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Abstract

We use photometric redshifts derived from new u-band through 4.5 μm Spitzer IRAC photometry in the 4.8 deg2 of
the XMM-LSS field to construct surface density maps in the redshift range of 0.1–1.5. Our density maps show
evidence for large-scale structure in the form of filaments spanning several tens of megaparsecs. Using these maps,
we identify 339 overdensities that our simulated light-cone analysis suggests are likely associated with dark matter
halos with masses, Mhalo, log(Mhalo/Me) > 13.7. From this list of overdensities we recover 43 of 70 known X-ray-
detected and spectroscopically confirmed clusters. The missing X-ray clusters are largely at lower redshifts and
lower masses than our target log(Mhalo/Me) > 13.7. The bulk of the overdensities are compact, but a quarter show
extended morphologies that include likely projection effects, clusters embedded in apparent filaments, and at least
one potential cluster merger (at z∼1.28). The strongest overdensity in our highest-redshift slice (at z∼1.5)
shows a compact red galaxy core, potentially implying a massive evolved cluster.

Unified Astronomy Thesaurus concepts: Galaxy clusters (584); Redshift surveys (1378); Large-scale structure of
the universe (902); Galaxy cluster counts (583)

Supporting material: machine-readable table

1. Introduction

Many studies over the past few decades have shown that the
local density in which a galaxy resides affects its growth,
quenching, and morphology (e.g., Cochrane & Best 2018). The
physical mechanisms through which the environment plays a
role include gas accretion, feedback, and galaxy interactions.
At low redshift, this environmental dependence is well known,
with “red and dead” elliptical galaxies dominating in denser
environments, while star-forming spirals are more commonly
found in the field (e.g., Dressler 1980; Norberg et al. 2002; Peng
et al. 2010). Higher-z studies also show environmental trends
such as the faster buildup and quenching of more massive
galaxies in denser environments (e.g., van der Burg et al. 2013;
Etherington et al. 2017) and more generally the dependence of
the specific star formation rate (SFR) on local environment (e.g.,
Duivenvoorden et al. 2016) and large-scale environment such as
proximity to a filament (Malavasi et al. 2017; Laigle et al. 2018).

To help elucidate the mechanisms through which the environ-
ment affects galaxy and black hole evolution, we need surveys that
reach high enough redshift to sample the epochs where the bulk of

the stellar and black hole masses were assembled (the bulk of
stellar mass growth happened at z∼0.5–2; Madau & Dickinson
2014). We also need a large enough volume to sample a
representative range of environments with good statistics. Spectro-
scopic surveys are ideal because of their ability to localize galaxies
in 3D precisely; however, they do not reach to high enough
redshift with high enough sampling rates (see, e.g., the VIMOS
Public Extragalactic Redshift survey [VIPERS], for state of the art;
Guzzo et al. 2014) and tend to be biased against redder galaxies by
selection. High-quality photometric redshifts can work as shown
for the COSMOS survey (e.g., Darvish et al. 2015a; Laigle et al.
2016), but, with an area of only 2 deg2, this survey is not quite a
representative cosmic volume and suffers from significant cosmic
variance and poor statistics at the high-mass end (Moster et al.
2011; Darvish et al. 2015a; Yang et al. 2018).
The Spitzer Extragalactic Representative Volume Survey

(SERVS; see Mauduit et al. 2012, for survey definition and
early results) was designed specifically to address these issues.
With a total volume of ≈1 Gpc3 out to z∼3, this survey
reaches galaxies down to stellar masses of M*∼109.5Me at
z∼2, corresponding to the epoch of “cosmic noon,” and
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probes the full range of environments from voids to massive
clusters. The survey centers on the Spitzer IRAC data, which
sample the rest-frame near-IR out to cosmic noon and therefore
allow for accurate stellar parameter estimation (Muzzin et al.
2009). The full multiwavelength coverage, spanning from the
X-rays to the radio, allows us to derive accurate photometric
redshifts, SFRs, and active galactic nucleus (AGN) presence
and strength for our galaxies. In a series of papers, we use the
SERVS and ancillary data to explore the role of environment in
galaxy and black hole evolution.

In this first paper of the series, we construct 2D density
maps for the 4.8 deg2 XMM-LSS field, where we have the most
uniform and deep multiwavelength coverage in hand. The XMM-
LSS field is already 2.5×the size of COSMOS, with ≈300 dark
matter halos with log(Mhalo/Me) > 13.7. The existing massive
halo catalogs in this field are the X-ray cluster catalogs (Clerc
et al. 2014; Adami et al. 2018). Our density maps allow us to
construct an independent and complementary catalog of the
massive halos in this field. This is because our catalog has a
redshift-independent halo mass limit, whereas X-ray cluster
selection has a strong redshift dependence of its limiting mass. In
addition, density maps allow us to find overdensities that are not
yet virialized, X-ray-emitting halos. This paper is also a test case
of what we can do with the quality of photometric data that are
expected in the near future for a total of ≈15 deg2 spread across
four fields with matching coverage from the u band through the
mid-IR. We demonstrate our ability to recover the highest-
density peaks and even pick up some large-scale-structure-like
filaments. We stress, however, that, being based on photometric
redshifts, our overdensities are only candidates. They require
spectroscopic confirmation. This should be available for many of
these overdensities in the near future since this field is also
covered by the ongoing DEVILS and the upcoming Prime Focus
Spectrograph (PFS) spectroscopic surveys (Davies et al. 2018;
Tanaka et al. 2018), which will significantly increase the
spectroscopic coverage of the field out to cosmic noon.

This paper is organized as follows. In Section 2 we discuss the
photometric and spectroscopic data in the XMM-LSS field. We
also discuss the light cone of simulated galaxies we use to help
us interpret our observational results. In Section 3, we present
our analysis. This includes photometric redshift determination
and uncertainty estimates, as well as density map generation in
the simulated and observed data set. We present a list of 339
overdensity-selected cluster candidates and compare them with
catalogs of spectroscopically confirmed X-ray clusters in the
field. In Section 4, we give our summary and conclusions.
Throughout this paper, we adopt the Planck2015 cosmology
(Planck Collaboration et al. 2016), such that W = 0.3075m ,
ΩΛ=0.691, and H0=67.74 km s−1 Mpc−1. All magnitudes
are in the AB system.

