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We provide further evidence that a massless cosmological scalar field with a nonminimal coupling to the
Ricci curvature of the type M2

plð1þ ξσn=Mn
plÞ alleviates the existing tension between local measurements

of the Hubble constant and its inference from cosmic microwave background anisotropies and baryonic
acoustic oscillations data in the presence of a cosmological constant. In these models, the expansion history
is modified compared to ΛCDM at early time, mimicking a change in the effective number of relativistic
species, and gravity weakens after matter-radiation equality. Compared to ΛCDM, a quadratic (n ¼ 2)
coupling increases the Hubble constant when Planck 2018 (alone or in combination with BAO and SH0ES)
measurements data are used in the analysis. Negative values of the coupling, for which the scalar field
decreases, seem favored and consistency with the Solar System can be naturally achieved for a large portion
of the parameter space without the need of any screening mechanism. We show that our results are robust to
the choice of n, also presenting the analysis for n ¼ 4.
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I. INTRODUCTION

Despite its simplicity, the six parameters Λ cold dark
matter (CDM) concordance model has been extremely
successful in explaining cosmic microwave background
(CMB) anisotropies, baryon acoustic oscillations (BAOs),
the abundance of primordial light element by big bang
nucleosynthesis (BBN), luminosity distance of type Ia
supernovae (SNe Ia), and several other cosmological
observations. However, the unknown nature of the dark
energy (DE) and CDM permeating our Universe justifies
the search for other alternatives. These doubts have been
recently corroborated by growing discrepancies between
the present rate of the expansion of the Universe H0

inferred from CMB anisotropies measurements and the
one estimated by low-redshift distance-ladder measure-
ments [1].

The value of the Hubble constant inferred from Planck
2018 data, H0 ¼ ð67.36� 0.54Þ km s−1Mpc−1 [2], is
in a 4.4σ tension with the most recent distance-ladder
measurement from the SH0ES team [3], H0 ¼ ð74.03�
1.42Þ km s−1Mpc−1, determined by using Cepheid-
calibrated SNe Ia with new parallax measurements from
Hubble Space Telescope (HST) spatial scanning [4]. This is
a recent snapshot of a long-standing tension of distance-
ladder measurements of H0 with a much wider set of
cosmological data rather than Planck data only [5], whose
magnitude is possibly affected by unaccounted effects such
as uncertainties in calibration [6–9] or in the luminosity
functions of SNIa [6–11]. Other determinations of H0 at
low redshift, such as from strong-lensing time delay [12],
also point to a higher H0 than the one inferred by
Planck data.
Assuming that this H0 tension is not due to unknown

systematics or unaccounted effects as those mentioned
above, some new physics is therefore needed to solve it.
One way to address the tension is to modify early time (for
redshifts around matter-radiation equality) physics in order
to reduce the inferred value of the comoving sound horizon
at baryon drag rs. Indeed, a smaller value of the comoving
sound horizon at baryon drag rs can provide a higher value
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ofH0 without spoiling the fit to CMB anisotropies data and
changing the BAO observables [13–15]. A prototypical
example of such an early time modification is an excess in
the number Neff of relativistic degrees of freedom, even-
tually interacting with hidden dark sectors [16–25].
An alternative solution to Neff , which can substantially

alleviate the tension, consists in early dark energy (EDE)
models [26–31]. In these models, a scalar field minimally
coupled to gravity is subdominant and frozen by the
Hubble friction at early times and starts to move around
the matter-radiation equality when its effective mass
becomes comparable to the Hubble flow and quickly rolls
to the minimum of its potential, injecting an amount of
energy in the cosmic fluid sharply to sizably reduce rs. The
parameters of the potential and the initial value of the scalar
field, which can be remapped in the critical redshift at
which the scalar field moves zc and the maximum value of
the energy injection ΩϕðzcÞ, have to be fine-tuned to
successfully ease the Hubble tension.1

In this paper, we study the capability of a massless scalar
field σ with a nonminimal coupling of the form FðσÞ ¼
M2

pl½1þ ξðσ=MplÞn�, where Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffi

8πG
p ¼ 2.435 ×

1018 GeV is the reduced Planck mass, and n is taken as an
even and positive integer, to reduce the H0 tension. This
simple model relies on the degeneracy between a non-
minimal coupling to the Ricci curvature and the Hubble
parameter which has been studied in previous works on the
constraints on scalar-tensor theories of gravity2 [35–38]. In
general, scalar-tensor models modify both the early (in a
way that resembles a contribution of an extra dark radiation
component) and late-time expansion of the Universe [37].
By our embedding of a massless σ in ΛCDM, we focus on
the early type of modification in this paper. In the case of a
negative coupling ξ < 0, the scalar field decreases because
of the coupling to matter, leading to cosmological post-
Newtonian parameters which can be naturally consistent
with the Solar System constraints γPN − 1 ¼ ð2.1� 2.3Þ ×
10−5 at 68% CL [39] and βPN − 1 ¼ ð4.1� 7.8Þ × 10−5 at
68% CL [40], extending what already emphasized for a
conformal coupling (CC, i.e., ξ ¼ −1=6) in [37]. We also
investigate to the case where Neff , which describes the
effective number of relativistic species, is included in the
analysis.
This paper is organized as follows. In Sec. II, we describe

the background evolution of the model and compare it to
other existing solutions to the H0 tension. We describe the
data sets and the details of our Markov-chain Monte Carlo
(MCMC) analysis in Sec. III and present our results in
Sec. IV. We end by discussing our results in Sec. V.

