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We show that the breaking of the conformal invariance of the electromagnetic Lagrangian, which is
required for inflationary magnetogenesis, arises naturally in the Poincaré gauge theory. We use the minimal
coupling prescription to introduce the electromagnetic gauge fields as well as non-Abelian gauge fields in
this theory. Due to the addition of non-Abelian gauge fields, we show that the solar constraints on this
model can be naturally evaded. We find that in the minimal version of this model the generated magnetic
field is too small to explain the observations. We discuss some generalizations of the gravitational
action, including the Starobinsky model and a model with conformal invariance. We show that such
generalizations naturally generate the kinetic energy terms required for magnetogenesis. We propose a
generalization of the minimal model by adding a potential term, which is allowed within the framework of
this model, and show that it leads to sufficiently large magnetic fields.
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I. INTRODUCTION

Magnetic fields are found in almost all bound structures,
such as galaxies, stars, star clusters, and even some planets
like Earth [1–3]. Recent observational evidence [4–7]
suggests that even cosmic voids contain magnetic fields
of order 10−16 Gwith correlation lengths of 1 Mpc or more.
The upper limit on the magnetic field on such scales is of
order 10−9 G [8]. Such large-scale correlation is hard to
explain using astrophysical processes. This is because one
would expect astrophysical processes to generate these
fields during the radiation-dominated phase, and the small
Hubble radius during this epoch cannot account for such
large-scale correlations. Even large-scale magnetic fields in
galaxies [9] and clusters of galaxies in the distant past are
not easy to explain. One possibility is that these fields are
actually a relic from the inflationary era [10–12]. This
explains why they are supposedly present in the voids. The
same mechanism also explains the origin of strong mag-
netic fields in bound structures by serving as the seed field
that was amplified via a dynamo mechanism [13] in these
structures.
There exist many models of inflationary magnetogenesis

in which the magnetic field is amplified many folds during
inflation [10,14–22]. All of these models break the con-
formal invariance of the electromagnetic Lagrangian,
which is required to amplify the vacuum fluctuations of
electromagnetic fields. In the model developed by Ratra
[14], the electromagnetic Lagrangian is coupled with the
inflaton field to break the conformal invariance. It turns out
that for some parameter values this model suffers from the
strong coupling or backreaction problem [23,24]. There

exist several proposals [25–27] to generate cosmic mag-
netic fields of the required strength without facing either of
these problems, if conformal invariance is broken during
inflation. However, there also exist additional constraints
from the cosmic microwave background which impose
further limits on the magnetic field that can be generated
[28–30].
Although there exist several proposals [10,15–22]

which break conformal invariance, these do not explain
the coupling between electromagnetic and scalar fields
assumed in the Ratra model [14]. So far, this coupling has
been put in by hand. The only exception is the string-
inspired model [16] which has some similarity to the Ratra
model. We propose that such a coupling naturally arises in
Poincaré gauge theory [31], when torsion—a dynamical
variable of the theory—is taken into account. It turns out
that for a specific choice of torsion, sourced by a scalar field
ϕ—referred to as a “tlaplon” in the literature [32]—one can
create a scenario where both inflation and magnetogenesis
is driven by the tlaplon itself. In this formalism a restricted
version of torsion is coupled directly to the electromagnetic
field in a gauge-invariant manner. It has been argued in the
literature [31,33,34] that an alternative procedure is to not
couple torsion to photons. As mentioned in Ref. [31], this
has the strange consequence that for the photon field the
spin tensor vanishes, whereas this would not be the case for
a massive vector field. This has been justified by the
argument that the photon is special since it is massless
[33,34]. However, this may lead to inconsistencies. A
particular problem that we discuss in this paper is the
implications of this procedure if the mass of the vector field
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is generated by the Higgs mechanism. In this case, we
would not couple the gauge field to torsion. However, the
gauge field becomes massive due to the Higgs mechanism
and this massive field would then not couple to torsion
either. This is inconsistent since a massive field with spin
must couple to torsion.
There also exists considerable literature [35–41] regard-

ing attempts to derive the coupling of the gauge fields to
torsion by dimensional reduction of a five-dimensional
theory using the Kaluza-Klein formalism. This has the
advantage of preserving both Poincaré gauge invariance
and electromagnetic gauge invariance in four dimensions,
and hence can settle the question of how the electromag-
netic field should be introduced in such a theory. In
particular, it was argued in Ref. [36] that under certain
conditions the formalism proposed in Ref. [32] can be
derived from the five-dimensional theory. Essentially,
Ref. [36] assumed a limited form of torsion in five
dimensions and expressed it in terms of a scalar field Ω.
This is analogous to the procedure used in Ref. [32] in four
dimensions. Furthermore, it was shown that the fieldΩ, and
hence the torsion potential ϕ, is related to the g55 compo-
nent of the metric. However, this was shown to be invalid in
Refs. [38,39] and hence this formalism does not provide
guidance of how to couple the electromagnetic field to
torsion. A more detailed analysis of the five-dimensional
theory was provided in Ref. [40]. In that paper, the authors
did not use any specific form of torsion and used the
anholonomic horizontal lift basis for reduction to four
dimensions. The authors found that the electromagnetic
field decouples from torsion. This is easily understood. In
Ref. [40] the authors used only one term in the gravitational
action, i.e., the five-dimensional analogue of the Ricci
scalar R̂, including the contribution due to torsion (Eq. 2.6
of Ref. [40]). This term does not generate any derivatives of
the torsion field. Hence, starting from the five-dimensional
action we do not expect any terms involving derivatives of
the electromagnetic field Aμ in the terms associated with
torsion. Since a term independent of derivatives of Aμ

cannot be gauge invariant, we do not expect such terms in
the action. Although this is the standard form of the action,
other terms, such as R̂2, can also included [42]. With these
terms we do, in general, find a coupling between torsion
and the electromagnetic field. Although this does not
provide a derivation of the coupling proposed in
Ref. [32], it does suggest that a coupling should exist.
The Hojman et al. [32] procedure may be regarded as an
effective simple framework to implement such a coupling.
The article is structured in the following manner. In

