (2006). A GP is a stochastic process with a random
variable defined at each point in a space of interest, such that any
linear combinations of random variables from different points has
a Gaussian distribution; essentially an unparametrized continuous
function defined everywhere with Gaussian uncertainties. GPs are
very flexible class of supervised non-linear regression algorithms that
make very few explicit parametric assumptions about the nature of the
function. For this reason, they are well-suited for modelling complex
non-linear mappings like photometric redshifts2 (Rasmussen &
Williams 2006; Bonfield et al. 2010; Almosallam et al. 2016b). A
GP-based ML algorithm will typically take some set of data over

1https://github.com/joshspeagle/frankenz
2Photometric redshift mappings are likely not perfectly represented by a
Gaussian process, but this is likely true of any ML algorithms applied to any
real-world problem.

the parameter space of interest and in some sense try and find the
GP that was most likely to have produced the data – and then make
predictions for other parts of parameter space based on that. The key
features introduced by GPz include (i) implementation of a sparse
GP framework, allowing the algorithm to run in O(nm2) instead of
O(n3), where n is the number of samples in the data and m is the
number of basis functions, (ii) a ‘cost sensitive learning’ framework,
where the algorithm can be tailored for the precise science goal,3

and (iii) properly accounting for uncertainty contributions from both
variance in the data as well as uncertainty from lack of data in a
given part of parameter space (by marginalizing over all the GPs that
could have produced the data). GPz was further tested and developed
in Gomes et al. (2018), who measured the improvement that could
be achieved by also including near-infrared bands and angular sizes,
as well as introducing a post-processing calibration that reduced
the bias (the difference between the true/spectroscopic redshift, and
the photo-z estimate, zspec − zphot). Duncan et al. (2018) introduced
combining GPz with template-based photometric redshifts using a
hierarchical Bayesian model that gave better photometric redshifts
than ML or template fitting alone could have produced (a hybrid
approach was also considered in Desprez et al., in preparation).
GPz is also beginning to be used in other astronomy and physics
applications e.g. building surrogate models for and quantifying the
uncertainty on inertial confinement fusion experiments (Hatfield et al.
2020) and orbital dynamics (Peng & Bai 2019).

Two key deficiencies of GPz as applied to photo-z’s are: (i)
GPs ordinarily only produce Gaussian uncertainties, whereas the
true probability distribution of a galaxy’s redshift based on its
photometry is typically not Gaussian,4 and (ii) typically the target
galaxy population has a different colour distribution than the colour
distribution of the training set, which introduces biases (a problem
common to all ML-based approaches). In this paper, we attempt to
account for and mitigate against these difficulties.

Unless otherwise stated, we use the settings in Table 1 (see Al-
mosallam et al. 2016a, b for precise definitions and interpretations).

2.2 GMMs

Mixture Models are probabilistic models for modelling data with
subpopulations, where the observed data does not identify which
population a datum is from. An everyday example of a mixture
model could be length of publication measured in number of words;
the distribution would have separate populations of letters, journal
articles, and books with very different word length, but typically
it would not be possible to separate out short articles from long
letters etc. Common astronomical examples include identifying star
clusters, identifying populations in surveys, deciding how many
classes of a source exist etc. (see Kuhn & Feigelson 2017), and they
have also been used for more complex tasks like the identification
of strong gravitational lenses (e.g. Cheng et al. 2020). GMMs are
a specific type of mixture where each mixture has a Gaussian
distribution. GMMs can be viewed as an example of unsupervised
ML, in that the algorithm is not told in advance what or how many
populations there should be or given any examples of members of

3For example, if one is only interested in a science case that requires getting
accurate redshifts for z < 1 galaxies, and such science is insensitive to poor
predictions at higher redshifts. In this case, the learning cost function would
include no penalty for getting z > 1 galaxy redshifts wrong.
4GPs can produce more complex pdfs, but this requires use of a ‘warped’ GP,
a mixture of GPs, or a ‘mixture density’ GP.
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Table 1. Parameter setting of GPz.

Parameter Value Description

m 500 Number of basis functions; complexity of GP, in general higher m is more accurate but longer run time
maxIter 500 Maximum number of iterations
maxAttempts 50 Maximum iterations to attempt if there is no progress on the validation set
Method GPVC Bespoke covariances on each basis function
Normalize True Pre-process the input by subtracting the means and dividing by the standard deviations
Joint True Jointly learn a prior linear mean-function

populations. See also D’Isanto & Polsterer (2018), who use a mixture
density network to make a GMM of the galaxy redshift posterior.