II. BACKGROUND EVOLUTION

The model that we consider is described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi

−g
p �

FðσÞ
2

Rþ ð∂σÞ2
2

− Λþ Lm

�

; ð1Þ

where FðσÞ ≔ M2
pl½1þ ξðσ=MplÞn� is the nonminimal cou-

pling (NMC) of the scalar field to the Ricci scalar R,
ð∂σÞ2 ≔ gμν∂μσ∂νσ, Lm is the Lagrangian density describ-
ing the matter sector, and Mpl, Λ are the reduced Planck
mass and bare cosmological constant, respectively. The
n ¼ 2 case has been studied in Refs. [37,41] with a
potential V ∝ F2, which is, however, close to a flat
potential for the range of ξ allowed by observations.3

The Friedmann and the Klein-Gordon equations in
the spatially flat Friedmann-Lemaitre-Robinson-Walker
(FLRW) background are given by

3FH2 ¼ ρþ _σ2

2
þ Λ − 3 _FH

≔ ρþ ρσ; ð2aÞ

σ̈ þ 3H _σ ¼ F;σ

2F þ 3F2
;σ
½ρ − 3pþ 4Λ − ð1þ 3F;σσÞ _σ2�;

ð2bÞ

where ρðpÞ collectively denotes the total matter energy
density (pressure), with ρσðpσÞ denoting the energy density
of the scalar field, and a subscript σ denotes the derivative
with respect to the scalar field. Because of the NMC, the
Newton constant in the Friedmann equations is replaced by
GN ≔ ð8πFÞ−1 that now varies with time. This has not to
be confused with the effective gravitational constant that
regulates the attraction between two test masses and is
measured in laboratory experiments, which is instead given
by [42]

Geff ¼
1

8πF

�

2F þ 4F2
;σ

2F þ 3F2
;σ

�

: ð3Þ

The deviations from general relativity (GR) can also be
parametrized by means of the so-called post-Newtonian
(PN) parameters [40], which are given within NMC by the
following equations [42]:

γPN ¼ 1 −
F2
;σ

F þ 2F2
;σ
; ð4Þ

1See Refs. [32,33] for recent proposals that reduce the degree
of fine-tuning in EDE models.

2See also Ref. [34] for a related mechanism in the framework
of an exponentially coupled cubic Galileon model.

3Note that the choice of V ∝ F2 corresponds to a cosmological
constant in the corresponding Einstein frame (ĝμν ∝ Fgμν) in
which the canonically rescaled scalar field is universally coupled
to the trace of the matter energy-momentum tensor.
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βPN ¼ 1þ FF;σ

8F þ 12F2
;σ

dγPN
dσ

; ð5Þ

where the prediction from GR, i.e., γPN ¼ βPN ¼ 1, is
tightly constrained from the Solar System experiments.
Note that γPN < 1 in our models.
Before analyzing the background evolution of our

model, note that the NMC to the gravity sector induces
some conditions that the theory needs to satisfy in order to
have a stable FLRW evolution. For the action (1), we find
that there are in total 3 physical degrees of freedom
associated with the gravity sector (that is, the metric and
the σ field) [43]. In order to avoid negative kinetic energy
states in the tensor sector, we need

F > 0; ð6Þ
and the positivity of the kinetic term in the reduced
quadratic action of the scalar field perturbations leads to
the second condition

Fð2F þ 3F2
σÞ > 0: ð7Þ

For the matter sector, any fluid that satisfies the null energy
condition and has real sound speed will be stable. Note that
the conditions (6) and (7) also ensure the positivity of the
effective gravitational and cosmological Newton constants.
The evolution of relevant background quantities is shown

in Fig. 1 for the case of n ¼ 2 and n ¼ 4 (see caption for
the parameters used in the plots). As can be seen from the
central panel in Fig. 1, the scalar field is nearly frozen deep in
the radiation era, and is driven by the coupling to non-
relativistic matter around the radiation-matter equality era
z ∼Oð103–104Þ, as evident from the Klein-Gordon equa-
tion (2b), decreasing (growing) for ξ < 0 (ξ > 0).
Since the goal of our paper is to ease the H0 tension, we

also plot the relevant quantities for two other reference
models, i.e., the case of a varying number of relativistic
degrees of freedom in addition to ΛCDM, and the Rock’n
Roll model introduced Ref. [27]. This second model is a
representative case of EDE models in Einstein gravity
[26–30], where a non-negligible energy density is injected
around recombination, leading to a larger value of H0.
Let us now stress the important differences between the

model studied here and the two other reference cases. By
considering our model as Einstein gravity [42,43], the
resulting effective DE has an equation of state wDE ≡
pDE=ρDE ∼ 1=3 during radiation era (see, e.g., Fig. 2 of
Ref. [37] and their Eqs. (13) and (14) for the definitions of
ρDE and pDE) and the contribution of the scalar field