Sec. II, we discuss in brief the possibility of a primordial
origin of magnetic fields, Ratra’s model [14], and its
drawbacks. This is followed by a brief introduction to
the Poincaré gauge theory of gravity in Sec. III. It is found
that torsion (a dynamical variable in Poincaré gauge theory)
generically coupled to the electromagnetic field breaks

gauge invariance. But this can be avoided by choosing a
restricted form of torsion, as has been suggested in
Ref. [32]. This choice of torsion leads to some problems,
as has been pointed out in Ref. [43]. In later sections we see
how these and similar problems can be evaded. Finally, in
Sec. VI we see how magnetogenesis can be brought about
by assuming the restricted form.

II. PRIMORDIAL ORIGIN OF
MAGNETIC FIELDS

The basic idea is that the magnetic fields are a relic of
inflation. This means that the vacuum fluctuations of the
electromagnetic field get amplified during inflation and
subsequently become classical fluctuations in the later
phases of the evolution of the Universe. This inflationary
paradigm also accounts for the origin of classical density
perturbations [44]. However, it is known that the electro-
magnetic Lagrangian is conformally invariant, which is
tantamount to saying that the equations of motion for the
fields are not modified by curvature induced due to a metric
that is conformally related to the Minkowski metric. Since
the Friedmann-Robertson-Walker metric is conformally
related to the Minkowski metric, no amplification of
vacuum fluctuations can take place in this case. In fact,
due to spatial expansion, the energy density of the
electromagnetic field varies as a−4. Hence, one needs to
break the conformal invariance of electromagnetism if one
wants to bring about any amplification.
In Ref. [14] Ratra proposed a coupling of the form

ffiffiffiffiffiffi
−g

p
e2αϕFμνFμν ð2:1Þ

between the inflaton field (ϕ) and electromagnetic field Fμν

with α as a free parameter. He further showed that under
slow-roll inflation conditions, this causes amplification of
fields. However, it appears to pose some problems. For
slow-roll inflation, let us assume that eαϕ evolves as aβ. It
turns out that a sufficient amount of scale-invariant ampli-
fication is achieved for some values of β [25–27]. However,
in this case either the electronic charge becomes very large
at the beginning of inflation or the electric field grows too
fast and backreacts. Hence, we either end up facing the
strong coupling or backreaction problem if we demand
sufficient amplification for the magnetic field. A nice
description of both of these problems can be found in
Ref. [25]. In an alternate treatment of this problem,
however, it is possible to get sufficiently strong magnetic
fields with no backreaction [26,27]. In our analysis we shall
follow the formalism developed in these papers.

III. A BRIEF REVIEW OF POINCARÉ
GAUGE THEORY

The three fundamental interactions—weak, electromag-
netic, and strong—are described within the framework of
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relativistic quantum field theories on flat Minkowski
spacetime. These quantum fields reside in the spacetime
but do not couple to it [34]. Moreover, all of these theories
are gauge theories. Gravity seems to be different from these
in that (a) it is a classical theory and (b) it is based on the
deformation of spacetime itself. Upon quantization, one
faces the problem of nonrenormalizability [45,46]. It is
suggested that gauging, in addition to providing many other
features, might provide a renormalizable version of gravity
[47]. In addition to these reasons, it is natural to inquire
whether gravitation can also be based on local gauge
invariance [31,46]. Furthermore, it has been shown in
the singularity theorems of Hawking and Penrose that a
cosmology based on Riemannian geometry would force the
Universe to either fall into or come out of a singularity.
The simplest way of avoiding such consequences is to
assume non-Riemannian geometries [47,48]. Poincaré
gauge theory based on the local gauge invariance of the
Poincaré group provides one such paradigm.
Mathematically speaking, the Poincaré group is a semi-

direct product [49] of the spacetime translations and the
Lorentz group, i.e., Pð1; 3Þ≡ SOð1; 3Þ⋊Tð1; 3Þ [50].
When we gauge this group, we find that instead of one,
two gauge field multiplets are obtained. Historically,
Utiyama was the first to apply gauge principles to generate
gravitational interactions [51] by gauging the Lorentz
group. Later, Kibble gauged the whole Poincaré group
[31]. Here we must emphasize that different spacetime
geometries are obtained upon gauging different groups. For
example, if one considers only the translational group then
one obtains Weitzenböck geometry, a geometry with
torsion but no curvature [52]. The Poincaré gauge theory
also assumes the metricity condition:

∇μgρσ ¼ ∂μgρσ − Γτ
μρgτσ − Γτ

μσgρτ ¼ 0; ð3:1Þ

where the covariant derivative is taken with respect to the
affine connection Γα

βγ . We point out that there are more
general classes of theories known as metric affine theories
where even the metricity condition [i.e., Eq. (3.1)] is not
assumed. The reader is referred to Refs. [47,53] for more
details.
According to general relativity, Minkowskian spacetime

in the presence of matter becomes Riemannian. The
geometry of a manifold is encoded in the connection Γα

βγ
which in general can be written as [54]