More formally, we would like to maximize the likelihood distri-
bution:

p(X) = �n
i=1p(xi), (1)

where X = {xi}n
i is the set of samples in the data set, xi ∈ Rd is the

i-th sample in the data set, d is the dimensionality of the input, and
p(x) is some multivariate probability density function. Assuming a
multivariate normal Gaussian distribution for p(x), the parameters
of the distribution that would maximize the likelihood of observing
the data, the mean and covariance, can be computed analytically.
However, as discussed previously most distributions found in the
real world are more complex than a simple unimodal normal
distribution. We can model a more complex distribution by assuming
that p(x) is the marginal distribution over some latent variable j as
follows:

p(xi) =
k∑

j=1

p(xi |j )p(j ). (2)

In effect, we have modelled the probability density function p(x)
as a weightinged sum of Gaussian distributions, i.e. a GMM. An
important property of GMMs is that they can, for some number of
mixtures k, model any non-standard probability distribution. The goal
now is to find the k means, covariances and mixture weightings that
would maximize the probability of observing the data. This typically
cannot be solved analytically, and normally requires optimization
techniques. The expectation-maximization (EM) algorithm is an
iterative method that can be used to search for such parameters.
However, the EM algorithm is prone to overfitting, especially as the
number of mixtures is increased (at the limit when k = n, the means
will correspond to the data locations and covariances will be close to
zero). To overcome this, we use a Variational Bayes (VB, see Jordan
et al. 1999; Jaakkola & Jordan 2000) approach that puts priors on
the means, covariances, and mixture weightings to always find the
optimal set of mixtures; even if k is set too high, it will automatically
prune the extra mixtures by setting their mixture weightings to
zeros.

2.3 Data

In a realistic scenario, all galaxies with spectroscopic redshifts would
be the training set, and all sources without would be the target test
set. Coping with the training and test data sets having different
colour–magnitude distributions is a major challenge for ML-based
photo-z calculations, e.g. see Beck et al. (2017). Unfortunately,
however, the nature of the problem is that it is difficult/impossible
to measure the performance on the galaxies without spec-zs. To
overcome this problem, and to test how our method performs
when the test and training data have different distributions, we

construct training and test data sets for which both have spectroscopic
redshifts.5

In order to ensure a rigorous test of the methods, we consider two
separate deep field data sets that have similar photometric coverage.
Our training data is from the COSMOS field, and the test data from
the XMM–Newton large-scale structure (XMM-LSS) field (see Fig. 1).
We use the catalogues constructed in Bowler et al. (2020) and Adams
et al. (2020), which, in order to ensure consistency, used identical
procedures to extract the photometry across the two fields. Sources
were selected in the Ks band, and forced photometry was performed
on all the other bands. We use 2 arcsec diameter circular apertures,
which had an aperture correction applied by a model generated with
PSFEX (Bertin 2011) for each band.

For this paper, we use the photometry in 10 filters; u (CLAUDS,
CFHT, for both COSMOS and XMM-LSS) (Sawicki et al. 2019),
GRIZY (HSC–SSP, for both COSMOS and XMM-LSS) (Aihara et al.
2018), and YJHKs (VIDEO–VISTA for XMM-LSS) (Jarvis et al.
2013), and (UltraVISTA for COSMOS) (McCracken et al. 2012;
Laigle et al. 2016), but to a range of different depths, meaning both the
colour space probed and the uncertainty on the photometry are quite
inhomogeneous – even though the photometry extraction was done
in a very homogeneous manner. The end result is two catalogues that
span colour–magnitude space very differently, but with photometry
very consistent for comparisons between individual galaxies in the
two fields.

Similarly, the spectroscopic redshifts come from a range of
sources, curated in the same way as in Adams et al. (2020).6 The
spec-zs are taken from the VVDS (Le Fèvre et al. 2013), VANDELS
(McLure et al. 2018; Pentericci et al. 2018), zCOSMOS (Lilly et al.
2009), SDSS DR12 (Alam et al. 2015), 3D-HST (Skelton et al. 2014;
Momcheva et al. 2016), Primus (Coil et al. 2011; Cool et al. 2013),
DEIMOS 10K (Hasinger et al. 2018), and FMOS (Silverman et al.
2015) surveys. We would note that ML-based photo-z methods are
reliant on the accuracy of the spectroscopic redshifts in the training
sample. If the spec-zs used in the training process are inaccurate
then ML methods will simply reproduce the incorrect spec-z values.
For this reason, we only used the most secure spec-zs that have flags
indicating high quality (confidence of ≥ 95 per cent). Where a source
had a secure spec-z available from more than one survey, the mean of
the secure redshifts was used. Furthermore, we found that the Primus
spec-zs were often inconsistent with the higher resolution spec-zs and
template-based photo-z’s at z > 1. For this reason, we only use the
z < 1 Primus spec-zs. The resulting combination of spectral and

5This training data is then split 50–50 into what is described as training and
validation in Almosallam et al. (2016b), Almosallam et al. (2016a), but we
shall refer to all the data used in the training process as the training set here.
6Which itself was constructed largely similarly to the Catalog of Spectro-
scopic Redshifts from the Hyper Suprime-Cam Subaru Strategic Program
Public Data Release, https://hsc-release.mtk.nao.ac.jp/doc/index.php/dr1 s
pecz/.
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Figure 1. Field geometry of galaxies used in this analysis (each of which has a spectroscopic redshift). The ‘COSMOS’ galaxies are used for training, and the
‘XMM-LSS’ galaxies for testing. The unusual field geometries result from the complex ways in which the various photometric and spectroscopic surveys have
overlapped and intersected.