4 to the

total expansion rate HðzÞ thus resembles the one from an
extra dark radiation component. This is confirmed by the
top panel in Fig. 1, where we plot the energy fraction of
the scalar field, parametrized byΩσ ¼ ρDE=3H2F0—where

FIG. 1. We plot the evolution of the energy injection Ωi ≔
ρi=ρc (top), the scalar field (center), and the deviation from one of
the effective (solid lines) and cosmological (dot-dashed lines)
Newton constants (bottom) for the models with n ¼ 2, ξ < 0
(purple lines), n ¼ 4, ξ < 0 (magenta lines), n ¼ 2; ξ > 0 (red
lines), and n ¼ 4; ξ > 0 (brown lines), together with the EDE
model of Ref. [27] (orange lines) and the ΛCDMþ Neff model
(cyan lines). In order to compare the evolution of our model to
the aforementioned ones, we set the cosmological parameters to
the best fit values in Table 3 of Ref. [27] and set ξ ¼ −1=6. In the
cases with ξ > 0, we change the values of the initial conditions on
the scalar field and the coupling ξ as in the plot legends.

4Note that Ωσ becomes slightly negative in Fig. 1. This is not a
physical problem as Ωσ only parametrizes the contribution of the
scalar field to the total expansion rate HðzÞ when the Einstein
equations are written in the Einstein gravity form; see, e.g.,
Refs. [42,43].

LARGER VALUE FOR H0 BY AN EVOLVING … PHYS. REV. D 102, 023529 (2020)

023529-3



the subscript 0 denotes quantities evaluated at z ¼ 0—and
compare it to the ΛCDMþ Neff model. As can be seen,
when ξ < 0, the scalar field contributes to the total energy
density in a way that is very similar to the ΛCDMþ Neff
model. Having started with the same ξ < 0 and initial
condition σi=Mpl < 1 in both the n ¼ 2 and n ¼ 4 case, the
term multiplying the square bracket in Eq. (2b) is smaller in
the latter case and the rolling of the scalar field toward
smaller values is less efficient. The equation of state wDE is
not 1=3 anymore in general when the scalar field is
subsequently driven by matter.
Ourmodel is therefore different fromEDEmodels recently

proposed in the literature (see, e.g., Refs. [26–30]) for
which the equation of state is close to −1 at early times.
Note also that, in our model, the scalar field moves in a
natural way after radiation-matter equality, being driven by
nonrelativistic matter, and is not important just around
recombination.
In general, a distinct feature of our model is the

modification to gravity induced by σ which is plotted in
the bottom panel of Fig. 1. For ξ < 0, since the scalar field
contribution becomes negligible at late times, both GN and
Geff are very close to G today. For this reason, our model is
consistent with laboratory and Solar System experiments
for a large volume of the parameter space, as we will show
in this paper. We do not show the evolution of the PN
parameters defined in Eqs. (4) and (5) as they behave
similarly.

III. METHODOLOGY AND DATA SETS

We run a Markov-chain Monte Carlo (MCMC) using the
publicly available code MontePython-v35 [44,45] wrapped
either with CLASSig [35], a modified version of the
CLASS6 [46,47] for scalar-tensor theory of gravity, or
with a modified version of hiCLASS [48,49] which allows
to study consistently oscillating scalar fields. The agree-
ment of CLASSig and hiCLASS for the precision of current
and future experiments has been demonstrated in [50].
Mean values and uncertainties on the parameters reported,
as well as the contours plotted, have been obtained using
GetDist7 [51]. For all our runs, we set the scalar field in
slow roll and use adiabatic initial conditions for the scalar
field perturbations [37,52].
We study cosmological models in Eq. (1) with n ¼ 2, 4

and free ξ and devote particular attention to the value of
ξ ¼ −1=6, which is obviously nested in the previous class
with n ¼ 2. We sample the cosmological parameters
fωb;ωcdm; θs; ln 1010As; ns; τreio; ξ; σig fixing n ¼ 2, 4
and using Metropolis-Hastings algorithm. We consider
flat priors consistent with the stability conditions in
Sec. II on the extra parameters we consider ξ ∈
½−0.9; 0.9� and σi=Mpl ∈ ½0; 0.9�, for n ¼ 2 case with free

FIG. 2. Constraints on main and derived parameters of the CC model with n ¼ 2 and ξ ¼ −1=6 from Planck 2018 data (P18), P18 in
combination with BAO and SH0ES measurements, and P18 in combination with BAO and a combined prior which takes into account all
the late-time measurements. Parameters on the bottom axis are our sampled MCMC parameters with flat priors, and parameters on the
left axis are derived parameters (with H0 in [km s−1 Mpc−1]). Constraints for the ΛCDM model obtained with P18 data are also shown
for a comparison. Contours contain 68% and 95% of the probability.