Γα
βγ ¼ Γ

∘ α
βγ þ Kα

βγ; ð3:2Þ

where the quantity Kα
βγ is called the contortion and

Γ
∘ α
βγ ¼ Γ

∘ α
γβ is the usual Christoffel symbol. Furthermore,

the quantity

Tα
βγ ¼ Γα

βγ − Γα
γβ ð3:3Þ

is called the torsion, which is clearly antisymmetric
with respect to its last two indices. In addition to the

condition (3.1), we also assume ∇∘ μgρσ ¼ 0. This, together

with Γ
∘ α
βγ ¼ Γ

∘ α
γβ, allows us to solve for Γ

∘ α
βγ in terms of

the derivative of the metric tensor. Furthermore, using

∇∘ μgρσ ¼ 0 in Eq. (3.1) gives the symmetry property of the
contortion tensor

Kσμρ ¼ −Kρμσ; ð3:4Þ

and thus the contortion tensor is antisymmetric with respect
to its first and third indices. Next, using Eq. (3.2) in
Eq. (3.3), we get

Tα
βγ ¼ Kα

βγ − Kα
γβ: ð3:5Þ

Equation (3.5) [using the condition (3.4)] can be inverted
and contortion can be expressed in terms of torsion as
follows:

Kα
βγ ¼

1

2
ðTα

βγ þ Tβ
α
γ þ Tγ

α
βÞ: ð3:6Þ

In general relativity the connection is torsion free, but on
account of gauging the Poincaré group it becomes endowed
with torsion and the spacetime manifold becomes
Riemann-Cartan [50,52]. So if we consider a Lagrangian
proportional to the Ricci scalar, which can be written
as [55]

R ¼ R
∘ þ ½2∇ρK

ρσ
··σ þ KρανKαρν − Kρ

·ραKασ
··σ �; ð3:7Þ

then R gets a contribution from torsion as well. The
resulting theory is called Einstein-Cartan-Sciama-Kibble
theory [48]. This is a theory which approximately resem-
bles Einstein’s general relativity but also predicts additional
effects which arise due to torsion.

IV. MINIMAL COUPLING AND TORSION IN
POINCARÉ GAUGE THEORY

The effects of torsion are expected to be very small in the
weak-field limit. However, these might play a significant
role in the early Universe [56,57]. Introducing electromag-
netism and other gauge interactions in this framework turns
out to be difficult because they break gauge invariance. As a
remedy, a minimal coupling procedure has been prescribed
in Ref. [32]. This model, however, is ruled out by solar
observations [43]. We will see that, by coupling torsion
with non-Abelian gauge fields, this problem can be evaded.
We also find it fascinating that the model of Ref. [32] leads
to precisely the same form of interaction [i.e., Eq. (2.1)] that
was proposed by Ratra.
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A. Torsion and electromagnetism

In the presence of torsion, the electromagnetic gauge-
covariant derivative can be expressed as

∇μAν ¼ ∂μAν − Γα
μνAα

¼ ∂μAν − Γ
∘ α

μνAα − Kα
μνAα ¼ ∇∘ μAν − Kα

μνAα:

ð4:1Þ

Furthermore, using this, the electromagnetic field tensor
can be written as

Fμν ¼ ∇μAν −∇νAμ ¼ ∂μAν − ∂νAμ − Tα
μνAα: ð4:2Þ

Due to an extra term proportional to the torsion, electro-
magnetic gauge invariance is not preserved. It has been
suggested [32] that if we choose a specific form for the
torsion, and slightly modify the gauge transformation
conditions, we can restore gauge invariance and still have
a restricted version of torsion. We impose the following
form of torsion:

Tα
βγ ¼ δαγ∂βϕ − δαβ∂γϕ; ð4:3Þ

where ϕ is a scalar field. Using Eq. (4.3) in Eq. (3.6), the
contortion has the following form:

Kα
βγ ¼ gβγ∂αϕ − δαβ∂γϕ:

Using this expression in Eq. (3.7), the Ricci scalar in terms
of ϕ is found to be

R ¼ R
∘
− 6∂μϕ∂μϕþ 2ffiffiffiffiffiffi−gp ∂ρð

ffiffiffiffiffiffi
−g

p
Kρσ

··σÞ; ð4:4Þ

where R
∘
is the standard Ricci scalar computed using the

Christoffel connection Γ
∘ α

βγ . The gauge transformation gets
modified to

Aμ → Aμ þ eϕ∂με; ð4:5Þ

where ε is the transformation parameter. We see that we
obtain an extra contribution equal to eϕ which vanishes in
the absence of torsion. In this case, it can be easily checked
that the field tensor (4.2) and hence the Lagrangian remain
invariant.
The modified form of the gauge transformation can now

be extended to charged matter fields. Let ψ denote a
complex scalar field which transforms under a U(1) gauge
transformation as ψ → ψ 0 ¼ expðieεÞψ . The minimal cou-
pling prescription [32] leads to the covariant derivative
Dμψ ¼ ∂μψ − ie expð−ϕÞAμψ . Hence, we find that the
effective electromagnetic coupling in this case is e= expðϕÞ.

