
Astronomy and Computing 32 (2020) 100389

e
p
c
v
m
f
w
a
a
p
d

t
s
a
d
s
l
f
f
p

v

h
2

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Development and application of an HDF5 schema for SKA-scale image
cube visualization
A. Comrie a,∗, A. Pińska a, R. Simmonds a, A.R. Taylor a,b

a Inter-University Institute for Data Intensive Astronomy, University of Cape Town, Cape Town, Western Cape, 7700, South Africa
b University of the Western Cape, Cape Town, Western Cape, 7535, South Africa

a r t i c l e i n f o

Article history:
Received 1 September 2019
Received in revised form 25 April 2020
Accepted 1 May 2020
Available online 15 May 2020

Keywords:
HDF5
File formats
Data visualization
Radio astronomy

a b s t r a c t

In this paper, we describe an HDF5 schema created to support the efficient visualization of the large
image cubes that will be produced by SKA Phase 1 and precursor radio telescopes. We demonstrate
how the ‘‘HDF5-IDIA’’ schema’s features can improve the performance of visualization software, using
both low-level metrics and real-world tests of the schema’s implementation in CARTA, an image viewer
that is being developed to replace the existing CyberSKA and CASA viewers.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Data produced by radio telescopes such as MeerKAT (Jonas
t al., 2018), as well as other Square Kilometer Array (SKA)
athfinders, is now being used to create multi-dimensional image
ubes which are large enough to pose multiple challenges to
isualization software, requiring an increase in storage space,
emory and computation resources. In our ongoing effort to

acilitate efficient access to these images, we realized that the
ay in which the data was represented on storage systems cre-
ted a considerable limitation to the performance that we could
chieve. In particular, we wanted the ability to store additional
re-calculated representations and access them through a well-
efined hierarchy.
Most astronomical image files are currently packaged using

he FITS standard1 (Wells and Greisen, 1979). However, the FITS
tandard is primarily used for image transport and archiving,
nd is not well-suited for storing or defining additional derived
ata products in a hierarchical structure. The HDF5 technology
uite (Folk et al., 2011) provides a data model, file format, API,
ibrary, and tools to enable the creation of structured schemas
or different applications. We will show how these can be bene-
icial in packaging of large radio astronomy image cubes for the
urpose of visualization and visual analytics.
We initially attempted to utilize existing HDF5 schemas de-

eloped for image cubes, but found that they did not meet our

∗ Corresponding author.
E-mail address: angus@idia.ac.za (A. Comrie).

1 Available at https://fits.gsfc.nasa.gov/fits_home.html.
ttps://doi.org/10.1016/j.ascom.2020.100389
213-1337/© 2020 Elsevier B.V. All rights reserved.
needs. The LOFAR HDF5 schema (Anderson et al., 2010; Alexov
et al., 2012) did not meet performance requirements: each 2D
image plane is stored in a separate group, therefore a separate
group and dataset must be opened for each pixel when data is
read along the third axis of the image cube.

The HDFITS schema (Price et al., 2015) serves as a starting
point for an HDF5 schema that maintains round-trip compati-
bility with the FITS format, but lacks the additional structures
required for precalculated and cached datasets. We have there-
fore created a new schema tailored to our application, with a
hierarchy similar to that of HDFITS, but extensions have been
added to support a number of features required for efficient
visualization of large datasets.

The rest of the paper is laid out as follows: Section 2 details the
requirements we have for the new schema. Section 3 considers
the types of workloads that datasets using this schema will
commonly be used for, in the context of image cube visualization.
Section 4 describes the optional datasets that are defined in
the schema in order to accelerate these workloads, as well as
an outline of the schema hierarchy and naming conventions.
Section 5 details integration of support for the schema into
CARTA: The Cube Analysis and Rendering Tool for Astronomy
(Comrie et al., 2018), as of Version 1.2 of the software package.
Section 6 shows performance metrics of the schema with low-
level benchmarks, and compares its performance to that of FITS
within CARTA.

2. Requirements

Our application is the use of client–server visualization tools to

view large image cubes remotely, with the image cube remaining

https://doi.org/10.1016/j.ascom.2020.100389
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2020.100389&domain=pdf
mailto:angus@idia.ac.za
https://fits.gsfc.nasa.gov/fits_home.html
https://doi.org/10.1016/j.ascom.2020.100389


2 A. Comrie, A. Pińska, R. Simmonds et al. / Astronomy and Computing 32 (2020) 100389

o
t
c
P
A
d
S
t
c
l
t
e
t

m
s
i
t

8
c
p
o
2
s
i

f
a
f
r
i
h

w
t
t
c
b
a

f
s
d
b
r
u
p
(
W

a

n the server and data that is currently being examined streamed
o a browser-based viewer on an end user’s computer. We are
urrently working with data from the MeerKAT Large Survey
rojects (LSPs) and the Atacama Large Millimeter/submillimeter
rray (ALMA) (Wootten and Thompson, 2009), with the aim of
eveloping a tool that will scale to support data produced by the
KA. This scale of data needs to be maintained on compute clus-
ers with high-capacity, fast storage systems: individual image
ubes are often too large to be downloaded to a workstation for
ocal use, either because of the time it would take to download
hem, or because they are larger than the storage systems on most
nd users’ computers. A remote, distributed approach mitigates
hese challenges (Hassan and Fluke, 2011).