2. Data

2.1. Photometry

Our photometric data rely on the multiwavelength coverage
of SERVS, which provides Spitzer IRAC 3.6 and 4.5 μm data
of a depth sufficient to reach below M* (based on the
compilation in Madau & Dickinson 2014) at cosmic noon
across an area wide enough to cover a representative volume of
the universe. Specifically, it reaches a 5σ point-source depth of
≈2 μJy (AB=23.1) and covers 18 deg2 spread across five
fields to combat cosmic variance (see Moster et al. 2011). Each

field has an area of ∼2–5 deg2, which allows for large extended
structures such as protoclusters and filamentary networks to be
studied (Yamada et al. 2012; Chiang et al. 2017).
In this paper we focus on the XMM-LSS field, for which a new

multiband photometric catalog has been constructed using forced
photometry (Nyland et al. 2017; K. Nyland et al. 2020, in
preparation). This catalog was constructed using the Tractor code
(Lang et al. 2016) and uses one image as a reference for the source
model, which includes positions and surface brightness profiles of
galaxies. The VIDEO Ks band is the preferred reference image for
the bulk of the galaxies, but other bands are used under certain
circumstances, such as gaps in coverage. These source models are
applied across all other bands. This method is particularly crucial
for deblending the IRAC 3.6 and 4.5μm photometry. We use this
catalog for the u-band through 4.5 μm photometry. For the longer-
wavelength photometry, including IRAC 5.8 and 8.0 μm and
MIPS 24 μm (from SWIRE; Lonsdale et al. 2003) and Herschel
SPIRE 250, 350, and 500 μm photometry, we use the band-
merged catalog published by the Herschel Extragalactic Legacy
Program (HELP; Vaccari 2016; Shirley et al. 2019).18 The HELP
team also has published photometric redshifts in the field
(Duncan et al. 2018), but this is based on their band-merged
catalog (R. Shirley et al. 2020, in preparation), as opposed to
the forced photometry catalog described above. We compare
our photometric redshifts (derived below) with the HELP
photometric redshifts. We find them to be consistent out to
z∼1; however, our IRAC deblending (thanks to the forced
photometry catalog) leads to more accurate redshifts at
z∼1–2. Therefore, in this paper we use our own photometric
redshift estimates. Since Duncan et al. (2018) use AGN
templates in their photo-z analysis, for the objects flagged as
AGNs (see below), we adopt the Duncan et al. (2018)
photometric redshifts for AGNs. We also use the spectroscopic
redshifts and quality flags (see below) as compiled in the HELP
catalog.19

In the 4.8 deg2 XMM-LSS field, there are∼1.25 million objects.
We remove stars by using the Baldry et al. (2010) –J Ks versus g–i
color cut, leaving us with ∼1.09 million nonstellar objects (see
Figure 1). In the right panel of Figure 1 we plot the differential
Ks-band number counts in the field using Tractor photometry and
compare them with the counts using the VIDEO photometry from
Jarvis et al. (2013). Tractor measures flux by fitting a surface
brightness profile, whereas Jarvis et al. (2013) use a fixed aperture.
Tractor thus collects more flux from brighter, extended sources,
accounting for the discrepancy between the two number counts at
brighter magnitudes. We also overlay the counts from our
simulated light cone (see below for details). This light cone
assumes the original depth of SERVS in the IRAC bands (see
Mauduit et al. 2012), which leads to significant incompleteness
above Ks∼23. Our current Tractor photometry, which uses the Ks

image as a reference, has allowed us to reach below the original
single-band-based photometry of SERVS. Since we rely on our
simulated light cone for analysis, though, we limit our sample to Ks

< 23 to ensure a closer comparison. This yields 441,969 galaxies.
We finally remove 16,211 additional objects classified as stars in
the Sloan Digital Sky Survey (SDSS) (but missed in Figure 1).
This leads to a final sample of 425,758 galaxies.
In this sample we also flag any AGN that we select based on

(a) X-ray counterpart (based on the Chen et al. 2018 catalog),

18 http://hedam.lam.fr/HELP
19 See also: http://www.mattiavaccari.net/df/specz/.
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(b) having AGN-like mid-IR colors, or (c) being spectro-
scopically classified as an AGN in SDSS, leading to a total of
2113 potential AGNs. AGNs are not removed from the sample
because we are interested in the effect of environment on the
incidence, type, and strength of the AGN. However, given their
typically significantly more uncertain redshifts, we exclude
them in the redshift quality assessment shown in Section 3.1
and the density map determinations in Section 3. Because the
number of AGNs is so small, this has a negligible effect on our
results.

2.2. Spectroscopic Data

The XMM-LSS field has significant spectroscopic redshift
coverage. This is primarily from the VIMOS VLT Deep Survey
(VVDS; Le Fèvre et al. 2013) and the VIMOS Ultra-Deep Survey
(VUDS; Le Fèvre et al. 2015). The VVDS and VUDS are i-band-
magnitude-selected surveys, going down to iAB=24 and iAB ;
25, respectively. These data are complemented by the VIPERS
(Guzzo et al. 2014) down to iAB=22.5, the PRIsm MUlti-object
Survey (PRIMUS; Coil et al. 2011; Cool et al. 2013) down to
iAB=23, the SDSS (Alam et al. 2015) down to iAB=21.3, the
UKIDSS Ultra-Deep Survey (UDSz; Bradshaw et al. 2013;
McLure et al. 2013) down to iAB=25, and the Australian Dark
Energy Survey (OzDES; Yuan et al. 2015) down to rAB=25.
Note that these do not all cover the full area, and targeted
campaigns, such as for cluster confirmation in the field (see, e.g.,
Adami et al. 2018), are not included. These spectroscopic data are
compiled as part of HELP and documented on their website.20 We
also supplement with redshifts from the VANDELS survey
(McLure et al. 2018; Pentericci et al. 2018), which uses the
VIMOS spectrograph down to a limit of iAB=27.5. In total,
76,016 sources in our sample have spectroscopic redshifts
available in the XMM-LSS, 16,342 of which have been flagged
as >99% reliable in the HELP catalog. This represents 3.7% of
our sample.