Using the modified form of torsion in the gravitational
Lagrangian, we obtain

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2

pl

16π
ðR∘ − 6∂ρϕ∂ρϕÞ

−
1

4
FμνFμν þ ðDμψÞ�Dμψ

�
; ð4:6Þ

where the effects of torsion have been explicitly displayed
in terms of the field ϕ, andMpl is the Planck mass. Here we
have performed an integration by parts and dropped a total
divergence. In order to relate this to the form given in
Eq. (2.1), we perform the transformation

Aμ ¼ Vμeϕ: ð4:7Þ

In terms of the field Vμ, the gauge transformation of
Eq. (4.5) becomes Vμ → Vμ þ ∂με and the field tensor
becomes

FμνðAÞ ¼ eϕFμνðVÞ: ð4:8Þ

The covariant derivative Dμψ ¼ ∂μψ − ieAμψ now takes
the standard form and the action can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2

pl

16π
ðR∘ − 6∂ρϕ∂ρϕÞ

−
1

4
e2ϕFμνFμν þ ðDμψÞ�Dμψ

�
: ð4:9Þ

Now, we can see the similarity with the Lagrangian in the
Ratra model [14] during inflation. It is clear that the
coupling term f2—which had to be put in by hand in
the Ratra model—automatically arises. We point out that
this term could be inserted into the coupling to matter fields
or directly as a coupling with the gauge kinetic term in the
Ratra model, also exactly in analogy with Eqs. (4.6)
and (4.9).
However, the Hojman et al. minimal prescription model

[32] [Eq. (4.9)] is in conflict with solar data [43]. As we
shall see in the next two subsections, this problem is evaded
since the minimal coupling procedure extended to non-
Abelian gauge fields naturally generates effective potential
terms for the field ϕ. Alternatively, we may go beyond the
minimal coupling prescription [32] by adding kinetic and
potential terms in the field ϕ while preserving Poincaré
gauge invariance.
Before we end this subsection we briefly discuss an

alternative scenario that has been proposed for handling
internal gauge symmetries in the case of Poincaré theory. It
has been argued in the literature that gauge fields associated
with internal symmetries, such as the photon field, should
not be coupled to torsion [33,34,58]. This is another way to
avoid the problem of the violation of gauge invariance
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associated with internal groups. However, a massive spin-1
field must necessarily couple to torsion. This presents a
paradox since a massive spin-1 field can also be generated
from an internal gauge symmetry by the Higgs mechanism.
For example, let us consider a U(1) gauge field coupled to a
charged scalar particle. Let us use the standard version of
the gauge-covariant derivative, ∇μAν ¼ ∂μAν, i.e., we do
not introduce the contortion tensor in this definition
following the prescription given in Ref. [34]. In contrast,
if we were to consider a massive spin-1 field we would need
to introduce the contortion term [58].
Now let us consider the coupling of the U(1) gauge field

with a charged scalar. The Lagrangian is

L ¼ 1

2
gμνðDμϕÞ�Dνϕ − V; ð4:10Þ

where Dμϕ ¼ ð∂μ − ieAμÞϕ is the U(1) gauge-covariant
derivative. We assume the Higgs mechanism, i.e., the
potential is such that the vacuum value of ϕ is not zero,
hϕi ¼ v. In this case we find that the gauge field Aμ

becomes massive. In the unitary gauge this field behaves
identically to a massive vector field. But the problem is that
it does not couple to the torsion tensor. Hence, it does not
behave as the usual massive spin-1 field. This is clearly
inconsistent since a massive vector field must necessarily
couple to torsion. In this case, we will have to further
generalize our prescription in order to forbid some class of
massive spin-1 fields from coupling to torsion. Hence, we
argue that it is better to explore the framework presented in
Ref. [32] since it does not lead to such inconsistencies.

B. Torsion and non-Abelian fields

In this section we generalize the principle of minimal
coupling [32] to make torsion compatible with non-Abelian
fields as well. Consider a matter field ψ which under a non-
Abelian group G transforms as

ψ 0ðxÞ ¼ UðxÞψðxÞ; ð4:11Þ

where U ∈ G is a non-Abelian transformation given by

UðxÞ ¼ exp½iαiðxÞTi�; ð4:12Þ

the αi’s are transformation parameters and the Ti’s are
generators of the group G. In analogy with Eq. (4.5),
we propose the following transformation for the gauge
fields Wi:

Wi0
μTi ¼ U

�
Wi

μTi þ eϕ
i
g
∂μ

�
U†; ð4:13Þ

with the gauge derivative given by

Dμψ ¼ ð∂μ − ige−ϕWi
μTiÞψ : ð4:14Þ

The covariant derivative transforms as

ðDμψÞ0 ¼ UðxÞDμψ : ð4:15Þ

Furthermore, we obtain the field-strength tensor by com-
puting ½Dμ; Dν�. This leads to

½Dμ; Dν�ψ ¼ −ige−ϕFi
μνTiψ ; ð4:16Þ

where

Fi
μνTi ¼ ∂μWi

νTi − ∂νWi
μTi − ige−ϕ½Wi

μTi;Wj
νTj�

−Wi
νTi∂μϕþWi

μTi∂νϕ: ð4:17Þ

One can easily check that this is just the expression
obtained by replacing the derivatives by gravitational
gauge-covariant derivatives [see Eq. (4.1)], i.e.,

Fi
μνTi ¼ ∇μWi

νTi −∇νWi
μTi

− ige−ϕ½Wi
μTi;Wj

νTj�: ð4:18Þ

We can now make the transformation of the non-Abelian
vector potentialWi

μ analogous to Eq. (4.7). This leads to the
standard form of the field-strength tensor up to an overall
factor of eϕ. Hence, the kinetic energy term of the non-
Abelian fields becomes −ð1=4Þe2ϕFi