Figure 2. The spectroscopic redshift distributions of the galaxies in the two
samples used in this study, the ‘COSMOS’/training data, and the ‘XMM-
LSS’/testing data.

photometric data used here is thus similar to that presented in Adams
et al. (2020) and Bowler et al. (2020).

The XMM-LSS data set constructed includes data from the
VANDELS survey, with redshifts in the z = 1 − 4 range, which
are underrepresented in the COSMOS data for z > 2.5. This means
(i) our training and test data have different colour distributions, and
(ii) our test data has a high-redshift tail not present in the training
data (see Fig. 2). There are 29 663 galaxies in the COSMOS training
set and 24 534 galaxies in the XMM-LSS testing set.

In terms of stellar contamination, as we have tried to ensure
that we are only using ‘secure’ redshifts, the vast majority of our
sources should be extragalactic. More generally for photo-z’s, stars

can typically be removed based on a morphological cut (e.g. remove
point sources, which will also remove quasars) or with a colour-cut.
Conversely, our sample likely has a moderate number of AGN –
both in terms of sources that are dominated by AGN light as well as
Seyfert-like galaxies, whose photometry has large contributions from
both galaxy starlight and a central nucleus. X-ray data is available
in both the COSMOS field (Marchesi et al. 2016) and the XMM-
LSS field (Chen et al. 2018), and could in principle be used to
identify AGN (considered for some of the sources in this sample in
Adams et al. 2020). We chose however not to use the X-ray data to
remove AGN in this work on the rationale that ML methods should in
principle be agnostic with regards to whether the source is a galaxy or
an AGN – as long as there are similar sources with secure redshifts
in the training set, it should be possible to give sources accurate
ML-based photo-z’s.7 This conversely is not the case for template-
based methods; if templates with sufficient AGN contribution are not
included in the fitting process then in general, Seyfert-like galaxies
can receive inaccurate redshifts (a point discussed in greater detail
in Salvato et al. 2019). The converse strategy of separating a sample
into AGN and non-AGN populations in advance is studied in Norris
et al. (2019), who measure photo-z performance when X-ray detected
sources are included or not included in their training data. We chose
not to study AGN versus non-AGN performance separately in this
work in order to focus on how to improve global performance,
although making such divisions may be a useful method for some
science goals.

The way the data sets are constructed from a range of photometric
and spectroscopic sources means that they do not have single well-
defined depths, and in general have different colour and redshift
distributions. For approximate reference however, the 95th percentile
faintest training (testing) sources have AB magnitudes u = 26.9

7There are in practice a few further complications with AGN e.g. temporal
variability.
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5502 P. W. Hatfield et al.

Figure 3. The (g-i)-(J-Ks) plane for the training (top subplot) and test (middle
subplot) data. Ellipses show the identified mixtures (projected into 2D), with
black marks showing the mixture centres. The lower plot shows the wi values
for the training data (essentially the ratio of the data density of the top and
middle plots). A stellar locus is visible (cf. fig. 6a in Baldry et al. 2010).

(=26.9), G = 25.6 (=25.5), R = 24.6 (=24.4), I = 24.1 (=23.9),
Z = 23.8 (=23.6), YHSC = 23.6 (=23.6), YVIDEO = 23.6 (=23.6), J =
23.3 (=23.5), H = 23.2 (=23.4), and Ks = 23.1 (=23.3). Note that
these are representative depths of spectroscopic data, not the imaging
depths. No cosmology needs to be assumed in this work for any of
the photometric or redshift calculations.

3 ME T H O D S

3.1 Generalised cost-sensitive learning

A key property of GPz is the ability to tailor the weighting for
different science applications. Almosallam et al. (2016b) presented
three different weightings, ‘Normal’, ‘Normalized’, and ‘Balanced’.
Normal weighting weightings each galaxy the same (the ‘null’
option), Normalized weightings each galaxy in the training set
by 1/(1 + zspec), and Balanced weightings each galaxy inversely
proportional to the number of galaxies with that redshift in the

Figure 4. Distribution of wi values found (note that wi is capped at 20).

training set (e.g. galaxies with underrepresented redshifts are
upweighted).