2.3. Simulated Data

To assess the reliability of environment measures in the
presence of photometric redshift uncertainties, we employ a
simulated catalog designed to cover an area and volume
equivalent to the SERVS survey. Our simulated data are built
from the Millennium N-body simulation (Springel 2005).
Model galaxies were constructed using the Lagos12 GAL-
FORM semianalytic model (Cole et al. 2000; Lagos et al. 2012)
using the method described in Merson et al. (2013). GAL-
FORM models the main physical processes of galaxy formation
and evolution, using the formation histories of dark matter
halos as a starting point. Our light cone covers 18 deg2 and
spans the redshift range 0.0<z<6.0, containing 1,518,854
galaxies.21 This translates to ≈400,000 in a 4.8deg2 field,
consistent with our data (after the Ks<23 cut). Galaxy stellar
mass and parent halo mass are both outputs of the light cone.
We also have simulated observations of each galaxy in the
SDSS z band, the DECam Y band, and the UKIRT J, H, K, and
Ks bands. The cosmology of the simulated light cone is
different from that which we assume for our observed sample,
but we correct for this by multiplying masses by the value of h
appropriate to each sample.

3. Analysis

3.1. Photometric Redshifts

Only ∼4% of the sources in the field have spectroscopic
redshifts (Section 2.2), so we need photometric redshifts in order to
trace the galaxy density field. We determine photometric redshifts
using the EAZY code (Brammer et al. 2008).22 EAZY compares
input photometry to a linear combination of template spectral

Figure 1. Left: separation of stars and galaxies using the J–Ks vs. g–i color cut described in Baldry et al. (2010). Right: differential Ks number counts after star
removal. The counts from Jarvis et al. (2013) are included for reference. The red dashed line indicates the Ks magnitude limit of 23, which we adopt for this work for
consistency with the simulated light cone (note that our light cone is constructed based on a 3.6 μm limited sample, not a Ks-limited one).

20 http://hedam.lam.fr/HELP

21 This light cone is publicly available on Zenodo (doi:10.5281/zenodo.3568147).
22 There are many choices here. The fact that we see comparable sNMAD and
no significant systematic biases between our photometric redshifts and those
derived for the same data set but using different models by Pforr et al. (2019)
suggests that our results are likely robust against photometric redshift code
systematics.

3

The Astrophysical Journal, 889:185 (14pp), 2020 February 1 Krefting et al.

http://hedam.lam.fr/HELP
https://doi.org/10.5281/zenodo.3568147


energy distributions realized across a range of redshifts,
returning the redshift of the combination giving the smallest
χ2 value and a redshift probability distribution function p(z) for
each galaxy. We use the EAZY template library including
emission lines and a dusty star-forming template. We evaluate
using the EAZY default redshift range 0<z<8 in steps of
0.01(1+z).

We employ an iterative zero-point correction algorithm (see
Brodwin et al. 2006; Ilbert et al. 2006) to correct for systematic
magnitude deviations between the template set and our
photometry. Here we restrict ourselves to those galaxies with
high-quality spectroscopic redshifts for efficiency of iteration.23

After determining photo-zʼs for this subsample, we compute the
median ratio between the best-fit template fluxes and the
catalog fluxes in each photometric band. We then rerun EAZY,
correcting the flux through each band by multiplying the flux
by this ratio. We iterate this process until the flux ratios
converge within 1% of unity (as in Ilbert et al. 2006). The
XMM-LSS is nearly uniformly covered by the SERVS survey
(modulo a tiling pattern) but features three separate levels of
depth in the optical from the HSC. Differences in coverage and
depth affect the relative weight of given bands in the fit and
therefore may affect the zero-point corrections. We therefore

perform this procedure separately for the HSC Wide, Deep, and
Ultradeep patches. The zero-point magnitude offsets computed
in this way are presented in Table 1. We note that these offsets
are correcting for the fact that the particular template set used
by EAZY may not be fully representative of the real galaxies
spectra, as well as for any systematic offsets in the photometry.
After the above procedure, the bulk of the sources (>96%)

show nominally excellent fits with reduced χ2<3. The p(z)
are typically single peaked but show increasing incidences of
multiple peaks with increasing Ks magnitude. By adopting a
Ks<23 cut as discussed above, we minimize the effect of
multiple significant solutions. In addition, in the density map
analysis presented in the next section, the full p(z) profiles for
each galaxy are taken into account, and therefore any
remaining sources with multiple peaks naturally have lower
weight in the density map calculation.
Our choice of using a template-based method for deriving

photometric redshifts is driven by the fact that non-template-
based methods rely more heavily on training on the spectro-
scopic sample. This requires a spectroscopic sample that is
representative of the whole. The left panel of Figure 2 shows
the optical color–magnitude diagram comparing the full
photometric catalog with the subset of galaxies with spectro-
scopic redshifts. It is clear that the spectroscopic subset is not
representative of the whole. This is further highlighted in the
right panel of Figure 2, where we show the photometric redshift

Table 1
Systematic Offsets (magdata–magtemplate) for Each Filter Used to Calculate Photometric Redshifts in the XMM-LSS Catalog

Filter OffsetWide OffsetDeep OffsetUltradeep Filter OffsetWide OffsetDeep OffsetUltradeep

u* 0.2748 0.2372 0.2472 J 0.1235 0.0894 0.1475
g −0.0031 −0.0848 −0.0742 H 0.0417 0.0024 0.0370
r −0.0161 −0.2028 −0.0610 Ks −0.1102 −0.1433 −0.1131
i −0.0534 0.0440 −0.0111 [3.6] 0.0207 0.0156 0.0016
z −0.0701 0.0662 −0.0245 [4.5] −0.0029 −0.0016 −0.0031
y 0.0306 0.0337 −0.0084 L L L L

Figure 2. Left: g–r color vs. i-band magnitude for our sample. The black points and histograms represent all galaxies in our sample, while the red points and
histograms represent just those galaxies for which we have high-quality spec-zʼs as defined in the text. Right: the photo-z distribution of our sample is shown (scaled as
indicated) as the filled blue histogram. The spec-z distribution (scaled for comparison) is plotted as the open histogram.

23 We tested using a random subsample of galaxies in our sample to avoid
using the biased spectroscopic subsample. We found no significant differences
in the resulting redshift distribution.
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distribution of all our sources compared with the spectroscopic
redshift distribution. It is clear that at redshifts of z1,
methods that heavily rely on spectroscopic redshift training will
start to fail/be less reliable. We have not explored the validity
of the observed peak in the redshift distribution at z∼1.9, but
our analysis does not extend that far; therefore, we ignore it at
this point.