μνFiμν as in the case of
Abelian gauge theory.
The coupling of ϕ with non-Abelian gauge fields is

interesting since it generates an effective potential for ϕ.
Consider a SU(3) gauge field analogous to QCD.
After dynamical symmetry breaking, the operator FμνFμν

acquires an expectation value, i.e.,

hFμνFμνi ¼ Λ4; ð4:19Þ

where Λ is a parameter. At leading order we may therefore
replace the term in the Lagrangian with

e2ϕFμνFμν → e2ϕhFμνFμνi; ð4:20Þ

which leads to an effective potential term for ϕ. We will
also get an additional contribution from the topological
term εμναβFμνFαβ which will also pick up an overall factor
of expð2ϕÞ. We point out that other potential terms are also
generated, the details of which depend on the model being
considered. We shall discuss an explicit model below.
The potential terms are expected to lead to a background

value ϕ0 of the field ϕ. As the Universe evolves, we assume
that ϕ also undergoes a slow cosmological evolution and
takes a value ϕ0 at the current time. The evolution should be
sufficiently slow so as not to be in conflict with constraints
on the time dependence of fundamental parameters. We
next expand ϕ about its background value such that
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ϕ ¼ ϕ0 þ ϕ̂: ð4:21Þ

Furthermore, we scale ϕ in order to convert its kinetic
energy term into the canonical form. The background factor
eϕ0 gets absorbed into the redefinition of the parameters.
With this expansion we obtain a mass term for ϕ̂ as well as
higher-order terms. This field acquires an effective mass
given by

mϕ ∼
Λ2

βMpl
: ð4:22Þ

Hence, we generate a mass term as well as higher-order
potential terms for the field ϕ. We discuss this in more
detail below.

C. Evading the solar constraints

As discussed in the literature [43], the minimal coupling
model discussed above is in conflict with constraints from
the Solar System. It turns out that the torsion or the scalar
field ϕ generated by the Sun is sufficiently large that it leads
to observable differences between the gravitational accel-
erations of particles with different electromagnetic energy
content. The nonobservation of this difference rules out the
minimal coupling model [32] discussed above. However,
the constraints can be evaded if we add a suitable potential
VðϕÞ to the action such that the scalar field acquires mass.
As we have shown in the previous section, we may not need
to explicitly add potential terms since an effective potential
also gets generated by non-Abelian gauge fields. Once the
field acquires mass, its equation of motion can be expressed
as

∇2ϕ −m2
ϕϕ ¼ 1

3
ðB2 −E2Þ: ð4:23Þ

This is a generalization of Eq. 29 of Ref. [43]. The
electromagnetic energy content of the Sun acts as a source
of the field ϕ. We see that if the mass mϕ is sufficiently
large then the field ϕ will decay exponentially and will be
negligible at Earth. Assuming that β in Eq. (4.22) is of order
unity and Λ is of order 1 GeV (corresponding to the QCD
scale), we obtain a value of mϕ of order 10−10 eV. This is
large enough to completely suppress the signal arising due
to the Sun.
We point out that besides the potential term generated

through QCD [Eq. (4.20)], quantum corrections due to
electroweak, gravity, and other beyond the Standard Model
fields would also generate other terms in the effective
potential for the ϕ field. Hence, it is natural to include
potential terms for this field.

V. GENERALIZED GRAVITATIONAL ACTION

The minimal coupling model implied by the Poincaré
symmetry has the necessary ingredients to generate mag-
netogenesis. It naturally produces the coupling of a scalar
field ϕ with the electromagnetic field similar to that
assumed in Ref. [14]. As we have discussed in Sec. IV
B, a potential for the field ϕ also gets generated naturally.
Here we shall not necessarily assume that ϕ is also the
inflaton field. It is primarily responsible for magneto-
genesis. In the next section, we shall study the generation
of magnetic fields within the minimal model. As we shall
see, the minimal model (4.9) can lead to an enhancement of
the magnetic fields. In this section, we study generalized
models which may lead to a modification of the kinetic
energy term of the field ϕ. This may be useful in avoiding
the backreaction problems.
Before discussing the generalized models, we point out

that it is possible to add kinetic and potential terms to the
field ϕ while preserving Poincaré and electromagnetic
gauge invariance, which are the guiding principles in
constructing this action. In particular, we can add terms
to the gravitational action including the field ϕ, such as

LT ¼ β̃gγσTα
βγT

β
ασ: ð5:1Þ

This directly leads to a kinetic term for ϕ. In contrast, we
cannot generate a potential term for ϕ by adding terms
involving the torsion tensor. Such terms have to be added
directly in terms of ϕ. However, as we have seen, an
effective potential is generated by non-Abelian QCD-like
fields. After adding such terms, the final action can be
expressed as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2

pl

16π
ðR∘ − 6β2∂ρϕ∂ρϕÞ

−
1

4
e2ϕFμνFμν − VðϕÞ

�
; ð5:2Þ

where the added kinetic term has been accommodated by
introducing the parameter β.
Following Campanelli [27], we find that this action can

generate a magnetic field of the required strength.
Depending on the model, i.e., the choice of potential, it
may be necessary to choose β to be very small. This will
require fine-tuning since the additional kinetic energy term
has to be chosen very precisely in order to obtain a small
value of β. This fine-tuning may be evaded if we further
generalize the gravitational action such that it becomes

Sg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−e2ϕ

M2
pl

16π
R

−
1

6
e2ϕM2

Tg
μνTα

μβTβ
αν − VðϕÞ

�
: ð5:3Þ
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Here the full form of R is given in Eq. (4.4). We next make a
conformal transformation such that

g̃μν ¼ e2ϕgμν: ð5:4Þ

In terms of the new metric g̃μν, the gravitational action
becomes

Sg ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
M2

pl

16π
R
∘ þ 1

2
M2

Tg̃
μν∂μϕ∂νϕ − VðϕÞ

�
:

ð5:5Þ

Here we do not need to fine-tune the parameter MT. Now
we may choose the potential such that ϕ may act as the
inflaton field. The matter action is chosen by the principle
of minimal coupling, as prescribed in Ref. [32]. The full
action has precisely the form which leads to both inflation
and magnetogenesis, following the analysis presented in
Refs. [14,27].
Due to the conformal transformation (5.4) the matter

action also undergoes some change. The gauge kinetic
energy terms remain unaffected. However, terms involving
scalar and spinor fields may change. Lets us consider the
effect on the Higgs field H. With the transformation (5.4),
the Higgs action becomes

SH ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
½e−2ϕg̃μνDμH†DνH

−m2
He

−4ϕH†H − λe−4ϕðH†HÞ2�; ð5:6Þ

where Dμ is the gauge-covariant derivative. Similar terms
are generated for all scalar fields which have nonzero
vacuum values. Furthermore, the fermion field condensates
are expected to generate additional terms in the effective
potential for ϕ. In order to reduce the Higgs kinetic energy
term to its canonical form, we may transform the Higgs
field such that

H̃ ¼ e−ϕH: ð5:7Þ

This transformation, however, leads to complicated deriva-
tive terms for the ϕ field. In any case, we observe the
appearance of additional potential terms for ϕ from the
scalar field action besides the terms discussed in Sec. IV B.
Working with the field H, i.e., without transforming to

H̃, we may express the potential terms as

VðϕÞ ¼ ae−4ϕ þ be2ϕ þ � � � ð5:8Þ

The factors a and b represent the contributions due to the
vacuum expectation value of the Higgs field and the QCD
condensates. These are not really constant since these will
also change as ϕ evolves with time. In order to determine
the vacuum expectation value of ϕ we can treat a and b as

constants. Keeping only these two terms, the minimum of
the potential is found to be

ϕ0 ¼
1

6
lnð2a=bÞ: ð5:9Þ

By expanding around the minimum and rescaling ϕ such
that ϕ̃ ¼ MTϕ, we obtain a mass term for ϕ̃. The overall
terms, i.e., expð−4ϕ0Þ and expð2ϕ0Þ, should be absorbed
into the Higgs vacuum expectation value and the QCD
condensates, respectively. The ϕ mass is found to be of
order

1ffiffiffiffiffiffiffi
MT

p maxf ffiffiffi
a

p
;

ffiffiffi
b

p
g:

We expect a to be at least as large as the electroweak scale
and MT < Mpl. This generates a mass larger than 10−6 eV
which is sufficient to evade the solar constraints.
For the generation of primordial magnetic fields, how-

ever, the situation is more complicated. This is because now
we need to study the time evolution of the Higgs as well as
the QCD field. In the case of QCD this will require a rather
complicated quantum analysis of non-Abelian fields. We
do not pursue this in the present paper and simply assume a
potential for ϕ that can lead to primordial magnetogenesis.
As discussed earlier, quantum corrections would generate
additional terms in the effective potential for ϕ which need
to be included for a complete analysis.
The introduction of the factor e2ϕ in Eq. (5.3) is partially

justified by considering an fðRÞ gravity model such as the
Starobinsky model [59]. In that case the gravitational action
becomes very complicated due to the presence of the R2

term which involves four derivative terms of the field ϕ.
However, if we generalize it such that the action reads

SStaro ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2

pl

16π

�
e2ϕR −

R2

6M2

�

þ e2ϕM2
Tg

μνTα
μβT

β
αν

�
; ð5:10Þ

then after the conformal transformation the action reduces
to the standard Starobinsky action along with an additional
kinetic energy term for the field ϕ given in Eq. (5.2). Only
with the introduction of this extra factor e2ϕ do we get a
simple action in the Einstein frame.
An alternative approach is to demand global conformal

invariance. In this case the mass scale Mpl gets replaced by
aΦ, where Φ is a scalar field and a is a parameter; see, for
example, Ref. [60]. We do not introduce the extra kinetic
energy term proportional toMT . The resulting gravitational
action may be expressed as
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Sg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �ðaΦÞ2
16π

Rþ 1

2
gμν∂μΦ∂νΦ − VðΦ;ϕÞ

�
:

ð5:11Þ

In this case we do not need to introduce the extra factor e2ϕ

in the gravitational action. This action is invariant under the
global conformal transformation gμν → gμν=Λ2, Φ → ΛΦ.
We also impose this symmetry on the matter action. We
next make the transformation g̃μν ¼ e2ϕgμν, Φ̃ ¼ e−ϕΦ.
The action now becomes

Sg ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �ðaΦ̃Þ2
16π

R
∘ þ LK − VðΦ̃;ϕÞ

�
; ð5:12Þ

where

LK ¼ 1

2
g̃μνð∂μΦ̃∂νΦ̃þ Φ̃2∂μϕ∂νϕ− 2Φ̃∂μΦ̃∂νϕÞ: ð5:13Þ

The conformal symmetry may be broken softly by the
dynamical mechanism analogous to the one described in
Refs. [61–65]. Here one assumes the existence of a dark
strongly coupled sector. The condensate formation in this
sector leads to the dynamical breakdown of conformal
invariance, which also triggers the spontaneous electro-
weak symmetry breaking. Here we assume some strongly
coupled sector with a very high mass scale such that these
particles decay at some early time during the evolution of
the Universe. The condensate formation in this sector also
leads to a vacuum expectation value of the field Φ̃. We
assume that this field has undergone negligible evolution
since the beginning of inflation, and hence we can simply
set it equal to its vacuum expectation value. Alternatively,
we need to go to the Einstein frame. In the present case the
additional terms generated by going from the Jordan to
Einstein frame are assumed to be negligible at leading order
due to our assumption that Φ̃ evolves negligibly during
inflation. We therefore set aΦ̃ equal to its vacuum expect-
ation value which is assumed to be equal to Mpl. Ignoring
the derivatives of Φ̃, we generate a kinetic energy term for ϕ
whose overall normalization is equal to Φ̃2. We assume that
this value is sufficiently small in comparison to Mpl so that
it does not lead to backreaction during inflation. This
requires us to set the parameter a to be of order 103. Hence,
with an appropriate choice of the parameter a this leads to
exactly the action given in Eq. (5.5) with the scale MT

being generated by Φ̃.
Before ending this section, we propose a generalization

of the Starobinsky model by demanding conformal sym-
metry. The resulting action can be written as