5https://github.com/brinckmann/montepython_public.
6https://github.com/lesgourg/class_public.
7https://getdist.readthedocs.io/en/latest.
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ξ and σi=Mpl ∈ ½0; 0.9� in the CC case. For the case with
n ¼ 4, we change our prior to ξ ∈ ½−0.9; 0.2� as larger
positive values for the coupling ξ lead to a deviation of order
10−1 fromGR as can be seen fromFig. 1. As in [36], we take
into account the different value of the effective gravitational
constant in the modified BBN condition for the helium,
and the baryon density tabulated in the public code
PArthENoPE [53]. We consider the chains to be converged
using the Gelman-Rubin criterion R − 1 < 0.01.
We constrain the cosmological parameters using several

combination of data sets. We use the CMB measurements
from the Planck 2018 release (hereafter P18) on temper-
ature, polarization, and weak lensing CMB angular power
spectra [54,55]. We use the following likelihood combi-
nation, the so-called Planck baseline: on high multipoles,
l ≥ 30, we use the Plik likelihood, on the lower multipoles
we use the Commander likelihood for temperature and
SimAll for the E-mode polarization [54], for the lensing
likelihood we the conservative multipoles range, i.e., 8 ≤
l ≤ 400 [55].
BAOmeasurements from galaxy redshift surveys are used

as primary astrophysical data set to constrain these class of
theories providing a complementary late-time information to
the CMB anisotropies. We use the Baryon Oscillation
Spectroscopic Survey DR12 [56] “consensus” in three red-
shift slices with effective redshifts zeff ¼ 0.38, 0.51, 0.61
[57–59] in combination with measurements from 6dF [60] at
zeff ¼ 0.106 and the one fromSDSSDR7 [61] at zeff ¼ 0.15.
We consider a Gaussian likelihood based on the latest
determination of H0 from SH0ES, i.e., H0 ¼ 74.03�
1.42 km s−1Mpc−1 [3], which we will denote as R19 in
the following. We also consider a tighter Gaussian like-
lihood, i.e., H0 ¼ 73.3� 0.8 km s−1 Mpc−1 [1], obtained
from a combination of H0 measurements from SH0ES [3],
MIRAS [62], CCHP [7], H0LiCOW [12], MCP [63], and
SBF which we will denote as V19 in the following. We
should warn the reader that the V19 value is obtained by
neglecting covariances between the aforementioned obser-
vations, as stressed inRef. [1]. Nevertheless, V19 can give an
idea of how our model can respond to a possible future
worsening of the H0 tension.
Note that our analysis differs from [37] not only in the

updated data, but also in theoretical priors: in this paper, we
consider flat priors on ðξ; σiÞ, whereas in [37], flat priors
were assumed on ðξ;MplÞ, with ξ > 0 and ξ < 0 considered
separately, and Mpl was also allowed to vary, with a
boundary condition on σ0 (the value of the scalar field
today) to fix consistency between Geff and G. We have
however verified that these different priors have a very
small effect on the resulting posterior distributions of the
parameters, at least for ξ ¼ −1=6.

IV. RESULTS

The results of our cosmological analysis for the CC
(n ¼ 2with free ξ) model are summarized in Fig. 2 (Fig. 3),

where we plot the reconstructed two-dimensional posterior
distributions of main and derived parameters, and in Table I
(Table II), where we report the reconstructed mean values
and the 68% and 95% CL. We also report our results for the
n ¼ 4 case in Table III.
We find similar values for H0 in all the models, but

larger than in ΛCDM. We find H0 ¼ 68.47þ0.58
−0.86 ðH0 ¼

68.40þ0.59
−0.80Þ km s−1 Mpc−1 at 68%CLforCC (for free ξ)with

P18 data only. As in other similar models, we find larger
values for ns;ωc; σ8 and smaller values for ωb compared to
the baseline ΛCDM model. When BAO and SH0ES data
are combined, i.e., P18þ BAOþ R19, we obtain H0 ¼
69.29þ0.59

−0.72 ðH0 ¼ 69.10þ0.49
−0.66Þ km s−1 Mpc−1 for CC (for

free ξ). Higher values forH0 can be obtained by substituting
the combination of measurements V19 to R19, as can be
seen from Tables I and II. Note that similar results are
also obtained in the n ¼ 4 case, for which we find a
slightly smaller value of H0 ¼ 68.05� 0.56 ðH0 ¼
69.09þ0.52