At millimeter and sub-millimeter wavelengths, broadband
olecular line spectral image cubes of increasing spectral and
patial resolution are being generated by antenna arrays. ALMA
mages can contain up to 7680 channels for a single polariza-
ion, or 3840 channels for dual polarization.2 SKA pathfinder
projects are creating wide-field, wide-band spectral cubes for
deep searches to detect extragalactic atomic hydrogen, and for
spectro-polarimetric imaging to probe the Faraday signatures of
cosmic magnetic fields.

The large instantaneous field of view and arcsecond-scale res-
olution of MeerKAT (Jonas et al., 2018) requires frames of 8 k ×

k pixels to image a single pointing. With up to 32768 spectral
hannels in each polarization, data cubes of tens of terabytes per
ointing will be typical. Multi-field mosaicking, as will be carried
ut for the MeerKAT MIGHTEE deep imaging survey (Jarvis et al.,
016), and images from very large field-of-view SKA pathfinders
uch as ASKAP (Johnston et al., 2007), require 64 k × 64 k pixel
mage frames.

Terapixel image cubes are now also being generated by wide-
ield VLBI experiments that image large fields of view at milli-
rcsecond resolution (Deane, 2016). SKA-1 mid will have a similar
ield of view to MeerKAT but 10 times the angular resolution,
equiring image frames on the order of 100 k × 100 k for full
maging of the primary beam of a single pointing. Image cubes of
undreds of terabytes will be typical.
In order to serve a large number of users concurrently and

ith minimal startup delay, the server-based application needs
o load image cubes quickly and to be able to start manipulating
hem without a large amount of initial processing. Results of
ommonly used compute or I/O-intensive tasks therefore need to
e precalculated and stored in a hierarchical structure for easy
ccess.
Compute clusters commonly use hard drive-based distributed

ile systems for primary storage, and thus heavily favor large
equential reads over small random reads that commonly occur
uring exploration of a large image cube. Efforts must therefore
e made to reduce the required number of random reads by
earranging or duplicating data for optimal use during commonly
sed workloads, some of which are discussed below. For sim-
licity, we assume that image cubes consist of two spatial axes
X and Y , with width W and height H and an image area of

× H), and one spectral axis (Z , with depth D, also referred
to as the number of channels), and require 4 bytes per pixel.
Cubes of this configuration generally have data stored with the
X coordinate contiguous, followed by the Y - and Z-axes. The
schema is designed to support more axes, such as the Stokes axis
in full-polarization cubes.

2 As of time of writing, as specified at https://almascience.nrao.edu/about-
lma/alma-basics.
3. Common workloads

Some commonly used workloads are described below, along
with their associated read access patterns. The access pattern
calculations are based on a contiguous data layout, and would
be different if a tiled data layout, such as the HDF5 file format’s
chunking approach (Folk et al., 2011) or the CASA file format
(McMullin et al., 2007), were used.

3.1. Rendering a 2D slice

Rendering a 2D slice of an image cube requires reading a
single plane of the cube from disk, before mapping the data
to a color, based on a defined transfer function. Simple color
mapping transfer functions clamp the data to a chosen value
range, apply a transformation to scale the data to a value between
zero and one, and use the scaled value as a lookup index in a
color map. Alternatively, the slice data can be rendered in the
form of contour lines generated for a given set of levels, usually
after it has been processed with an appropriate method in order
to reduce noise.

Choosing appropriate minimum and maximum bounds for the
transfer function, as well as appropriate contour levels, often
requires interrogation of the data distribution, either for the
individual slice or the entire cube. Histograms of the distribution
are often sufficient for this purpose.

Most commonly, a slice of the cube aligned to the XY -plane
at a given Z-axis coordinate is chosen. Other projections, such
as a combination of a single spatial axis with the spectral axis
(position–velocity images) are also widely used. Rendering an
XY -slice requires fewer I/O operations than other alignments,
as the slice can be acquired using a single sequential read of
W × H pixels. Rendering XZ- or YZ-slices is considerably more
I/O-intensive, as the slice must be acquired using a large number
of smaller non-sequential reads. Reading an XZ-slice requires D
reads of size W pixels, while reading a YZ-slice requires D × H
reads of a single pixel, or D reads of size W ×H pixels (discarding
all but H pixels of each read). Utilizing a tiled data storage
pattern can significantly reduce the asymmetry of these different
workloads, but will result in reduced performance in the most
common (XY -slice) workload.