3.1.1. Photometric Redshift Accuracy

We assess the photo-z accuracy in two ways (Figure 3). We
begin with the standard approach of comparing the photometric
and spectroscopic redshifts. We characterize the accuracy of
the photo-zʼs via

∣ ∣
( )s = ´

-

+

z z

z
1.48 median

1
, 1NMAD

spec phot

spec

where σNMAD (the normalized median absolute deviation) is
robust against catastrophic photo-z failure. We identify outliers
as objects with ∣ ∣- >z z 0.15spec phot (as in Dahlen et al. 2013;
Ilbert et al. 2013). Before computing σNMAD, we remove
outliers from the distribution. This helps characterize the
distribution of only those sources that had relatively successful
photo-z fits. We calculate σNMAD=0.033 for our field, with
outlier fraction foutlier=3.25% and a bias of 0.0172. We
correct for this bias when we compute our density maps.

However, this standard approach has the drawback that the
subsample with spectroscopic redshifts is not representative of
the sample as a whole in a color–magnitude diagram (Figure 2).
To overcome this, we also characterize our uncertainty using
the pair method of Quadri & Williams (2010). This method
does not give reliable outlier fractions or bias estimates but uses
the full photometric sample to compute σz/(1+z). This gives
us sufficiently large numbers, especially above z∼1, to allow
us to assess the uncertainties as a function of redshift.

The pair method exploits the observation that galaxies with
close angular separation have a significant probability of being
physically associated, while the role of line-of-sight projections
can be subtracted in a statistical sense. It works as follows. For
each galaxy in our sample, we first search for pairs separated by
2 5–15″. Galaxies often contain multiple pairs in this annulus,
so the following procedure is done for all such pairs. For each

pair we compute

( ) ( ) ( )D = - +z z z z1 , 2pair phot,1 phot,2 mean

where zmean represents the mean redshift of the pair. We then
randomly assign each object new coordinates in the field and
perform the same procedure to obtain the distribution of Δzpair
for random line-of-sight projections. Subtracting the random
distribution of Δzpair from the observed distribution of Δzpair
gives the distribution for physically associated galaxy pairs
only.24 This distribution for our full sample of z<1.5 galaxies
is shown in the middle panel of Figure 3. The width of this
distribution is a factor of 2 larger than the photo-z uncertainty
per galaxy (because we are dealing with pairs of galaxies).
In the middle panel of Figure 3, we show that a single

Gaussian can be a poor fit owing to the presence of extended
wings on either side of the peak. As discussed in Quadri &
Williams (2010), these wings likely result from the nonflat
redshift distribution of our field. We follow the recommenda-
tion of Quadri & Williams (2010) and fit the distribution by a
convolution of two Gaussians (see Quadri & Williams 2010,
for full details) centered about zero. The weighted sum of the
standard deviations of the two Gaussians gives σpair/(1+z)
using this method. For our sample, this double Gaussian is
clearly the better fit and gives an uncertainty σpair/(1+z)=
0.033, consistent with σNMAD derived above.
The right panel of Figure 3 shows the thus-derived uncertainty

as a function of redshift, in bins of Δz=0.25. We find that the
uncertainties σpair/(1+z) get significantly worse at z1.5;
therefore, for the density map analysis in the following sections,
we will restrict ourselves to 0.1<z<1.5.

3.2. Surface Density Maps: Method and Validation

We follow the method of Darvish et al. (2015b), who construct
2D density maps based on photometric (and, where available,
spectroscopic) redshifts in the COSMOS field. In this method
the surface density is estimated in redshift slices via weighted
adaptive kernel smoothing. This means that the kernel width
adapts to the local density as described below. This method allows
us to probe adaptively smaller volumes than the more commonly

Figure 3. Left: comparison of photo-z with quality spec-z for galaxies with zphot<1.5. The inset shows the distribution of Δzpair from which we derive σNMAD after
removing the outliers. Points that do not lie between the dotted red lines are considered outliers. Middle: photo-z uncertainty distribution for sources with zphot<1.5 based
on the pair analysis. The single (blue) and double (red) Gaussian fits are overlaid. The double Gaussian is clearly a better fit to the distribution and provides a weighted
σpair/(1+z)=0.033. Right: evolution of photo-z uncertainty from 0.0<z<1.6. The blue dashed line is an interpolation of the function as described in 3.2.1.

24 The characteristic velocity differences between such physical pairs are much
smaller than the photometric redshift uncertainties. Therefore, we ignore this
effect.
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used fixed-aperture “cylinders.” The weights account for photo-
metric redshift uncertainties, which helps combat the significant
smearing of the signal along the line of sight (see Muldrew et al.
2012, for a comparison between different density estimation
methods).

3.2.1. Redshift Slices

To obtain our redshift slices, we first linearly interpolate the
redshift evolution of σpair/(1+z) onto a finer grid. Starting
with z=0.1, we set the start and end points for our bins such
that each slice width is 2×σpair evaluated using the
interpolation shown in the right panel of Figure 3. We use
overlapping redshift slices so that if a given overdensity falls on
the edge in one slice and therefore is significantly scattered
outside of the slice, it will, by design, end up in the middle of
the neighboring overlapping slice. Our redshift slices and their
comoving depths are given in Table 2.

3.2.2. Weighted Adaptive Kernel Smoothing

The weighted adaptive kernel smoothing works as follows. For
each redshift slice, we identify the objects whose median photo-z
falls within that slice. We then weight each of the galaxies within
our redshift slice by the fraction of that object’s total p(z) that lies
within the slice of interest. We proceed to estimate the surface
density Ŝ ( )ri at each object’s location by summing over a kernel
K. In Darvish et al. (2015a) this kernel is a weighted 2D Gaussian
whose width starts at h=0.5Mpc but is adaptive, i.e., scaled by
the local density in a manner analogous to that described below.
We test this algorithm first by taking the public COSMOS data
and reproducing the density map around a filament at z∼0.5 that
was published in Darvish et al. (2015b). While we successfully
reproduce the results of that study, we find the code to be slow.25

We test three faster alternatives: a truncated Gaussian kernel
KG(h), an Epanechnikov (parabolic) kernel KE(h), and a top-hat
kernel KT(h). The Epanechnikov kernel is defined as