−0.69Þ km s−1 Mpc−1 with P18 (P18þ BAOþ R19)
data. For this reason, we focus our discussion on the n ¼ 2
case in the following, commenting only when results for
n ¼ 4 substantially differ.
In Tables–III, we also report the difference in the

best fit of the model with respect to ΛCDM, i.e.,
Δχ2 ¼ χ2 − χ2ðΛCDMÞ, where negative values indicate
an improvement in the fit of the given model with respect to
the ΛCDM for the same data set.8 Although our models
provide a similar or slightly worst fit to P18 data compared
to ΛCDM, we find Δχ2 ∼ −5 (−6.8) for CC (free ξ) when
BAOþ R19 are combined. Higher values of Δχ2 are
obviously obtained by substituting V19 to R19. We also
compute values of the Aikike (Bayes) information criteria
ΔAIC (ΔBIC) defined as ΔAIC ¼ Δχ2 þ 2Δp (ΔBIC ¼
Δχ2 þ Δp lnN), where Δp is the number of extra param-
eters with respect to ΛCDM model and N is the number of
data points considered in our MCMC analysis9 [64].
According to both criteria, all our models are penalized
compared to ΛCDM for P18 data only due to the addition
of parameters. Only for AIC we find that our model with
n ¼ 2 is (strongly) favored for (CC) free ξ compared to
ΛCDM when BAO and R19 are combined. Substituting
V19 to R19 makes the statistical preference of our model
stronger in general.

8Note that the ΛCDM reference cosmology in our case has
massless neutrinos, differently from the assumption adopted by the
Planck Collaboration of one massive neutrino with mν ¼ 0.06 eV
consistent with a normal hierarchywithminimummass allowed by
particle physics. The differenceswith respect to the baseline Planck
results in the estimate of the cosmological parameters due the
choiceNeff ¼ 3.046 andmν ¼ 0 is small, except for a shift toward
higher values for H0, as H0 ¼ 67.98� 0.54 ðH0 ¼ 68.60�
0.43Þ km s−1 Mpc−1 for P18 (P18þ BAOþ R19).

9We consider 2352 points for P18, 8 for BAO and 1 (6) for
R19 (V19).
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Constraints on modified gravity parameters: The con-
straints on the modified gravity parameter are very different
in the CC and n ¼ 2 case, which are a one- and two-
parameter extension of the ΛCDM model. Although the
mean values are very similar, constraints are very much
looser in the latter case. This is because, when ξ is large and
negative, the decreasing of the scalar field is very efficient
and thus its effect redshifts away even before matter-
radiation equality, leaving smaller imprints on the CMB.
Note that positive values of ξ, for which the scalar field
increases after matter-radiation equality contributing to the
late-time background evolution, seem disfavored by the
data for our priors. In particular for P18, we find an upper
bound ξ < 0.052 (ξ < 0.02) at the 2σ level for n ¼ 2
(n ¼ 4). The upper bound is even more stringent when
we add to the analysis BAOþ R19 data for which we
find ξ < 0.047 (ξ < −0.026) at the 2σ level for n ¼ 2
(n ¼ 4).
Comparison with BBN constraints: With our priors, the

departure of
ffiffiffiffi

F
p

fromMpl can also be constrained by BBN
[65–67]. Since the scalar field is frozen at very early times,
the BBN constraints reported in [65,66] would imply ξσni ¼
0.01þ0.20

−0.16 at 68% CL, which are consistent, but less
stringent, than the constraints reported in Tables I–III, as
already mentioned in previous works on scalar tensor [36].
We find −0.014þ0.026

−0.052 (>−0.0150) for the n ¼ 2 (CC10) and
−0.0010þ0.0029

−0.0076 for the n ¼ 4 case at 95% CL using P18

data only. When adding BAO+R19, we obtain a higher ξσni
and the constraints change to −0.025þ0.037

−0.070 (>−0.0234) for
the n ¼ 2 (CC) and −0.013þ0.021

−0.038 for the n ¼ 4 case at
95% CL. Note that ξσni is more constrained in the CC case
compared to n ¼ 2 and n ¼ 4, as the coupling is fixed
to ξ ¼ −1=6.
Comparison with PN: The derived cosmological PN

parameters are well consistent with GR and their uncer-
tainties are comparable with bounds from the Solar System
experiments [39,40]. Again, because of the large errors on
ξ, the bounds in the n ¼ 2 model are somewhat looser than
in the CC model. Therefore, the CC (n ¼ 2) model
potentially offers a simple one (two) modified gravity
parameter extension to the baseline ΛCDM that naturally
eases the H0 tension and can be consistent at 2σ with the
Solar System constraints on deviation from GR. We have
checked that the inclusion of the Solar System constraints
in our analysis by means of a Gaussian prior based on the
Cassini constraint γPN − 1 ¼ 2.1� 2.3 × 10−5 [39] has a
very small impact on our constraints on the six standard
cosmological parameters.
For the representative example of n ¼ 2 with free ξ, the

constraint on H0 obtained from P18þ BAOþ R19
changes to H0 ¼ 69.00þ0.47

−0.57 km s−1Mpc−1. The constraints
on the modified gravity parameters instead change sub-
stantially. Thanks to the constraining power of the prior we
find σi ¼ 0.19þ0.13