The dataset is also sometimes averaged along a particular axis,
in order to produce an image with a higher signal-to-noise ratio.
For example, a user might view an average image to identify faint
signals more effectively, but still utilize the full cube for further
analysis, such as calculating a spectral profile.

3.2. Single-pixel profiles

Users will commonly want to display the X-, Y - and Z-profiles
for a chosen pixel. While an X-profile for a fixed Y and Z coor-
dinate can be obtained through a single contiguous read of W
pixels, reading profiles for the other axes is much slower. Reading
a Y -profile requires either H reads of a single pixel, or a single
read of W × H pixels (discarding all but H pixels for each read).
Reading a Z-profile requires D reads of a single pixel.

3.3. Region profiles and statistics

In addition to the profiles described in Section 3.2, users will
often want to select a 3D region of the cube, and reduce it along
two axes to a single profile along the remaining axis. One of the
most common workloads of this nature is to generate a spectral
profile of an N × M × D region (where N and M are the spatial
dimensions of the region and D is the cube depth), reducing it
along the spatial axes to produce a profile along the Z-axis with a

https://almascience.nrao.edu/about-alma/alma-basics
https://almascience.nrao.edu/about-alma/alma-basics


A. Comrie, A. Pińska, R. Simmonds et al. / Astronomy and Computing 32 (2020) 100389 3

f
r
a
c
t
2
a

c
9
t
i
T
i

s
t
i
Y
p
c
o

4

r
a
d
t
p
s
f
l
c
a

length of D. We assume a constant D, as the user typically wishes
to examine the full spectrum. Reducing an N × M × D region to
a single Z-profile of length D requires M ×D reads of N pixels, or
D reads of W ×M pixels (discarding all but N ×M pixels for each
read). The spatial area N × M of these regions is generally much
smaller than the image area W × H , so the overhead of reading
additional pixels and discarding them can be prohibitively slow.

3.4. Zooming and panning

If an image has a higher resolution than that of the user’s
viewport (often only a portion of the screen itself), it does not
need to be transferred to the client device in its entirety. Instead,
the image may be cropped to match the viewport resolution
when the user requests a 100% zoom, or it may be downsampled
prior to sending, if the user requests a wider field of view. As
the user zooms or pans around the image, the server delivers the
required image data to the user.

If the user is viewing the entire image, even at a reduced
resolution, the entire channel must be loaded from disk before
it can be downsampled. Some remote viewers use a tile-based
approach, limiting the downsampling to block averaging, with
power-of-two block sizes, and progressively stream the image in
fixed tile sizes. This limits the number of times that new data
must be sent to the client, and allows the client to reuse cached
portions of the image while awaiting higher-resolution data.

4. Schema

4.1. Optional datasets

To accelerate the workloads described in Section 3, several
different types of datasets are required, each of which is dis-
cussed below. These datasets are defined in the schema hierarchy
described in Section 4.2, but each dataset is optional, and applica-
tions attempting to read files adhering to the schema should not
require any of the optional datasets to be included in a file.

4.1.1. Aggregate datasets
Aggregate datasets store the data for the entire cube, reduced

along a particular axis using a combining function such as the
mean. The Z-axis is usually chosen, but the schema is general
enough to support averages along any axis. Calculating aggregate
datasets on the fly is I/O- and computationally expensive, requir-
ing the entireW×H×D cube to be read from disk, while reading a
precalculated image reduced along the Z-axis requires only a read
of a single W ×H slice. Datasets reduced along the same axis are
collected within an appropriately named group. Dataset names
indicate the combining function used. This approach is similar to
that of the GIPSY data model (Van der Hulst et al., 1992) and the
Starlink Extensible N-Dimensional Data Format.3

4.1.2. Histograms
As mentioned in Section 3.1, histograms are commonly used

in image visualization to restrict color mapping to a range of
the data values, thus preventing outliers from skewing the color-
mapped image. Histograms defined along a particular image
plane (e.g. XY or YZ) are I/O-intensive to calculate, but relatively
small and simple to store. For example, calculating the histogram
for a 4096 × 4096 image slice takes approximately 80 ms of
calculation time on a typical desktop PC, while calculating the his-
togram for an entire cube can take far longer. Using the ‘‘square
root’’ guideline (where the number of bins is equal to the square
root of the number of pixels), a histogram with 4096 bins would

3 Available at http://starlink.eao.hawaii.edu/docs/sun33.htx/sun33.html.
Fig. 1. Example of accessing a 2 × 3 × 8 region of an image cube with
dimensions 7 × 6 × 8, with the contiguous coordinate chosen as (a) X and
(b) Z .

require an additional 16 KB of storage space. Stored histograms
can be used to calculate approximate percentile values. Approx-
imate percentiles are sufficient for our purposes, provided that
the number of histogram bins is large enough. Storing histograms
for each channel and for the entire cube allows users to switch
seamlessly between a color mapping configuration which is ad-
justed for each channel and one which remains constant for all
channels. While users may need histograms with a different range
or bin count, these pre-calculated histograms will commonly offer
sufficient flexibility for users.