Here, we add to this generalised cost-sensitive learning (GCSL)
weighting. We model the training set colour–magnitude space8 with
a GMM to find ptrain(x), and do the same for the colour–magnitude
space of the test set of data to find ptest(x), where x is the colour–
magnitude photometry space of the data. This is essentially using the
GMM to model the probability distribution in an unbiased way. We
then set the weighting for GPz as:

wi = ptest(xi)

ptrain(xi)
. (3)

This potentially improves over balanced weighting (i) because
it weightings galaxies in colour space rather than redshift space
(different parts of colour space correspond to the same redshift),
and (ii) it accounts for the colour–magnitude distribution of both
the training set and the test set, rather than just the training set (it
essentially generalises the approach used in Lima et al. 2008 and
Duncan et al. 2018). A small number of extreme outlier galaxies end
up with extremely high weightings, which were found to distort the
entire training process, so we cap the maximum weighting at 20,
and instead of equation 3, we in practice use wi = ptest(xi )+ε

ptrain(xi )+ε
with

ε = 0.01 to avoid extreme ratios at parts of parameter space with
low data densities. Fig. 3 shows (a 2D projection of) the different
colour spaces of the training and test data sets, the mixtures that were
identified, and the corresponding wi values. Fig. 4 shows a histogram
of resulting wi values.

If the test set and the training set have the same colour distribution,
GCSL reduces to ‘Normal’ weighting as ptrain and ptest will be
identical and the wi will be equal to one. In this scenario, for rare parts
of colour–magnitude space, the performance will be low, but that is
unimportant because a proportionately small number of galaxies
in the test set will have that colour. ‘Balanced’ is near-equivalent9

810D, one magnitude and 9 colours.
9Only near-equivalent, as in Almosallam et al. (2016b), the weighting is based
on redshift rather than colour.
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to when the test set has a uniform distribution in colour space, or
equivalently desiring a homogeneous performance in colour space.
‘Normalised’ makes the science judgement that we value percentage
error on 1 + z rather than absolute error on 1 + z, as opposed to
weighting on sample distributions. One could in principle weight-
ing by ‘Normalised-GCSL’ with wNormalised−GCSL

i = wGCSL
i /(1 + zi),

although we found in practice this made relatively little difference.
From Fig. 3 it can be seen that there is some stellar contamination

in the sample (the population at J − Ks ≈ −0.2, see fig. 6 a in
Baldry et al. 2010), despite them nominally being spectroscopically
confirmed galaxies (as is likely to be the case at least to some degree
in any putative Euclid and Rubin data set). However, it can be seen
that the GMMs do identify the stars as being a separate component
in colour–colour space (and down-weighting them, as there do not
appear to be as many in the test spec-z sample), so future work
could include a probability of each mixture to correspond to a stellar
component.

3.2 Weighted validation

ML algorithms generally divide the labelled data into training and
validation data sets when training the algorithm. The algorithm
typically fits parameters to the training data, measures how well
it does on the validation data, and then updates the complexity of the
model (if over/under fitting) appropriately based on this. Since we
are ultimately trying to predict the test data, making the validation
data look more like the test data might help the model better tune
itself. To do this, we take each galaxy with a spectroscopic redshift
in the COSMOS data set and probabilistically select it to be either
training or validation according to:

Ptrain = 1

1 + wi

(4)

and

Pvalid = wi

1 + wi

, (5)

where Ptrain is the probability of the galaxy being assigned to the
training data set, Pvalid is the probability of the galaxy being assigned
to the validation data set, and wi is the weighting from equation 3.
Weighted validation is similar in some regards to GCSL but may
potentially cope slightly better with parts of parameter space with
low data density.

3.3 Resampling

As already mentioned, GP-based ML methods, including GPz, by
definition only give Gaussian uncertainties. This is typically, not
realistic for photometric redshifts. To generate non-Gaussian ML
posteriors with GPz, we trial a resampling method, where GPz is
run a large number of times on slightly perturbed copies of the data
to produce a large number of Gaussians, which are then summed
to produce a non-Gaussian pdf. This is similar to the photometry
perturbations of METAPHOR (Cavuoti et al. 2017), and the Monte
Carlo approach of FRANKEN-Z (Speagle et al., in preparation).

The resampling method consists of the following steps:

(i) for each galaxy in the training and test sets, based on the
uncertainty on each magnitude, resample a new magnitude value
for each band;

(ii) train GPz on this resampled set of training data;
(iii) produce Gaussian pdfs for the resampled test data;
(iv) repeat steps 1–3 s times; and,

(v) average the s pdfs produced to obtain the final pdf.

This procedure lets us probe all the variations in the data. The hope
is that for galaxies near ‘cliffs’, that are assigned one redshift with
a very small uncertainty, but are very close in colour–magnitude
space to galaxies that assigned very different redshifts also with
small uncertainty, that the ‘cliff’ is repositioned slightly each time
and the galaxies get more realistic pdfs. This approach can be
thought of as a numerical method for GPz with noisy input. GPz
conventionally accounts for noisy input, but still produces a single
Gaussian. This approach approximates, at the limit of large ‘s’, a
multimodal Gaussian for a ‘noisy’ input of variance equal to the
perturbation variance. Of the methods suggested in this text, this is
by far the most computationally expensive, as it increases the runtime
by a factor of s. However, because of the sparse framework used, GPz
runs very fast and it remains practical to use s ∼ 100 on a laptop (as
used in this analysis), and would be viable to use a much higher s on
a cluster as each ‘run’ of GPz can be parallelized.