−0.08Mpl at 68% CL and γPN − 1 > −2.2 ×
10−6 and a bound on ξ < −0.15 at 95% CL. Although ξ
remains unconstrained, we note that the upper limit is

FIG. 3. Constraints on main and derived parameters of the model with n ¼ 2 and ξ as a main parameter from Planck 2018 data (P18),
P18 in combination with BAO and SH0ES measurements, and P18 in combination with BAO and a combined prior which takes into
account all the late-time measurements. Parameters on the bottom axis are our sampled MCMC parameters with flat priors, and
parameters on the left axis are derived parameters (with H0 in [km s−1 Mpc−1]). Constraints for the ΛCDM model obtained with P18
data are also shown for a comparison. Contours contain 68% and 95% of the probability.

10Note that, in the CC case, ξσ2i < 0 by construction.
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tighter than the one obtained without the prior information
on γPN. Negative values of ξ are more favored as they lead
to a more efficient rolling of the scalar field toward smaller
values and therefore a smaller γPN − 1.

Robustness and caveats of the inclusion of SNe data: So
far, we did not use the SNe Ia luminosity distance because
the time evolution of gravitational constant changes the
peak luminosity of SNe and this needs to be properly

TABLE II. Constraints on main and derived parameters considering P18, P18 in combination with BAO and
SH0ES measurements, and P18 in combination with BAO and a combined prior which takes into account all the
late-time measurements for n ¼ 2. We report mean values and the 68% CL, except for the modified gravity derived
parameters in the third block, for which we report the 95% CL.

n ¼ 2 P18 P18þ BAO þ R19 P18þ BAO þ V19

102ωb 2.241� 0.015 2.249� 0.014 2.253� 0.014
ωc 0.1198� 0.0012 0.119 03þ0.000 95

−0.0011 0.1190� 0.0012
100 � θs 1.041 93� 0.000 30 1.042 05� 0.000 31 1.042 10� 0.000 29
τreio 0.0544� 0.0076 0.0564� 0.0076 0.0578� 0.0072

ln ð1010AsÞ 3.045� 0.0014 3.048� 0.015 3.052� 0.014
ns 0.9673� 0.0046 0.9699� 0.0046 0.9724� 0.0041
σi [Mpl] <0.224 0.260þ0.088

−0.19 >0.46
ξ <0.052 (95% CL) <0.047 (95% CL) <−0.0283 (95% CL)

H0 [km s−1 Mpc−1] 68.40þ0.59
−0.80 69.10þ0.49

−0.66 70.64� 0.71
σ8 0.8456þ0.013

−0.018 0.8370þ0.0072
−0.020 0.8450þ0.0088

−0.014
rs [Mpc] 147.01� 0.36 146.95þ0.48

−0.30 146.08þ0.77
−0.89

ξσ2i [M2
pl] −0.014þ0.026

−0.052 −0.025þ0.037
−0.070 −0.030þ0.030

−0.074
σ0 [Mpl] 0.1046þ0.40

−0.18 0.09þ0.46
−0.19 0.20þ0.33

−0.26
γPN − 1 >−1.73 × 10−3 >−1.56 × 10−3 >−1.26 × 10−3

βPN − 1 −ð3.0þ1.8
−1.6 Þ × 10−5 −ð3.0þ1.7

−1.4 Þ × 10−5 −ð1.5þ2.9
−2.5Þ × 10−5

Δχ2 þ0.52 −6.8 −18.44

TABLE I. Constraints on main and derived parameters considering P18, P18 in combination with BAO and
SH0ES measurements, and P18 in combination with BAO and a combined prior which takes into account all the
late-time measurements for the CC model n ¼ 2 and ξ ¼ −1=6. We report mean values and the 68% CL, except for
the modified gravity derived parameters in the third block, for which we report the 95% CL.

CC P18 P18þ BAOþ R19 P18þ BAO þ V19

102ωb 2.242� 0.015 2.248� 0.014 2.252� 0.013
ωc 0.1197� 0.0012 0.119 10� 0.000 99 0.1188� 0.0010
100 � θs 1.041 94� 0.000 30 1.042 05� 0.000 28 1.042� 0.000 28
τreio 0.0547� 0.0077 0.0570� 0.0071 0.058 03� 0.0075

ln ð1010AsÞ 3.046� 0.015 3.049� 0.014 3.053� 0.015
ns 0.9675� 0.0046 0.9695� 0.0038 0.9734� 0.0037
σi [Mpl] 0.1312þ0.039