4.1.3. Permuted datasets
Storing an additional copy of the data with permuted axes

(e.g. XYZ → ZYX , changing the contiguous axis from X to Z) allows
or enormous performance improvements when image slices are
ead along non-contiguous axes. In the example shown in Fig. 1,
spectral profile is calculated for a 2 × 3 × 8 region of an image
ube with dimensions 7 × 6 × 8. In the standard approach, when
he X-coordinate is contiguous, each read operation consists of a
× 4 = 8 byte read, followed by a seek to the next row, yielding
total of 3 × 8 = 24 read operations.
When we use the permuted dataset, with the Z-coordinate

ontiguous, each YZ read operation now consists of a 3×8×4 =

6 byte read, followed by a seek to the next column, yielding a
otal of 2 read operations. For small read sizes, disk throughput
s bounded by the total number of I/O operations per second.
herefore, reducing the number of read operations dramatically
ncreases disk throughput.

The schema defines how optional permuted datasets are
tored in a standardized manner, so that software supporting
he schema can check for these datasets when performing I/O-
ntensive dataset slices, such as reading a Z-profile at a given (X ,
) pixel value. The name of the permuted dataset indicates the
ermuted layout. Software making use of the permuted datasets
an determine which copy of the dataset to read from, depending
n the access pattern.

.1.4. Mipmapped datasets and tiling
Mipmapped images (Williams, 1983) are commonly used in

eal-time computer graphics to store multiple copies of an im-
ge, with the dimensions of each subsequent copy of the image
ecreasing by a factor of two in each dimension. This increases
he total storage size by one third, but allows an appropriate
recalculated ‘‘mip’’ to be chosen for display, rather than down-
ampled from the original full-resolution image. It is also useful
or texture streaming (Van Waveren, 2006), a technique used to
oad images progressively. In the context of our schema, we store
opies of the dataset downsampled into different resolutions
cross a particular image plane (e.g. XY ). While regular mipmaps

are downsampled until the image is a single pixel in size, we

http://starlink.eao.hawaii.edu/docs/sun33.htx/sun33.html


4 A. Comrie, A. Pińska, R. Simmonds et al. / Astronomy and Computing 32 (2020) 100389

p
a
l

o
d
o
o
i
u

m
m
t
s
t
r
p
o
c

4

e
d
c
i
s
a
s

o
t
t
m

f

e

Fig. 2. Outline of our HDF5 schema, indicating the structure of basic attributes, datasets and additional precomputed data.
erform downsampling until the image has at most 256 pixels
long either axis. We found that images below 256 × 256 have
ittle practical value for our application.

Precalculation and storage of this data reduces both processing
verhead and memory usage by eliminating the need to load and
ownsample entire image slices on demand during visualization
f large datasets. In addition, it enables an efficient delivery
f images to the client using tiling techniques commonly used
n geographic information system (GIS) applications, which are
nder development in CARTA.
To optimize reads of XY tiles from the main dataset and the

ipmapped datasets, at the cost of some reduction in perfor-
ance of reads of XY slices with arbitrary dimensions, we are

ransitioning these datasets from contiguous storage to a chunked
torage layout (The HDF Group, 2019). We use 2D chunks and a
ile size of 256 × 256. Because we use the rotated dataset for
eads of small XY regions over a large Z range, 3D chunks would
rovide no additional benefit and only decrease the performance
f the most common use case of reading tiles from a single
hannel at a time.

.2. Schema hierarchy and naming

Initial tests of the schema are based on files converted4 from
xisting FITS files produced by scientists working on the MeerKAT
ata pipeline. When a FITS file is converted, a top-level group
alled 0, which corresponds to the first Header Data Unit (HDU)
n the original file, is created. Additional HDUs are stored in
equentially numbered groups, with the name of the HDU stored
s the NAME attribute of each top-level group. The FITS data is
aved as the DATA dataset of each top-level group.
FITS header entries for each HDU are stored as attributes

f the relevant top-level group. This allows files in the schema
o be translated back into FITS format if needed. We translate
he COMMENT and HISTORY attributes to datasets rather than
ultidimensional attributes.
We show an outline of our schema for storing these additional

eatures in the HDF5 file in Fig. 2. The name of each permuted

4 Converter available online at https://github.com/idia-astro/cpp_hdf5convert
r.
dataset indicates the permuted order of axes. In the case of the
example shown, a 4D cube (XYZ with the W -coordinate being
Stokes parameters) has an additional dataset stored with the
Z- and X-coordinates permuted. Statistics and mipmapped
datasets are named as shown, with the downsampling factor
indicated by the suffix of the dataset name.