3.4 Exploiting the population structure

Galaxies naturally fall into different populations. We can use the
GMM to find natural galaxy populations, and assign probabilities
of being in each population. Given a GMM, and for each galaxy
a discrete probability density function for being in each of the
populations, there are two natural ways to couple this to an ML
algorithm, which we discuss below.

In the basic application of GPz, training the algorithm is O(nm2)
in number of samples n and in number of basis functions m used
to represent the mapping from photometry to redshift (in general a
higher m will give better results, but take longer to train). Here, we
propose using the GMM to split colour space into k regions, and then
running GPz with m/k basis functions in each region (we call this
‘GMM-Divide’). This typically will reduce the run time by a factor of
∼k – each region will run ∼k2 times faster, but k regions must be run.
Regions are defined by which Mixture has the highest probability
for that point in colour–magnitude space (a galaxy is in the region of
the population it is most likely to be in). It is technically possible for
the region for some Mixtures to be the empty set, e.g. tiny Gaussian
within a broader one with a much larger amplitude. Regions are thus
completely algorithmically determined by the GMM, with no human
intervention; see Fig. 3. We define regions of the colour–magnitude
distribution of the test set, and separate both the training and test set
based on that region division.10 There are many slight variations on
exactly how the GMM algorithm can find populations; we found that
letting it select in a magnitude and colour space (see Fig. 3) gave
the best results, although precise implementation does not appear
to make a large difference. The approach of splitting up parameter
space into multiple regions has some similarities to the method of
Masters et al. (2015), who use self-organizing maps (SOMs) rather
than GMM as the unsupervised learning model used to divide up
colour–magnitude space. There is also some overlap to the approach
of separating AGN and non-AGN in advance, described in Norris
et al. (2019); if X-ray data is available for the training process,
then separating based on whether or not a source is X-ray detected
is essentially dividing the sample into two populations based on
a flux cut. The GMM here attempts to make such divisions in an
unsupervised manner.

10Similar results are achieved when defining the regions based on the training
set.
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The other natural approach, which we investigated, would be to
let galaxies be in multiple populations probabilistically, e.g. for each
population, we train GPz on the entire training set with weightings
proportional to how likely they were to have been drawn from that
population i.e. wi = P (galaxy i in population h). We then calculate
a redshift pdf for each galaxy in the training set for each population.
These are then summed in proportion to the probability that each
galaxy in the test set was in each population (e.g. if there was a
75 per cent probability, the galaxy was drawn from population 1, and
a 25 per cent chance it was drawn from population 2, the Gaussians
from GPz run for population 1 and population 2 are summed with a
3:1 weighting). However, we found that the vast majority of galaxies
were in a given population with probability near 1, and that this
approach did not typically give better predictions.

3.5 Predicting log(z)

With the exception of Andromeda and other bodies in the Local
Group, all galaxies have a positive redshift. ML-based redshift
predictions can sometimes have non-trivial fractions of the resulting
pdf be negative. One way of coping with this is to effectively set
a strong prior that redshift has to be non-negative (essentially, cut
off the negative part of the pdf). This unfortunately has the result
of introducing a bias in the predictions for low-redshift galaxies
(because this approach means you can only overestimate, never
underestimate). We test the alternative of trying to predict log(z),
which now takes all values, rather than z (considered in Section 3.3
of Almosallam 2017). Note that if � = log(z), E(z) �= exp(E(�));
Almosallam (2017) shows E(z) = exp(E(�) + 1

2 V(�))) and V(z) =
(exp(V(�)) − 1) × (E(z))2.

This problem is to some degree similar to the issue of treatment of
negative fluxes; fluctuations in the noise can lead to galaxies being
assigned negative fluxes through the data reduction process (although
hopefully, with uncertainties that make the measurements consistent
with zero flux). When we train our photometric redshift model, we
use log-fluxes, i.e. implicitly assuming uncertainties on fluxes are
Gaussian in log-space. For negative flux values, we resample from a
Gaussian centred on the negative value, with standard deviation the
associated error, until a positive value is found. This obviously gives
a slight bias for the faintest galaxies, however, for these sources
the uncertainty on the flux is high and as the uncertainty is used
within GPz, it has negligible effect. An alternative way to deal with
negative fluxes is to use luptitudes (Lupton et al. 1999), as used
with GPz in Desprez et al. (in preparation). Fluxes typically have
Gaussian uncertainty in linear space near the detection threshold, but
Gaussian uncertainty in log-space for brighter sources. The luptitude
transformation essentially transforms the flux in such a way as
to smoothly transition between these two regimes. Unfortunately,
however, this requires consistency of detection threshold (which is
used in the transformation), and the detection thresholds are not
uniform between the different surveys we use to make up our two
samples, so a luptitude in one would not necessarily correspond to
the same luptitude in another. Both the methods employed here and
luptitudes are not completely accurate, however the effect on our
results is minimal.