−0.13 0.224þ0.13
−0.081 0.3585þ0.078

−0.047

H0 [km s−1 Mpc−1] 68.47þ0.58
−0.86 69.29þ0.59

−0.72 70.56� 0.6
σ8 0.8272þ0.0063

−0.0081 0.8313þ0.0079
−0.011 0.841� 0.010

rs [Mpc] 146.97þ0.33
−0.29 146.83þ0.48

−0.34 146.4� 0.45

ξσ2i [M2
pl� >−0.0150 >−0.0234 −0.022þ0.016

−0.015
σ0 [Mpl] 0.004 017þ0.0012

−0.004 0.006 841þ0.004
−0.0025 0.011 02þ0.0024

−0.0015
γPN − 1 >−0.95 × 10−5 >−1.5 × 10−5 ð−1.4þ1.0

−0.9 Þ × 10−5

βPN − 1 ð0.23þ0.61
−0.34 Þ × 10−6 ð0.53þ0.75

−0.61 Þ × 10−6 ð1.16þ0.78
−0.84 Þ × 10−6

Δχ2 þ0.42 −5.0 −13.64
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accounted in the analysis [68–71]. However, for the best-fit
value obtained from P18 + BAO + R19 with the priors on
γPN, the relative change of Geff from G today is at most
10−5 in the relevant range of redshifts for SNe Ia. Under the
assumption that we can ignore the effect of time evolution
ofGeff on the magnitude-redshift relation of SNe Ia, we use
the Pantheon sample of SNe to check the robustness of
our constraint on H0 [72]. We obtain H0 ¼ 69.28þ0.58

−0.74
ðH0 ¼ 68.98þ0.46

−0.54Þ km s−1 Mpc−1 for CC (for free ξ) using
P18þ BAOþ R19+Pantheon with the prior on γPN. This
shows that the inclusion of SNe Ia data does not change
the constraint on H0. Note also that the modification of the
gravitational constant can also change the low-redshift
distance-ladder measurements of the Hubble constant
[73,74]. However, again due to the smallness of the relative
change of Geff from G today, this effect can be ignored
safely in our models.
Comparison with other EDE models: Models based on a

sharp energy injection around the time of matter-radiation
equality lead to a value of H0 which can be higher than the
ones we found within our model for any choice of n and ξ,
although this is model dependent (see, e.g., Refs. [26–30]).
However, the radiationlike behavior of the scalar field in
theories described by the action (1) is completely generic
and, provided that the coupling ξ is negative, the scalar field
contribution quickly becomes negligible thanks to the
coupling to nonrelativistic matter and modifies essentially
only the early time dynamics. For this reason, a higher H0

than in ΛCDM is a natural outcome of the NMC for a large

portion of the parameter space compared to EDE models,
which have more extra parameters to tune.
Addition of Neff : As already mentioned in the

Introduction, the archetypal way to reduce the sound
horizon at baryon drag is to allow the number of relativistic
species Neff to vary [16,17]. By varying Neff , we find for
P18þ BAOþ R19 Δχ2 ∼ −2.8 with H0 ¼ 70.01�
0.89 km s−1Mpc−1 and Neff ¼ 3.30� 0.14. Despite the
higher mean value for H0, the improvement in the fit is
smaller than what we obtain for CC case, and even smaller
for NMC with n ¼ 2. We then investigate to which extent
the addition of extra relativistic species (Neff ) to our model
with n ¼ 2 can further ease the tension.
We allow Neff to vary with a flat prior Neff ∈ ½0; 6� and

we restrict to the combination of P18, BAO, and V19. The
results of our analysis are shown in Fig. 4, where we plot
for the CC and n ¼ 2 case the two-dimensional posterior
distributions of the main parameters σi and Neff and the
derived H0, γPN, and ξσ2i .
To provide the reader with a comparison, we also plot

the constraints on the ΛCDMþ Neff model for the same
data set. As in the case where Neff is fixed, constraints on
the other cosmological parameters are nearly the same
in both the models. Again, we find very similar results,
i.e., Neff ¼ 3.43þ0.16

−0.13 , H0 ¼ 71.45� 0.68 km s−1Mpc−1 in
the CC model and Neff ¼ 3.44þ0.15

−0.12 , H0 ¼ 71.44�
0.67 km s−1Mpc−1 in the n ¼ 2 model at 68% CL. It is
interesting to note that the value we find ΔNeff ∼ 0.39 is
similar to the case of an additional thermalized massless

TABLE III. Constraints on main and derived parameters considering P18, P18 in combination with BAO and
SH0ES measurements, and P18 in combination with BAO and a combined prior which takes into account all the
late-time measurements for n ¼ 4. We report mean values and the 68% CL, except for the modified gravity derived
parameters in the third block, for which we report the 95% CL.

n ¼ 4 P18 P18þ BAO þ R19 P18þ BAO þ V19

102ωb 2.240� 0.015 2.250� 0.013 2.258� 0.013
ωc 0.1198� 0.0012 0.118 92� 0.000 93 0.118 30� 0.000 97
100 � θs 1.041 90� 0.000 28 1.042 05� 0.000 28 1.042 17� 0.000 28
τreio 0.0545� 0.0074 0.0564� 0.0076 0.0596þ0.0070

−0.0078

ln ð1010AsÞ 3.045� 0.014 3.049� 0.015 3.055� 0.015
ns 0.9662� 0.0043 0.9706þ0.0037