A file will generally contain only a selection of the above
additional features, depending on the application. We can strip
features out by copying datasets selectively when offering down-
loads to clients. For example, permuted datasets and mipmaps
are stored purely for performance reasons, and can be removed
when we offer a download to clients, to minimize file size.

5. Integration into CARTA

We have integrated support for HDF5 files which use our
schema into the CARTA software package, a viewer designed to
provide performant access to very large astronomical images, and
developed as an eventual replacement viewer for both the CASA
astronomical software package (McMullin et al., 2007) and the
CyberSKA portal (Kiddle et al., 2011).

CARTA has a client–server model: remotely stored images are
viewed through a web interface. Portions of image data are read
by the server, downsampled to match the client display resolu-
tion, compressed, and sent to the client as they are requested. The
server also performs certain I/O- and CPU-intensive calculations,
while rendering is done on the client machine where it may take
advantage of local graphics hardware.

Several features of the schema are used by the CARTA server
both to speed up reads from HDF5 files and to avoid certain
expensive calculations. Basic support for reading files using the
schema was introduced in Version 1.0, with additional features
added in subsequent versions to improve performance and take
advantage of the optional datasets described in Section 4.1.

• Histograms are stored for each channel and for each Stokes
cube. In addition to displaying the histograms to the user,
CARTA uses them to approximate percentile clipping values.
When the cube is animated by stepping through the image
for each channel, calculating the histogram for each channel

on demand adds a delay before each animation frame can

https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter
https://github.com/idia-astro/cpp_hdf5converter


A. Comrie, A. Pińska, R. Simmonds et al. / Astronomy and Computing 32 (2020) 100389 5

t
r

a
Z
r
w

be rendered for the first time. Calculating a whole-cube
histogram in order to use the same color map bounds for
all channels adds a long delay before the animation is played
for the first time, as the entire cube has to be read from disk.
These delays are eliminated when stored values are used.

• Aggregate datasets are also stored per channel and per
Stokes cube. When statistics are requested for the whole
image, these values can be read, and not calculated as they
would be for any other image region. In earlier versions, we
stored the mean, minimum, maximum and count of NaN
values; however, in the latest version we have replaced
the mean with the sum and sum of squares. The mean,
root mean squared and standard deviation can be derived
inexpensively from these basic statistics.

• Permuted datasets speed up the calculation of spectral
profile data for regions by reducing the required number
of reads. A region may be a single XY coordinate, or a
polygonal or elliptical area selected within the image. For
a point region a single contiguous row of data is read from
the ZYXW dataset. Larger regions are read one contiguous ZY
slice at a time, up to a region size cutoff where Y ×Z < X , at
which point using the original dataset requires fewer reads.
This speed increase allows the spectral profile for a region
to be refreshed more quickly as the user moves the region
within the image.

Integration of these features has led to significant perfor-
mance improvements for visualizing large images, as shown in
Section 6.2.

Our latest development is focused on the utilization of tiled
and mipmapped datasets when loading HDF5 files using this
schema. As of CARTA 1.2, the server must load an entire channel
into memory in order to downsample the image before sending it
to the client. With the addition of mipmapped datasets and a 2D
tiling model described in Section 4.1.4, the server will load only
the tiles required to render the image on the user’s viewport, and
only at the required resolution.

This significantly reduces the memory requirements of the
server, making them mostly independent of image size, and
permitting the server to open images with an image size ex-
ceeding the available physical memory. It also reduces the total
size of data which is read from disk and eliminates on-demand
downsampling calculations. This in turn improves the speed
with which the image is initially loaded and re-rendered after
every channel change, which is particularly important during
animations.

Once loaded, tiles may be stored for reuse in an least-recently-
used (LRU) cache with a fixed maximum capacity tuned according
to the memory available and the number of concurrent clients,
thereby allowing for better scaling when serving a large number
of clients or serving large images to multiple clients.

6. Performance

6.1. Standalone performance tests

We compared the execution time of common imaging work-
loads described in Section 3.1, 3.2 and 3.3 when data was read
from the original dataset and from a permuted copy. Measure-
ments were performed on three sets of synthetic images created
using the Astropy package (Robitaille et al., 2013) and filled with
Gaussian noise, with increasing square image area and increasing
numbers of channels.5 We performed measurements on a subset

5 Script is available at https://github.com/idia-astro/image-generator.
 d
Fig. 3. Performance speedup on SSD versus image depth for a number of
workloads described in Section 3.