4 R ESULTS

In this section, we trial the methods discussed in Section 3 on the data
described in Section 2.3. We calculate photometric redshifts using
the following methods:

(i) Base performance, ‘Normal’ weighting
(ii) ‘Generalised CSL’ weighting (Section 3.1)
(iii) Weighted validation (Section 3.2)
(iv) Resampled base performance as per Section 3.3 with s = 100
(v) GMM-Divide (Section 3.4)
(vi) Modelling log(z) (Section 3.5)
(vii) ‘All’ - Weighted Validation’, GMM-Divide and Resampling

done simultaneously 11

Fig. 5 shows spec-z versus photo-z for these methods, with
varying performance. We also show for reference results if only
the 70 per cent of data with lowest predicted uncertainty from ‘All’
is used (‘Best’).

4.1 Metrics

Figs 6, 7, and 8 compare the performance of our methods12 as
measured by the root mean squared error (RMSE), bias (zspec −
zphot), and fraction of sources within 15 per cent of the true value
(FR15), see table 1 in Gomes et al. (2018). These quantities are
expressed as a function of ‘fraction of the data’ (the data is divided
into bins of ‘error bar size’, so ten per cent corresponds to a bin of the
best tenth of galaxies in terms of uncertainty size etc.). For RMSE,
we also show the data as a function of spectroscopic redshift.

RMSE is approximately 0.05 for the data with the smallest
uncertainties, and increases to about 0.25 for the data with the largest
uncertainties. As a function of (spectroscopic) redshift, we find the
RMSE ≈0.2 at z ∼ 0.75, and ≈3 at high redshift. As a function
of Ks-band magnitude, the RMSE is between 0 and 0.5 for most
magnitudes, but rises rapidly for Ks > 23 and Ks < 17 galaxies,
where there is less training data.13 FR15 varies from essentially
100 per cent for the data with the smallest uncertainties, to around
85 per cent for the data with the largest uncertainties, dropping off
sharply for the final 30 per cent of the data, as one would expect.
Bias is less than 0.02 for most of the data, apart from the 20 per cent
with the largest uncertainties. The different methods gave moderate
variability; in particular ‘Resampling’ improved RMSE and FR15,
but increased the bias. ‘Weighted validation’ was the only method to
largely improve the bias.

Fig. 9 shows (i) the bias on the photo-z’s as a function of both spec-
z, and photo-z, and (ii) the relative improvement in bias, compared
with ‘Normal’ weighting. It can be seen that the bias is between
−0.2 and +0.2 for 0 < z < 1, but steadily increases for higher
redshifts. The redshifts are essentially biased towards where most
of the data is, which gives rise to the redshift dependence (it is also
essentially impossible to underestimate the redshifts of very low-
redshift sources because z > 0). Whether bias as a function of spec-z
or photo-z is more important depends on science goal. For a real
science problem, only the photo-z’s of the test data will be available,
but bias as a function of spec-z can also be relevant depending on
whether false-positives or false-negatives are more relevant for a
high-redshift science goal etc.

It can be seen in Fig. 9 that ‘Divide’ reduces the bias at higher
redshifts (which is inherited by ‘All’). ‘Log’ slightly improved the
bias at the highest redshifts, and ‘Resample’ impaired the bias (as

11There are a large number of ways that all different approaches could be
combined; this method we found was the most logical and highest performing.
12Comparing the mode of the photo-z pdf to the true spectroscopic redshift
where appropriate.
13We considered RMSE as a function of Ks because that was the band that
detections were made in.
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Photo-z’s and Gaussian mixed models 5505

Figure 5. Spectroscopic redshift versus photometric redshift for the Normal implementation, GCSL, GMM-Divide, and Weighing Validation methods (top two
rows, going left to right), and the resampling, log, ‘All’ and ‘Best’ methods (bottom two rows, going left to right). The first and third rows are coloured by the
predicted uncertainty, the second and fourth by the data density.

a function of photo-z), but largely the methods apart from ‘Divide’
and ‘All’ didn’t give any major improvements.

4.2 Quality of probability distributions

Probability integral transform (PIT) plots can be used to compare
how well calibrated these pdfs are (D’Isanto & Polsterer 2018).
The plot essentially shows a histogram of cumulative distribution
function values at the spectroscopic redshift (e.g. for each galaxy,
calculate what fraction of the pdf is less than the true value and plot
a histogram of these values). Fig. 10 shows the PIT plot for all z >

1 test data, for both ‘Normal’ and ‘All’. The asymmetric ‘U’ shapes
show that the pdfs are slightly overnarrow and biased – but the fact
that the ‘All’ curve is closer to a flat line (which would correspond
an unbiased pdf) shows that the quality of the pdfs has indeed been
improved at high redshift. For z < 1, the PIT plots for ‘Normal’ and
‘All’ are essentially identical.