SC ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

16π
ða2Φ2R − ξ2R2Þ

þ 1

2
gμν∂μΦ∂νΦ − VðΦ;ϕÞ

�
: ð5:14Þ

We again make the transformation g̃μν¼e2ϕgμν, Φ̃¼e−ϕΦ.
The resulting action reads

SC ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−

1

16π
ða2Φ̃2R

∘
− ξ2R

∘ 2ÞþLK −VðΦ̃;ϕÞ
�
:

ð5:15Þ

As discussed earlier, the field Φ̃ acquires a vacuum
expectation value such that aΦ̃ ¼ Mp. Assuming that Φ̃
does not evolve significantly with time during inflation, we
can replace it with its vacuum expectation value. Then the
first two terms on the right-hand side yield the standard
Starobinsky model. The remaining terms involve the
kinetic and potential terms for the fields ϕ and Φ̃. Along
with the coupling with the electromagnetic field, these can
lead to magnetogenesis.
To summarize this section, we have shown that the

model for magnetogenesis proposed by Ratra [14] naturally
appears in the Poincaré-invariant theory with the minimal
prescription principle proposed in Ref. [32]. The minimal
model, however, requires fine-tuning of the kinetic energy
term and does not contain a potential term for the scalar
field ϕ, which generates torsion. We have argued that
potential terms for this field appear naturally and it is
easy to generalize the model such that it does not suffer
from fine-tuning. This is best accomplished by imposing
conformal invariance. Hence, the model has all of the
ingredients required for primordial magnetogenesis. We
have also described a conformal generalization of the
Starobinsky model that will lead to both inflation and
magnetogenesis.

VI. MAGNETOGENESIS

The basic formalism for magnetogenesis in the Ratra
model was developed in several papers [25,27]. Our basic
point is that Poincaré gauge theory naturally leads to
models similar to the Ratra model. In particular, the
minimal coupling model leads to a specific form of the
coupling of a scalar field ϕ to the electromagnetic fields as
well as the kinetic term for ϕ. As we have discussed in the
previous section, both the kinetic and potential terms in ϕ
may be substantially modified in comparison to what we
obtain using the minimal coupling procedure. Hence,
depending on the model, different scenarios described in
Ref. [27] could be realized and we can generate a magnetic
field of the required strength if we go beyond the minimal
coupling model. In this section we discuss how successful
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the minimal coupling model is at generating magnetic
fields.
The minimal coupling model, proposed in Ref. [32], is

given in Eq. (4.9). Here we have only displayed the
coupling of ϕ with the electromagnetic field. Similar terms
should also be included for all gauge fields, both Abelian
and non-Abelian. As described above, an effective potential
term for the scalar field ϕ of the form

V ¼ M4
1e

2ϕ ð6:1Þ

naturally appears due to the vacuum condensates formed by
QCD-like non-Abelian fields. Here we assume the exist-
ence of some QCD-like fields with a very high mass scale
M1. The equation of motion for ϕ, neglecting electromag-
netic effects, can be expressed as

12M2
plβ

2ðϕ̈þ 3H _ϕÞ þ ∂V
∂ϕ ¼ 0; ð6:2Þ

with β ¼ 1. Here we assume that inflation is caused by
some field other than ϕ. Let us assume that during inflation
the time-dependent part of this field is small. In that case,
we can approximate expð2ϕÞ ≈ 1þ 2ϕ. This leads to a
linear potential VðϕÞ ≈ bϕ for ϕ and admits a solution of
the form

eϕ ¼ C

�
a
ai

�
α

ð6:3Þ

with constant α ≪ 1. Ignoring the constant part of ϕ, we
obtain ϕ ≈ αHt. The solution starts to break down as ϕ
approaches unity. This corresponds to the small-p (p is
same as α in our notation) limit of the models discussed in
Ref. [27]. In this limit the model leads to magnetic fields of
order 10−32 G, which is rather small.
We next discuss the more general case in which the field

ϕ is not necessarily small while working within the
framework of the minimal coupling model. In this case
we use the full form of the potential given in Eq. (6.1).
Assuming that ϕ̈ is negligible, the solution for ϕ becomes

e2ϕ ¼ 1

2mðtþ t0Þ
; ð6:4Þ

wherem ¼ M4
1=ð18M2

plHÞ and t0 is an integration constant.
We set t0 ¼ N0=H and find that ϕ̈ is negligible if

Htþ N0 ≫ 1; ð6:5Þ

which holds for a wide range of choices ofN0. We point out
that this requires N0 to be sufficiently larger than unity.
Furthermore, this condition holds independent of the value
of β. With this condition we also find that the kinetic
energy term for ϕ does not cause backreaction for the

inflationary potential. The effective value of α in this case is
found to be

α ¼ −
1

2ðHtþ N0Þ
; ð6:6Þ

which varies slowly with time but is necessarily small
throughout inflation. Hence, we find that with this choice of
potential we are forced to have small values of α which
effectively also imply a small value of the time-dependent
part of ϕ. This implies that the minimal coupling model
does not lead to sufficiently large magnetic fields which can
provide seeds for the galactic dynamo. This can be
modified only if we allow a generalized potential which
is permissible in our framework but goes beyond the
minimal coupling model.
So far we have assumed that ϕ is not the inflaton field.