Fig. 4. Performance speedup on HDD versus image depth for a number of
workloads described in Section 3.

of the 4096 square pixel images using both a PCIe 3.0 NVMe
SSD (as shown in Fig. 3) and a 5400 rpm SATA HDD (Fig. 4),
clearing the system buffer cache before each benchmark run
to ensure that results were not skewed by operating system-
controlled caching. Benchmarks were performed on an otherwise
unloaded machine, and each benchmark was run ten times, with
the average result reported.

We tested five workloads: reading a single-pixel Z profile,
reading a YZ-slice, and reading small, medium and large square
regions, defined as 0.01%, 0.1%, and 1% of the image area, re-
spectively. The coordinates of these selections within the image
were randomized for every run. The speedup of each workload
is defined as to/tp, where to and tp are the times taken to read
he data from the original dataset and the permuted dataset,
espectively.

Significant speedups are seen in all tested workloads when
permuted dataset is used, with the reading of YZ-slices and
-profiles being most affected. The region workload speedup
educes as the region size in the X and Y dimensions increases,
hich indicates that for regions above a threshold, the original
ataset should be utilized for maximum efficiency.

https://github.com/idia-astro/image-generator


6 A. Comrie, A. Pińska, R. Simmonds et al. / Astronomy and Computing 32 (2020) 100389
Fig. 5. Performance speedup versus image depth for a number of workloads described in Section 3 and a number of typical spatial dimensions, running on a cluster
with a BeeGFS hard drive-based file system.
o

We also performed measurements on the full range of images
on a cluster with a HDD-based BeeGFS file system (Heichler,
2014), as shown in Fig. 5, to show how the speedups scale at
larger image sizes. There is more variance in the results for this
test, which we believe is due to the effects of caching performed
by BeeGFS and I/O operations performed concurrently by other
users on the system.

We also performed a few basic benchmarks to demonstrate
the performance difference between 2D slice reads along different
axes from the unpermuted dataset, as described in Section 4.1.3.
When we compared random XY , XZ and YZ slice reads from a
1 k × 1 k × 1 k cube, we observed average read times of 39 ms,
504 ms and 5425 ms (respectively) on SSD, and 26 ms, 235 ms
and 9070 ms (respectively) on a BeeGFS HD-based file system. As
expected, YZ read performance was particularly poor.

We then compared the load time of a full image channel and
the duration of various downsampling tasks to the load time
of a precalculated downsampled tile, to illustrate the utility of
the mipmapped image datasets described in Section 4.1.4. In
benchmarks performed on an 8 k × 8 k image, reading a full XY
slice required on average 984 ms on SSD and 938 ms on BeeGFS,
and downsampling a 1 k × 1 k, 2 k × 2 k or 4 k × 4 k region to a
256 × 256 tile required 95 ms, 182 ms and 388 ms (respectively).
In contrast, reading a single 256 × 256 tile from disk required on
average only 30 ms on SSD and 22 ms on BeeGFS. The advan-
tage of reading pre-calculated down-sampled data (rather than
reading full-resolution images and down-sampling on demand)
is therefore significant.
6.2. Real-world performance in CARTA

To test the effect of our HDF5 schema integration on user
experience in the CARTA viewer, we performed several real-
world performance tests, comparing the speed of various tasks
performed on a series of synthetic FITS images (as described in
Section 6.1) and the same images converted to HDF5. These tests
were performed with a CARTA server process running on 8 cores
of an Intel Xeon E5-2697A v4 CPU, reading from the BeeGFS file
system.

Fig. 6 shows time taken to load the image, measured from the
moment that the request is sent to the server to the moment
when the first image is delivered to the client. The load times
show a large amount of variation, due to the effect of caching on
the BeeGFS file system. Despite this variation, there are several
trends in the load times that can be explained by the different
approaches used to load FITS and HDF5 images.