⎪

⎪

⎧
⎨
⎩

( )( ) ( ) ∣ ∣ ( )= - - <
-

r rK h
r r h

, ,
1 where

0 else,
3E i j h

r r

h i j
3

4

2i j

2

where ri is the position of the object and rj is the position of
each other object.
Following Darvish et al. (2015a), we choose an initial fixed

kernel width h for the Gaussian kernel of 0.5Mpc, which
corresponds roughly to R200 for a halo of 1013Me. For the
Epanechnikov kernel we get equivalent results using an initial
value of h=1.0Mpc. Using a fixed width would underestimate
the density in overdense regions and overestimate the density in
underdense regions, so we calculate an adaptive smoothing

width hi=h×λi for each object. Here ˆ ( )l = S rGi i , where
G is the geometric mean of all Ŝ(ri) values. To compute the
surface density in our redshift bins, we set up a regular grid in
steps of 50 kpc. Thus, 50 kpc sets the minimum scale probed by
our maps in the plane of the sky. On top of this grid, the density
maps are computed using the same kernel, but now using the
adaptive width hi. This surface density is converted to an
overdensity with respect to the median surface density Σm in the
slice as follows:

( )d =
S - S

S
. 4m

m

To help us decide between the different kernel options, we
compute density maps using exact redshifts from the simulated
light cone and the bins defined in Table 2. In Figure 4 (top
panels) we show the relation between the percentage rank of
measured 2D overdensities and dark matter halo mass (using
the main host halo mass for each galaxy in our simulated light
cone, not subhalos) for all galaxies in the range 0<z<1. For
all kernels, we find that the most overdense regions tend to
correlate with high halo masses, suggesting that we can indeed
recover the peaks of the density field with this method. To
further help us differentiate between them, we consider two
measures. The first tells us how often a significant overdensity
is observed when there is no corresponding high-mass halo
(i.e., a false-positive measure). We compute this as the fraction
of galaxies found in >80th percentile overdensities that are
located in halos with log(Mhalo/Me)<12( flowmass). The other
important measure is how closely halo mass maps onto
overdensity percentile (i.e., an accuracy measure). We compute
this as the width of the halo mass distribution for all galaxies
found in 80th percentile overdensities after removing the
galaxies in halos with log(Mhalo/Me)<12(Δhighmass). The
Epanechnikov filter performs the best in both measures,
although the differences between the three filters are fairly
minor. In the bottom panels of Figure 4, we do the same
analysis for galaxies in the range 1<z<1.5. We find that the
basic trends hold, although, as expected, the false-positive rate
is now higher. This, however, is the result of using a fixed
percentile (here 80%) in selecting significant overdensities. As
discussed below, we find that it is more appropriate to use an
evolving percentile threshold.

3.2.3. Probing the Density Field with Photometric Redshifts

Here we investigate the recoverability of true overdensities
given the uncertainties in our photometric redshifts. We choose
an arbitrary 4.8deg2 subsection of the simulation to match the
area of our XMM-LSS field and perform the density map
analysis using both the exact redshifts and redshifts minimizing
the photometric redshifts (see Figure 5). To mimic what we do
with the observed data, where we use the p(z) output from
EAZY for each galaxy, we assign an uncertain “photometric”

Table 2
Redshift Slices and Comoving Depths

Bin z-range
Depth
(Mpc) Bin z-range

Depth
(Mpc)

1 0.1 < z < 0.146 192 15 0.549 < z < 0.649 317
2 0.123 < z < 0.171 197 16 0.599 < z < 0.705 324
3 0.146 < z < 0.196 203 17 0.649 < z < 0.760 330
4 0.171 < z < 0.224 210 18 0.705 < z < 0.820 330
5 0.196 < z < 0.251 217 19 0.760 < z < 0.879 330
6 0.224 < z < 0.282 227 20 0.820 < z < 0.942 325
7 0.251 < z < 0.313 237 21 0.879 < z < 1.004 322
8 0.282 < z < 0.348 246 22 0.942 < z < 1.069 315
9 0.313 < z < 0.382 254 23 1.004 < z < 1.133 309
10 0.348 < z < 0.421 265 24 1.069 < z < 1.207 318
11 0.382 < z < 0.460 275 25 1.133 < z < 1.281 327
12 0.421 < z < 0.504 287 26 1.207 < z < 1.372 347
13 0.460 < z < 0.549 298 27 1.281 < z < 1.462 365
14 0.504 < z < 0.599 308 28 1.372 < z < 1.564 368

25 We ran timing tests and found the full Gaussian kernel to be 25×slower for
a test run of ≈103 objects compared to the alternatives listed, which all took
comparable time.
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redshift to each galaxy by drawing from a Gaussian distribution
centered on the galaxy’s exact simulated redshift zexact and a
width given by the typical width of a galaxy’s p(z).26 We note
that this is wider than σpair(z) since this incorporates outliers,
multiple-z solutions, etc. We use this wider width, as it
approximates better what we can do with the data themselves.
We know that this works since we get reasonably close
distributions of log(1+δ) between simulations and data in this
way. For a random subset of 3.25% of the objects, we assign a
redshift drawn from a uniform distribution in the range
0<z<3 to mimic the catastrophic outlier fraction. Lastly,
3.7% of the objects are given redshifts equal to their exact
simulated redshift to mimic our spec-z fraction. The latter
fraction, of course, is a function of redshift. However, it is
small enough that its role is negligible here.

Figure 5 shows an arbitrarily chosen redshift slice at
0.649 < z < 0.760, where we compare the surface density

computed using the exact redshifts versus uncertain redshifts
as determined above. This figure highlights that the main
large-scale structures and strongest overdensities are largely
preserved. This means that we are likely to recover features,
real or projected, that would appear if we had exact redshifts
given the slice width we are using. There are, however,
significant differences as well. The amplitudes of the over-
densities are generally lower in the uncertain redshift map (as
expected). This is because the uncertainty in the redshifts tends
to “smear” the signal and decrease the magnitude of over- and
underdensities. Also apparent are some weaker “false” features
in the uncertain redshifts map not present in the exact map (see
e.g., upper right end of the maps). These arise owing to real
overdensities that belong to neighboring redshift slices being
scattered into this slice by redshift uncertainties.
Next, we investigate how reliably 2D density maps

calculated including redshift uncertainties track the mass of
the host halo of the galaxies in the simulated light cone. The
left panel of Figure 6 is similar to Figure 4 in that it plots the
percentile of the overdensity in which a galaxy is found against