However, since it varies slowly, the effective potential
remains approximately constant during most of the evolu-
tion. Hence, it is also possible to consider ϕ as the inflaton
field, as long as we choose N0 to be sufficiently large.
However, it is not clear how to exit inflation and enter the
reheating phase in this framework. It may be possible to
enhance the model in order to accomplish this. For
example, we may also add the term FμνF̃μν for the non-
Abelian fields which also acquires a vacuum expectation
value. This term has an effective coupling to an axion-like
field χ and would also pick up a factor of e2ϕ. Let us assume
that this condensate dominates the evolution during infla-
tion. Furthermore, the axion field χ remains constant during
inflation but undergoes evolution towards the end, which
effectively ends inflation and leads to reheating.

A. Beyond the minimal model

We have already seen that within the framework of the
minimal model we are unable to generate a magnetic field
of the required strength. As discussed earlier, the required
kinetic energy term in ϕ can be generated naturally within
the minimal model, as demonstrated, for example, in
Eqs. (5.11) and (5.12). However, we are unable to generate
the required potential term. Here we go beyond the minimal
model by adding the following potential term:

VðϕÞ ¼ 6β2M2
pm2ϕ2; ð6:7Þ

where m is a parameter with dimensions of mass. The
kinetic energy term in ϕ is given in Eq. (5.2), or equiv-
alently in Eq. (5.13) with hΦ̃i ¼ ffiffiffiffiffiffiffiffiffiffi

3=4π
p

βMpl. In this case
ϕ also acts as the inflaton.
Imposing the slow-roll condition ϕ̈ ≪ 3H _ϕ in the

equation of motion (6.2), we obtain the solution

ϕ ¼ ϕ0e−t=τ; ð6:8Þ

where ϕ0 and τ are constants, such that
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τ ¼ 3H
m2

: ð6:9Þ

The slow-roll condition implies

τ ≫
1

H
; ð6:10Þ

which also leads to

m2

H2
≪ 1: ð6:11Þ

From Eq. (6.3), we obtain

α ¼ −
ϕ0

τH
e−t=τ: ð6:12Þ

Now, let us estimate the value of ϕ0. Einstein’s equations of
motion give us

3H2 ¼ 3

2
β2 _ϕ2 þ 3β2m2ϕ2: ð6:13Þ

Here, in order for the kinetic term to be negligible, we need

τ ≫
1

m
: ð6:14Þ

Ignoring the kinetic energy term, we obtain ϕ0 ≈H=ðβmÞ.
Let us now assume that α ≈ −2 and is approximately

constant over much of inflation. The value α ¼ −2 is
required in order to generate a scale-invariant magnetic
field within the framework developed in Ref. [27]. This can
be accomplished by requiring that t ≪ τ during inflation.
This is equivalent to requiring thatHτ ≫ N, where N is the
number of e-folds during inflation. For example, taking
Hτ ≈ 500, assuming that N ≈ 60, will ensure that the
necessary conditions are met over much of inflation and
that we produce a nearly scale-invariant spectrum for a
wide range of values of k of the required strength [27]. The
parameter values for this case would bem ≈H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=500

p
and

β ≈ 1=ð−ατmÞ ≈ 0.5=
ffiffiffiffiffiffiffiffiffiffi
1500

p
≪ 1. Hence, with this choice

of parameters we are able to generate the required mag-
netic field.

VII. CONCLUSIONS

The problem of generating magnetic fields during infla-
tion can be resolved by breaking the conformal invariance
of the electromagnetic Lagrangian [14]. The required

coupling between torsion and electromagnetism, however,
has to be put in by hand. We have shown that torsion
naturally leads to this coupling within the framework of the
model developed by Hojman et al. [32], which satisfies
electromagnetic gauge invariance. The model is based on a
minimal version of torsion such that the torsion field can be
expressed in terms of a scalar field ϕ, called the tlaplon in
the literature [32]. The main problem with this model is that
it is ruled out by constraints due to solar data [43]. We have
shown that, due to coupling with non-Abelian fields, the
minimal model acquires an effective potential term for the
scalar field and evades the solar constraints. We have
studied the generation of magnetic fields within the
framework of the minimal model. We found that these
are equivalent to the small-p (or α) limit of the models
discussed in Ref. [27]. Hence, the magnetic field generated
in this case is relatively small. The minimal model also
leads to a rather large contribution from the kinetic energy
of ϕ unless p is close to 0.
We have also discussed several generalizations of the

minimal model. We have argued that quantum corrections
will generate additional potential terms and hence there is
no reason to restrict oneself to the minimal model. We can
add potential terms to the scalar tlaplon while maintaining
Poincaré symmetry. With these terms it is possible to
generate larger magnetic fields in comparison to the
minimal model. In particular, we have considered a model
which displays invariance under the global conformal
transformation gμν → gμν=Λ2, Φ → ΛΦ, where Φ is a
scalar field. By imposing this symmetry on a generalized
Starobinsky model, we found that we can naturally sup-
press the kinetic energy terms of ϕ. With this suppression it
possible to have significant variation of ϕ during inflation,
which is required for magnetogenesis. By assuming a
simple form of the potential for ϕ, we have explicitly
demonstrated the generation of a nearly scale-invariant
magnetic field of the required strength. However, we still
need a mechanism to generate the required potential which
has so far simply been assumed. For this purpose it may be
useful to study the conformal model in more detail using
the effective potential approach, which includes corrections
due to loop contributions.
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