The load time for a FITS file scales with the image area A, but
remains largely independent of the number of channels D. This is
to be expected, as the server must load the image slice for a single
channel (an O(A) I/O operation), and then calculate the histogram
for the loaded data (an O(A) CPU-intensive operation). Load time
for HDF5 files scales with both A and D. This is because at present
we preload histograms and other statistics for all channels from
an HDF5 file when the image is initially loaded, requiring an
O(

√
A×D) I/O operation (as described in Section 4.1.2, the number

f histogram bins scales with
√
A), but no further histogram

calculation. In order to reduce this dependency on the number



A. Comrie, A. Pińska, R. Simmonds et al. / Astronomy and Computing 32 (2020) 100389 7
Fig. 6. Time taken to load an image in CARTA versus image depth, for three typical spatial dimensions. In order to display the image, the first channel is read from
disk. In the case of HDF5 files, per-channel histograms described in Section 4.1.2 are also read from disk.
-

Fig. 7. Channel animation frame rate in CARTA versus image width for FITS
and HDF5 files, with and without additional per-channel statistics calculations.
Square images with equal heights and widths were used.

of channels, we could instead load histograms on demand, as the
user switches channels. However, as shown in Fig. 6(c), when the
image area becomes sufficiently large, the time taken to calculate
the channel histogram for a FITS image can exceed the time taken
to load all of the channel histograms from file. Furthermore, as the
image area increases, this preload time becomes an increasingly
small fraction of the time taken to load the image data, and thus
the total loading time.

Fig. 7 shows the animation playback frame rate when con-
secutive channels are streamed to the client, with the default
widget selection and with the addition of a statistics widget
which requires full-channel statistics to be displayed for each
channel. In all cases, the frame rate is higher when an HDF5 file
is used, as a result of the preloaded channel histogram and (if
the statistics widget is open) other channel statistics. There may
be a negative impact on the animation frame rate should we
load channel statistics on demand. However, the cost of loading
statistics for a single channel is low when compared to the cost
of calculating them, and it is possible to mitigate it by preloading
several channels at once while an animation is playing.

Further improvements to HDF5 image load times and anima-
tion frame rates are expected once support for the mipmapped
datasets described in Section 4.1.4 is added to CARTA, as it will
drastically reduce the size of data that must be read from file
when the user loads a new image or switches channels. For
example, when an 8192 × 8192 image is viewed on a typically
sized 2048 × 2048 client screen viewport, only 16 MB of data
would need to be read from an HDF5 image’s mipmapped dataset,
compared to 256 MB of data for an identically sized FITS image.

7. Summary

In this paper we have presented a new HDF5 schema for
astronomical image data. We have explained our motivation for
creating this schema to support our requirements for the visu-
alization of large data from radio astronomy. We have provided
an overview of the schema and the types of data access patterns
that it supports. Tests of reading from a permuted dataset defined
in the schema show significant benefits for commonly performed
workloads, on HDD- and SSD-based file systems. Speedups in
the order of 103 have been measured for some of the workloads
tested. These performance improvements allow for better scaling,
both in terms of the number of potential users that a remote
image viewing server could support, and the size of the images
served in a performant manner. Many of the speedup factors
measured in Section 6 increase with channel count or spatial
resolution, indicating that the schema is likely to be well-suited
to SKA-scale image cubes. The schema is supported by the CARTA
software package, with ongoing development adding support for
more features defined by the schema. Subsequent developments
will focus on features of the schema that will improve image
cube loading times, and reduce the memory required to load large
image cubes.

CRediT authorship contribution statement

A. Comrie: Conceptualization, Methodology, Software, Writing
original draft. A. Pińska: Software, Writing - review & editing,



8 A. Comrie, A. Pińska, R. Simmonds et al. / Astronomy and Computing 32 (2020) 100389

V

R

D

c
t

R

A

A

C

D
F

H

H
V

J

J

J

K

M

P
R

T

V
W
W

W

isualization, Formal analysis. R. Simmonds: Writing - review
& editing. A.R. Taylor: Supervision, Writing - review & editing,
esources.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

lexov, A., Schellart, P., ter Veen, S., Van den Akker, M., Bahren, L., Grießmeier, J.-
M., Hessels, J., Mol, J., Renting, G., Swinbank, J., et al., 2012. Astron. Data Anal.
Softw. Syst. XXI 461, 283.

nderson, K., Alexov, A., Baehren, L., Griessmeier, J.-M., Wise, M., Renting, A.,
2010. PoS ISKAF2010, 062, doi:10.22323/1.112.0062. arXiv:1012.2266 [ASP
Conf. Ser.442, 53(2011)].

omrie, A., Wang, K.-S., Ford, P., Moraghan, A., Hsu, S.-C., Pińska, A., Chiang, C.-C.,
Jan, H., Simmonds, R., 2018. CARTA: The cube analysis and rendering tool
for astronomy. doi:10.5281/zenodo.3377984.

eane, R., 2016. MeerKAT Science: On the Pathway to the SKA. p. 17.
olk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D., 2011. Proceedings of

the EDBT/ICDT 2011 Workshop on Array Databases. ACM, pp. 36–47.
assan, A., Fluke, C.J., 2011. Publ. Astron. Soc. Aust. 28 (2), 150–170, doi:

10.1071/AS10031. arXiv:1102.5123.
eichler, J., 2014. An Introduction to BeeGFS. Technical Report.
an der Hulst, J., Terlouw, J., Begeman, K., Zwitser, W., Roelfsema, P., 1992.