Figure 4. Here we use the 2D density maps calculated using the exact redshifts of the simulated galaxies to show how the overdensity percentile compares with the
host halo mass associated with each simulated galaxy. The top panels use all galaxies in the range 0<z<1, and the bottom panels use all galaxies in the range
1<z<1.5. Contours are linearly spaced and indicate constant galaxy number. These show that the bulk of galaxies that reside in high (>80th) percentile
overdensities live in high-mass halos (log(Mhalo/Me)>13, which is roughly group scale). Therefore, finding high percentile overdensities helps us find high-mass
halos. We compare this behavior using a truncated Gaussian filter (left), an Epanechnikov kernel (middle), and a top-hat kernel (right). Here flowmass is the fraction of
galaxies above the 80th percentile within log(Mhalo/Me)<12, while Δhighmass is the width of the distribution of galaxies above the 80th percentile. On both counts,
the Epanechnikov filter performs marginally better than the truncated Gaussian, while the top-hat filter is the worst performing.

26 We do not specifically simulate double-peaked distributions, as these form a
negligible fraction of the whole for our K<23 sample.
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its host halo mass. However, here the density maps are
computed using uncertain redshifts (mimicking our photo-
metric redshift errors). We again see a bimodality in this
distribution about a group scale (log(Mhalo/Me)∼13), above
which halo mass correlates with observed 2D overdensity.
However, there are two marked differences: (1) there is
significant presence of lower-mass halos in high-density parts
of the maps, and (2) there is significant range in observed
percentile per halo mass. Given the first point, we can only
reliably recover halos with log(Mhalo/Me)13.7 going to
higher percentiles in the density maps.

How reliably can we recover clusters (here defined as
log(Mhalo/Me) > 13.7)? Given the second point above, we
need to find what percentile threshold mass for finding halos
above said scale minimizes false positives and false negatives.
The middle panel of Figure 6 illustrates this further by
considering two different test thresholds aimed at finding halos
with log(Mhalo/Me) > 13.7. Here we measure N Ntrue measured,
the ratio of all halos in the simulation that meet the mass
criteria to all such halos that are recovered using the particular
percentile threshold. This ratio ideally should be ≈1, with a
value =1 showing a significant number of false positives
(suggesting that the percentile threshold is too low) and a value

?1 showing a significant number of false negatives (suggest-
ing that the percentile threshold is too high).
In the right panel of Figure 6 we show the percentile threshold

that recovers log(Mhalo/Me) > 13.7 with Ntrue/Nmeasured≈1 as a
function of redshift. This threshold increases with redshift as
expected from hierarchical halo mass growth—i.e., a high-mass
halo is more of an extreme in the density field at higher redshift
than at lower redshift. This evolving threshold is given by

( )= +zPercentile 0.355 99.4. 513.7

3.3. Observed SERVS XMM-LSS Density Maps

To compute the surface density maps for our observed data
in the XMM-LSS field, we first correct for the measured bias in
the photometric redshifts by multiplying the redshifts by
1.0172. We also generate a mask where bright stars (based on
the bright star mask of Mauduit et al. 2012), the field border,
and image artifacts are all masked. This mask brings the usable
area of the field down to 4.0deg2. For consistency, we mask a
0.8deg2 area out of the border of the simulated field. This
matches the area but obviously not the exact geometry of the
observed masked field—this is not relevant to the present paper
but needs to be considered for any large-scale structure studies.

Figure 6. Left: similar to Figure 4, but now including the uncertainty in the photometric redshifts. This has the effect of scattering galaxies from low-density
environments to high-density ones and vice versa. The group scale is no longer reliably recovered, as many galaxies in smaller mass halos are found in >80%
overdensities. If we consider the recoverability of cluster scales (here defined as Mhalo>1013.7 Me), however, they can still be recovered at higher percentile levels.
The red and black horizontal lines are two test recoverability percentiles. Middle: recoverability of log(Mhalo/Me) > 13.7 using these two test thresholds as evaluated
by Ntrue/Nmeasured (see text for details). The dotted black line corresponds to Ntrue/Nmeasured=1, which corresponds to a minimal false-positive rate—the higher red
threshold is therefore preferable by this measure. Right: median percentage ranks to recover log(Mhalo/Me) > 13.7 as a function of redshift. Note that this threshold
increases with redshift as expected from hierarchical halo growth.

Figure 5. Smoothed density maps of our simulation over the range 0.649<z<0.760 using the Epanechnikov kernel. Left: density map using exact redshifts. Right:
density map using uncertain redshifts mimicking our photometric redshift errors as described in text. These show that while the high-density peaks are weaker in the
uncertain redshifts map, overall both the peaks and the large-scale structure are preserved.
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In addition, there is some nonuniformity of coverage across the
field, in particular with about 1/3 being covered by the deeper
optical HSC-Ultradeep patch and the rest being covered by HSC-
Deep. The difference in depth in the grizy bands leads to lower
uncertainties in the photometric redshifts for the HSC-Ultradeep
patch than in the HSC-Deep patch. This means that they suffer
less smearing, and we end up seeing higher overdensities of
sources in this patch, especially at z1. We found that this
nonuniformity is minimized by using percentiles rather than the
measured overdensities in determining thresholds for finding
significant overdensities (which is why we used percentiles in
finding the threshold for selecting log(Mhalo/Me)>13.7 halos in
Section 3.2.3).

Figure 7 gives an example of a density map for the XMM-
LSS field. It shows qualitatively similar behavior to that of the
simulated maps shown in Figure 5. In particular, we see very
similar large-scale filamentary structures. We defer our analysis
of such structures to a subsequent paper in this series. We also
circle two previously known spectroscopically confirmed X-ray
clusters, both recovered by our density maps (Overdensities 69
and 92 in Table 3; see Section 3.4 for details).

3.4. Potential New Clusters in XMM-LSS

Using our density maps for XMM-LSS and the percentile
threshold for recovering halos of log(Mhalo/Me)>13.7 given in
Equation (5), we find 330 potential halos with log(M/Me)>13.7
in the range 0.1<z<1.5 (339 if we allow for a few more
clusters that may be in this range or in the slice just above). Due to
the use of overlapping redshift slices, overdensities found in
neighboring slices in overlapping R.A.–decl. locations are counted
only once. They are assigned to the slice in which they are
strongest. Our overdensities are listed along with their basic
characteristics in Table 3. Note that for overdensities selected in
more than one slice the redshift ranges given in the table
conservatively span both slices.