4.3 Population redshift distribution

Finally, we plot the summed probability distributions14 for both
‘Normal’ and ‘All’ to reconstruct estimates of redshift distributions
for the test data in Fig. 11. Both ‘Normal’ and ‘All’ get the lower
redshift ‘hump’ correct, but both struggle to identify the higher
redshift hump. This is not surprising, given the training data, but
it does show that using ‘All’ does manage to ∼triple the estimated
number of high redshift galaxies, even if this estimate is still below
the true number.

5 D ISCUSSION

Our results show that it is possible to obtain significant improvements
to the performance of GPz with comparatively little input (and no

14More sophisticated methods for estimating the sample redshift distribution
do exist, but we do not consider here, e.g. Leistedt et al. (2016).
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Figure 6. RMSE on on the photometric redshifts, as a function of (i)
percentile of the data (top plot, zero with the smallest uncertainties and
100 the largest), (ii) spectroscopic redshift (centre plot), and (iii) Ks band
magnitude (bottom plot).

extra data), taking into account the differences in colour–magnitude
distribution of the training and test data. Although we have discussed
in the context of GPz, these methods could be easily extended to
any other ML photo-z code. In particular, GMM-Divide is easily
implemented and gives large improvements, and may be particularly
valuable for Euclid and Rubin, where there will be billions of
sources, and colour–magnitude space could be profitably split up
into hundreds of sections, each still containing ∼105–107 galaxies.
The methods described here could also be combined with the pdf
post-processing method described in Gomes et al. (2018).

Improvements at higher redshifts seem to largely come from
‘Divide’ (modelling different parts of colour–magnitude space sepa-

Figure 7. FR15 on on the photometric redshifts, as a function of percentile
of the data (zero with the smallest uncertainties, 100 the largest).

Figure 8. Bias on on the photometric redshifts, as a function of percentile
of the data (zero with the smallest uncertainties, 100 the largest).

rately based on a GMM). This is likely because the ‘Divide’ method
identifies a population that corresponds to higher redshift galaxies.
Because each population gets the same share of basis functions, this
population gets more basis functions than it normally would in the
straightforward implementation of GPz, and can be modelled more
accurately. The lower-redshift sources get fewer basis functions than
they otherwise would, but still get high performance, as they were
only getting a large number of basis functions as it was where the
bulk of the data was. An interesting comparison for future analyses
where X-ray and/or radio data was available might be to compare
the merits and demerits of unsupervised divisions like that discussed
in this work, versus cuts explicitly designed to separate AGN and
non-AGN.

Resample most improved the RMSE and FR15, but adversely
affects the bias. Weight Validation was the best at improving bias.
Using ‘Divide’, ‘Resample’, and ‘Weight Validation’ together (‘All’),
thus seemed the best way to improve both bias, scatter, and behaviour
across all redshifts, and this is borne out by the ‘All’ results for Fig. 9.
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Photo-z’s and Gaussian mixed models 5507

Figure 9. Bias on photometric redshift estimation (left column), and improvement in bias (right column) compared with ‘Normal’; 0 per cent is no change in
bias and 100 per cent is complete removal of bias. Top row shows the results as a function of spectroscopic redshift, bottom row shows as a function of predicted
photometric redshift.

Figure 10. PIT plot for all the test data for ‘Normal’ and ‘All’ methods for
photometric redshifts z > 1. Probability distributions are perfectly calibrated
if they lie on the horizontal dashed line.

Figure 11. The true underlying redshift distribution (black dashed line), and
the stacked pdfs from the (i) ‘Normal’ (full blue line) and (ii) ‘All’ (dotted
magenta line) methods. It can be seen that ‘All’ better captures the high
redshift distribution.

MNRAS 498, 5498–5510 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/5498/5904089 by U
niversity of W

estern C
ape user on 10 February 2021
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Figure 12. Comparison of ML and template methods. Top-left panel: Our ‘Normal’ ML predictions. Top-right panel: Our ‘All’ ML predictions. Bottom-left
panel: The template-based predictions of Adams et al. (2020). Bottom-right panel: The ‘Combined’ predictions that incorporate both the ML and the template-
based methods. For the plots in the top row, blue indicates galaxies in the interpolative regions of colour–magnitude space, and red those in the extrapolative
regions.