Astronomical Data Analysis Software and Systems I, Vol. 25. p. 131.
arvis, M., Taylor, R., Agudo, I., Allison, J.R., Deane, R.P., Frank, B., Gupta, N.,
Heywood, I., Maddox, N., McAlpine, K., Santos, M., Scaife, A.M.M., Vaccari, M.,
Zwart, J.T.L., Adams, E., Bacon, D.J., Baker, A.J., Bassett, B.A., Best, P.N.,
Beswick, R., Blyth, S., Brown, M.L., Bruggen, M., Cluver, M., Colafrancesco, S.,
Cotter, G., Cress, C., Davé, R., Ferrari, C., Hardcastle, M.J., Hale, C.L., Harrison, I.,
Hatfield, P.W., Klockner, H.R., Kolwa, S., Malefahlo, E., Marubini, T., Mauch, T.,
Moodley, K., Morganti, R., Norris, R.P., Peters, J.A., Prand oni, I., Prescott, M.,
Oliver, S., Oozeer, N., Rottgering, H.J.A., Seymour, N., Simpson, C., Smirnov, O.,
Smith, D.J.B., 2016. MeerKAT Science: On the Pathway to the SKA. p. 6,
arXiv:1709.01901.

ohnston, S., Bailes, M., Bartel, N., Baugh, C., Bietenholz, M., Blake, C., Braun, R.,
Brown, J., Chatterjee, S., Darling, J., et al., 2007. Publ. Astron. Soc. Aust. 24
(4), 174–188.

onas, J., et al., 2018. MeerKAT Science: On the Pathway to the SKA, Vol. 277.
SISSA Medialab, p. 001.

iddle, C., Taylor, A.R., Cordes, J., Eymere, O., Kaspi, V., Pigat, D., Rosolowsky, E.,
Stairs, I., Willis, A.G., 2011. Proceedings of the 2011 ACM Workshop on
Gateway Computing Environments. GCE ’11, ACM, New York, NY, USA,
pp. 65–72, doi:10.1145/2110486.2110496.

cMullin, J.P., Waters, B., Schiebel, D., Young, W., Golap, K., 2007. Astronomical
Data Analysis Software and Systems XVI, Vol. 376. p. 127.

rice, D., Barsdell, B., Greenhill, L., 2015. Astron. Comput. 12, 212–220.
obitaille, T.P., Tollerud, E.J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T.,

Davis, M., Ginsburg, A., Price-Whelan, A.M., Kerzendorf, W.E., et al., 2013.
Astron. Astrophys. 558, A33.

he HDF Group, 2019. Chunking in HDF5. https://portal.hdfgroup.org/display/
HDF5/Chunking+in+HDF5. (Accessed April 24, 2020).

an Waveren, J., 2006. Real-time texture streaming & decompression.
ells, D.C., Greisen, E., 1979. Image Processing in Astronomy. p. 445.
illiams, L., 1983. ACM SIGGRAPH Computer Graphics, vol. 17, (3), ACM, pp.
1–11.

ootten, A., Thompson, A., 2009. Proc. IEEE 97 (8), 1463–1471.

http://refhub.elsevier.com/S2213-1337(20)30043-3/sb1
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb1
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb1
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb1
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb1
http://dx.doi.org/10.22323/1.112.0062
http://arxiv.org/abs/1012.2266
http://dx.doi.org/10.5281/zenodo.3377984
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb4
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb5
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb5
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb5
http://dx.doi.org/10.1071/AS10031
http://dx.doi.org/10.1071/AS10031
http://dx.doi.org/10.1071/AS10031
http://arxiv.org/abs/1102.5123
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb7
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb8
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb8
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb8
http://arxiv.org/abs/1709.01901
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb10
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb10
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb10
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb10
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb10
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb11
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb11
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb11
http://dx.doi.org/10.1145/2110486.2110496
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb13
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb13
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb13
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb14
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb15
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb15
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb15
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb15
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb15
https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5
https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5
https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb17
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb18
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb19
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb19
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb19
http://refhub.elsevier.com/S2213-1337(20)30043-3/sb20

	Development and application of an HDF5 schema for SKA-scale image cube visualization
	Introduction
	Requirements
	Common workloads
	Rendering a 2D slice
	Single-pixel profiles
	Region profiles and statistics
	Zooming and panning

	Schema
	Optional datasets
	Aggregate datasets
	Histograms
	Permuted datasets
	Mipmapped datasets and tiling

	Schema hierarchy and naming

	Integration into CARTA
	Performance
	Standalone performance tests
	Real-world performance in CARTA

	Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	References