The redshift distribution of our overdensities is given in the
left panel of Figure 8, where overdensities spanning more than
one redshift slice (see above) are assigned to the one where they
have the highest percentile. We overlay on that the redshift
distribution of all halos with log(Mhalo/Me)>13.7 expected in
our field based on our simulated light cone. We expect 279±35
such halos in the XMM-LSS. This error bar represents the spread
in this number when drawing random 4 deg2 patches from our

18 deg2 simulated light cone and therefore approximates cosmic
variance.27 We note that, at nearly 13%, cosmic variance is
significant at this mass scale even for our relatively large field.
In the same figure we overlay the histogram derived by
applying photometric redshift uncertainties to our light cone,
generating 2D density maps and extracting likely clusters based
on the exact same procedure as applied to the real data. The fact
that this distribution recovers quite closely the simulated halo
histogram suggests that our procedure is robust in recovering
such structures.28 The recovered such structures from the
observed XMM-LSS field are also quite close—indeed, it is
only ≈18% above the expected number from the simulated
light cone (only a few percent above if we take the upper limit
from our cosmic variance test). This difference is small enough
that it can still be attributed to cosmic variance (given our
rough estimate thereof). However, it can also be due to a
nonnegligible false-positive rate. This could result from slightly
overestimating our redshift uncertainties—which means that
we have less redshift smearing and somewhat higher densities
than in the simulations.
In Table 3 we also include a morphology column that flags

overdensities that have significant spatial extent. This is computed
by making 80×80 pixel cutouts around each overdensity and
computing the fraction of that patch that is above our density
threshold. By visual inspection we chose >10% as signifying
extended overdensities. About 1/4 of our overdensities fall in this
category. These are likely to be dominated by projection effects
given the wide redshift slices, as well as the effects of large-scale
structure such as clusters apparently embedded in filaments as
shown in Figure 7. These can also include cases of cluster mergers
as discussed in Section 3.4.2.

3.4.1. Confirming Previously Known X-Ray Clusters

In Table 3 we also note which of our overdensities are
previously known in the literature. For this comparison we
looked at the XLSSC catalog of Adami et al. (2018). Within
our field and above z=0.1, there are 70 X-ray clusters that are

Figure 7. Sample XMM-LSS density map at 0.421<z < 0.504. The red circles mark two known spectroscopically confirmed X-ray clusters (Clerc et al. 2014),
XLSSC 49 and 53, both of which are located at z=0.50.

27 This is only a rough approximation since in our light cone we have <5
independent realizations.
28 Since we ultimately derive our percentile threshold on the same simulations,
this is not surprising but a good sanity check. Of course, we also assume that
the simulated light cone itself is a good representation of reality, which
previous studies suggest is the case (e.g., Lagos et al. 2012).
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spectroscopically confirmed from this catalog. We matched
these against our overdensities using a 0°.07 separation
(corresponding to ≈1.5 Mpc at z∼0.5). We also excluded
potential matches whose cluster redshift was outside the
redshift range of our overdensities (with a small padding since
clusters just outside our redshift slices would likely influence
the density map through the scatter of their photometric
redshifts). There were 53 such matches in Table 3; however,
several known clusters were matches to more than one of our
overdensities owing to the generous redshift slices. All cases
where a matched cluster was just outside the overdensity
redshift slice also had the same cluster matched to another
overdensity where it is inside the redshift slice. We chose to
keep these double matches since, as described above, massive
clusters would influence neighboring slices owing to photo-
metric redshift scatter.

Altogether there were 43 matches to unique known clusters.
These represent 61% of the X-ray clusters in the field. As shown
in the right panel of Figure 8, most of the unmatched clusters are
at lower redshifts (z<0.5), consistent with the expected lower

halo masses therein (the XLSSC catalog of Adami et al. 2018 has
a limiting cluster mass of log(Mhalo/Me)>13.3, below our halo
mass threshold, but this threshold increases with redshift,
consistent with the increased recoverability in our density maps.
For example, for the smaller subset of X-ray clusters in Clerc et al.
(2014) (which are all folded into the XLSSC catalog), we
recovered 17/21 in our density maps but found that the “missing”
four clusters were all associated with density percentiles >88%—

i.e., still significant but below our threshold for finding halos of
log(Mhalo/Me)>13.7. The clusters that are also in Clerc et al.
(2014) are marked in Table 3. In addition, our Overdensity #282
corresponds to XLSS J022303.0043622 at z∼1.22 first found by
Bremer et al. (2006). Lastly, van Breukelen et al. (2007) found a
spectroscopic cluster at z=1.454 associated with our Over-
density #311 (more on this structure below).

3.4.2. Case Studies

Detailed discussion of the clusters and large-scale structures
is reserved for a subsequent paper in this series. However, as an
illustration of the potential of our technique to find distant

Table 3
Overdensities Selected in the XMM-LSS Field

ID R.A. Decl. z-rangea Nspec
b Morphology Referencesc

1 36.7988 −5.0698 0.100-0.196 3 L L
2 36.3951 −4.2480 0.100-0.196 13 L XLSSC41.0, z=0.142 [C14, A18]
3 34.0523 −4.2236 0.100-0.196 3 L XLSSC57.0, z=0.153 [C14, A18]
4 36.4396 −4.3284 0.123-0.223 18 Extended L
5 35.3947 −4.5792 0.146-0.251 2 Extended XLSSC119.0, z=0.158 [A18]
6 35.5526 −4.2187 0.146-0.251 2 L L
7 35.0743 −4.6531 0.146-0.251 3 L L
8 34.8840 −4.5052 0.146-0.251 6 L L
9 36.4270 −4.9823 0.171-0.282 2 L L
10 35.4948 −4.4999 0.171-0.282 0 Extended L
L 35.4948 −4.4999 0.171-0.282 0 Extended L

Notes.
a The full redshift range within which overdensity is found.
b These are the only high-quality spectroscopic redshifts within a circle of 750kpc (proper) of the overdensity center.
c References are as follows: A18—Adami et al. (2018); C14—Clerc et al. (2014); B06—Bremer et al. (2006); vB07—van Breukelen et al. (2007).

(This table is available in its entirety in machine-readable form.)