Modelling log(z) successfully avoids negative redshifts, but typi-
cally led to poorer results. It also to some degree pushes the issues
at z = 0 to z = ∞; galaxies up-scattered to high log(z) end up
with predicted redshifts in the hundreds. If choosing to keep with
modelling z rather than log(z) it, as discussed, can be tempting to
simply ‘cut off’ the negative probability (e.g. declare the final pdf for
the galaxy’s redshift to be a Gaussian multiplied by a step-function).
This can be an acceptable solution depending on science goals, but as
discussed, it does have the unfortunate feature of biasing results near
z = 0, e.g. making that cut forces the redshifts to be overestimated.
This can be overcome if one requires the whole redshift distribution;
some galaxies being assigned negative redshifts can be accepted, and
then accounted for when finding the redshift probability distribution
for the whole population e.g. with a hierarchical Bayesian model as
per FRANKEN-Z (Speagle et al., in preparation).

Fig. 10 suggests that ‘All’ improves the calibration of the redshift
pdfs for z > 1. As noted, however the asymmetric ‘U’ shapes show
that the pdfs are generally slightly too narrow. Having accurate
pdfs (as opposed to simply point estimates) is essential for many
applications, including luminosity functions e.g. López-Sanjuan et al.

(2017). More generally, at high redshift it is sometimes found that
template-fitting methods can underestimate uncertainty (Dahlen et al.
2013; Salvato et al. 2019),15 with ML methods usually producing
more realistic pdfs (e.g. Brescia et al. 2019).

5.1 Comparison to template-based methods

The main focus of this paper is to identify how best to augment
ML-based photo-z’s, but it is none the less instructive to see how
our ML-based predictions compare to template-based methods. In
Fig. 12, we show how our ‘Normal’ and ‘All’ photo-z’s compare
to the template-based photo-z’s calculated in Adams et al. (2020)
using LEPHARE (Arnouts et al. 1999; Ilbert et al. 2006); it can be
seen that the ML and the template-based methods each out-perform
the other for different galaxies. In particular, it can be seen that
typically the template-based method is better when GPz is in the
extrapolative regime (i.e. where there is little or no training data).

15Although many works now mitigate against this, e.g. Buchner et al. (2015).
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Photo-z’s and Gaussian mixed models 5509

Figure 13. Absolute bias as a function of photometric redshift for (i) our
‘All’ ML photo-z’s, (ii) the Adams et al. (2020) template-based photo-z’s,
and (iii) the ‘Combined’ values.

The variance in GPz has three components; ν (uncertainty from
lack of data), β−1

� (uncertainty from output noise, e.g. galaxies with
different redshifts for the same magnitudes), and γ (uncertainty from
input noise, e.g. uncertainty on the magnitudes). The extrapolative
uncertainty ν is typically underestimated (furthermore the transition
is smooth with no clear boundary), so we define predictions to be
extrapolative if ν > 0.1 × (β−1

� + γ ), see Hatfield et al. (2020). This
classification can be used to construct a ‘Combined’ photo-z estimate
by using the GPz ‘All’ prediction if GPz is in the interpolative
regime, and the LEPHARE photo-z if GPz is in the extrapolative
regime. In Fig. 13, we show the bias of the ‘Combined’ method
compared with the ML and template-based methods, demonstrating
that the ‘Combined’ approach as expected outperforms the individual
approaches. For the data sets used here, 4 per cent of the test data is
in the extrapolative regime, although this fraction typically will vary
depending on training and test data used.

Euclid and Rubin photometry will cover similar wavelengths to
this study, over much larger areas (Rhodes et al. 2017). Future work
will test these methods on the Euclid and Rubin data challenges,
combining the pdfs constructed here with template-based pdfs using
both the interpolative/extrapolative method described here, and the
Hierarchical Bayesian Model approach of Duncan et al. (2018).

6 C O N C L U S I O N S

In this work, we began by constructing mock training and test data
sets from CFHT, VISTA, and HSC data, both with spectroscopic
redshifts, but with different colour and redshift distributions. This
mimics the real issue of spectroscopic training sets having a different
colour–magnitude distribution to the target distribution. We then
discuss and illustrate several ways of using a combination of GMMs
and the ML photometric redshift code GPz to obtain improved results
over the baseline performance: (i) weighting the data appropriately
for the colour–magnitude distribution differences, (ii) modelling
different populations separately, (iii) using resampling methods,
and (iv) making the validation data closer to the test data. We
compare various metrics from the different methods, finding that
respectable improvements in bias at higher redshifts (z � 1.5) can be
achieved with these relatively simple methods (and with no additional

training data). In particular, modelling different parts of colour–
magnitude space separately (‘Divide’), Resampling, and weighting
the validation data to look more like the test data seem to be the most
effective and practical methods. These methods worked well even
without removing AGN from the samples.

The key conclusions of this work are:

(i) Weighting schemes that take into account the different colour–
magnitude distributions of galaxies in the training and test sets can
reduce some of the bias in redshift estimation, particularly at high
redshift (without any additional data).

(ii) Using GMMs can help speed up photometric redshift calcula-
tion and give improved precision for ML-based photometric redshift
calculation.
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