−0.0042 0.9757þ0.0039
−0.0044

σi [Mpl] <0.257 0.37þ0.20
−0.17 0.55þ0.13

−0.11
ξ <0.02 (95% CL) <−0.026 (95% CL) <−0.031 (95% CL)

H0 [km s−1 Mpc−1] 68.05� 0.56 69.09þ0.52
−0.69 70.23� 0.54

σ8 0.8247� 0.0061 0.8370þ0.0072
−0.020 0.845þ0.010

−0.018
rs [Mpc] 147.06� 0.28 146.96þ0.39

−0.33 146.69þ0.38
−0.43

ξσ4i [M4
pl] −0.0010þ0.0029

−0.0076 −0.013þ0.021
−0.038 −0.035þ0.038

−0.057
σ0 [Mpl] 0.18þ0.39

−0.22 0.18þ0.25
−0.17 0.20þ0.21

−0.13
γPN − 1 >−1.72 × 10−4 >−1.65 × 10−4 >−2.34 × 10−4

βPN − 1 ð−0.8þ11.0
−9.4 Þ × 10−6 ð0.4þ6.1

−3.8Þ × 10−6 ð2.5þ7.4
−6.6 Þ × 10−6

Δχ2 −0.58 −1.14 −9.42
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boson which decouples at a temperature T > 100 MeV
[75]. We note that the relevant parameter that regulates the
scalar field modification to HðzÞ, that is ξσ2i , is now much
smaller than in the correspondent case with Neff fixed (see
Tables I and II), that is ξσ2i > −0.0193 in the CC model and
ξσ2i ¼ −0.012þ0.018

−0.003 in the n ¼ 2model: this means that the
higher value of H0 is now driven by a combination of a
higherNeff with the nonminimally coupled scalar field σ. In
fact, in the case of the ΛCDMþ Neff model, we find a
larger Neff ¼ 3.50� 0.12 at 68% CL consistently with the
scalar field effectively contributing as an extra dark
radiation component in the CC and n ¼ 2 case.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the addition of a cosmo-
logical massless scalar field σ to ΛCDM with a coupling to
the Ricci scalar of the form FðσÞ ¼ M2

pl½1þ ξðσ=MplÞn�, in
the case of n ¼ 2, 4. This class of models has one (as for CC)
or two extra parameters with respect to ΛCDM. The scalar
field σ is frozen deep in the radiation era, essentially
contributing to the expansion history of the Universe as an
effective relativistic degree of freedom, and the coupling to
nonrelativistic matter acts as a driving force for the scalar

field around radiation-matter equality [35–37]. The basic
assumption of a cosmological constant Λ minimizes the
deviations from ΛCDM at late time which are present in
scalar-tensor theories and allows to focus on the early time
dynamics.
We have used the most recent Planck, BAO, and SH0ES

data to perform a MCMC analysis and constrain the param-
eters of our model. We find that Planck 18 (+BAO+R19)
constrains the expansion rate of the Universe from H0 ¼
68.40þ0.59

−0.80 ðH0 ¼ 69.10þ0.49
−0.66Þ km s−1 Mpc−1 for n ¼ 2.

Similar results for the cosmological parameters can also be
obtained in the CC case.
Compared to other attempts to alleviate the H0 tension

such as EDE models, we obtain a lower expansion rate.
However, we stress that EDE models require two or three
extra parameters with respect to ΛCDM, which have to be
fine-tuned to inject the precise amount of energy to the
cosmic fluid in a very narrow range of redshift. The models
considered here have only one or two extra parameters and
can be easily embedded in a consistent theoretical frame-
work of scalar-tensor theories of gravity.
We find that our constraints on ξσn, the deviation from

GR, are consistent with those obtained from BBN [65,66]
and the constraints on the PN parameters from the Solar
System measurements [39,40]. Higher values forH0 can be
obtained by further allowing Neff to vary or by using the
tighter prior V19 onH0 rather than R19. In the former case,
we find tighter constraints on ξσni that regulates the scalar
field contribution to the expansion history during the
radiation era and the larger value of H0 is driven by a
cooperation with the extra relativistic species described
by Neff.
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FIG. 4. Constraints on some of the main and derived parameters
of the CC and n ¼ 2 model with the addition of Neff from P18 in
combination with BAO and a combined prior which takes into
account all the late-time measurements. Parameters on the bottom
axis are our sampled MCMC parameters with flat priors, and
parameters on the left axis are derived parameters (with H0 in
[km s−1 Mpc−1]). Contours contain 68% and 95% of the
probability.
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Note added.—While this project was near to completion,
a related paper [76], also studying how a massless
nonminimally coupled scalar field with n ¼ 2 with a
flat potential could ease the tension, appeared. Where a
comparison is possible, we find consistency in the

estimate of cosmological parameters, but our findings
for Δχ2 are at odds with [76]. Not only NMC with
n ¼ 2 leads to a larger improvement in the fit than the
addition of Neff for P18þ BAOþ R19, but also the
CC does.
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