Figure 8. Left: histogram of overdensities corresponding to Mhalo1013.7 within an area of 4.0deg2. The solid black line shows the distinct overdense regions above
the threshold in our sample. In purple are the distinct overdense regions above the threshold in the simulated light cone with degraded redshift accuracy. For reference,
in red is the distribution of halos with Mhalo1013.7 in the simulation in our sample as a function of redshift. The height of the red histogram is found by dividing the
18deg2 of the light cone into four quadrants and averaging the count of halos in each quadrant (scaled by 4.0/4.5). The error bars represent the maximum and
minimum count among the four quadrants to give some sense of the impact of cosmic variance. Middle: the open histogram represents the spectroscopically confirmed
X-ray clusters in the field based on Adami et al. (2018), where the minimum cluster mass is log(M500/Me)=13.3, which is below our target halo mass. The X-ray
selection leads to increasing mass limit with increasing redshift. The filled histogram represents the known X-ray clusters we recover from our density maps. The
relative dearth of recovered clusters at lower redshifts is the result of the lower cluster masses thereof. Right: separations between the positions of our overdensities and
their closest-matching X-ray clusters. Note that at z∼0.2–1, 1’ corresponds to ≈200–500 kpc. The shaded histogram shows this distribution for the nonextended
overdensities only. It is clear that these separations are largely driven by the uncertainty in the center positions of the overdensities.
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clusters, in Figure 9 we show the overdensity corresponding to
the highest-redshift X-ray-detected cluster in the field from
Clerc et al. (2014), XLSSC 029 at z=1.05, and an example of
what appears to be a compact cluster core associated with the
highest percentile overdensity in our highest-redshift bin
(1.372<z<1.564, Overdensity #336).

As discussed in Section 3.4, a quarter of our overdensities
show extended morphologies that are likely the result of
projection effects—i.e., 3D structures that are unassociated but
overlap on the sky, but they can also include interested
potentially associated structures such as cluster mergers. We
examine one of our extended sources in more detail, Over-
density #300, which is chosen because it is among our higher-
redshift structures but also has significant spectroscopic redshift
coverage. It gives us an example of how, by looking at the
structures in overlapping redshift slices, we get a coarse view of
the 3D structure.

Examining this overdensity more closely reveals a potential
cluster merger at z=1.28. This is shown in Figures 10 and 11.
In Figure 10 we show this structure in three overlapping
redshift slices shown on either side. The field had been
previously noted as overdense by van Breukelen et al. (2007),
who obtained spectroscopy of galaxies in the field with the
Keck Telescope. We find that the bipolar overdensity structure
in our maps corresponds to a peak in the distribution of
spectroscopic redshifts at z∼1.28 (bottom left), and Figure 11
shows that the distribution of objects at this redshift on the sky
corresponds well to the overdensity map. The relative line-of-
sight velocity (relative to the median in this peak) is shown on
an R.A.–decl. plot highlighting the gradient across this
structure. Component A has a median spectroscopic redshift
of 1.286 with a velocity dispersion of 670 km s−1. Component
B has a median redshift of 1.276 with a velocity dispersion of
∼1100 km s−1 (likely affected by the overlapping structure at
lower redshift clearly visible in the lower-redshift slice). Even

without correcting for this structure in its median redshift (since
we cannot cleanly disentangle these structures), the relative
velocity between these two components is 3000km s−1. To
check whether this number is reasonable for a potential cluster
merger, we compared it with the relative velocity of the
“bullet” and the larger cluster in the well-studied Bullet Cluster.
This is estimated at 2700 km s−1 (Springel & Farrar 2007). This
is the true relative velocity rather than the line-of-sight one as
in our case, but it does show that our number is of reasonable
magnitude, especially considering that the median redshift of
Component B is likely pulled down by the slightly foreground
structure.
Figure 10 also helps illustrate how structures at slightly

higher and lower redshifts “bleed” into any given redshift slice,
but the overlapping slices help us discern some of the 3D
structure. For example, Overdensity #311 sits on top of
Components A and B in the middle maps. It is, however,
increasingly stronger in the two overlapping density slices
centered at higher redshifts, suggesting that what we see here is
coming in from a strong overdensity that is actually more
distant. Indeed, van Breukelen et al. (2007) find six objects in
the field at z≈1.45, confirming that Overdensity #311 is
background to our potential merger.
This particular structure is chosen owing to the quality of

spectroscopic coverage, which makes it more likely to be a true
physical association. There are other cluster merger candidates
among our potential cluster catalog; however, many or most of
them are likely line-of-sight projections (given the wide
redshift slices). The XMM-LSS field has ongoing further
spectroscopic coverage from the DEVILS survey (Davies et al.
2018) and will have even more extensive coverage from the
planned PFS (Tamura et al. 2018) galaxy evolution survey.
These will help us further disentangle the nature of the
overdensity we find in our density maps.

Figure 9. Two distant galaxy clusters corresponding to overdensities in the XMM-LSS field. Left: field of the z=1.05 X-ray-detected cluster XLSSC 029 of Clerc
et al. (2014), with contours of overdensity 0.6 in white and 0.8 in yellow. Right: highest overdensity in the 1.372<z<1.564 redshift bin, with contours of
overdensity as follows: 0.25 in white, 0.5 in yellow, and 1.0 in orange. In both cases, the red channel of the RGB image is Spitzer IRAC 4.5 μm, the green channel the
VIDEO H band, and the blue channel the HSC ultradeep i band. The insets show zoom-ins of the compact cluster cores, with VIDEO Ks data in red, VIDEO H-band
data in green, and HSC ultradeep i-band data in blue.
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4. Summary and Conclusions

In this paper we present new photometric redshifts for the
4.8 deg2 XMM-LSS field. We use them to compute surface
density maps in the range 0.1<z<1.6. We use a simulated
light cone to assess the recoverability of true structures using
such density maps. We summarize our key results as follows:

1. Photometric redshifts at the level of ( ) ( )s + »z z1 0.03
allow us to recover dark matter halos with log(Mhalo/Me)
13.7, as we show based on a comparison with a simulated
light cone.

2. We construct 2D density maps for the XMM-LSS in 28
redshift slices covering z=0.1–1.6. These density maps
show evidence of extended overdensities, visually similar
to filaments, as well as compact overdensities likely
associated with massive halos.

3. Using an evolving percentile mass density per comoving
volume threshold that we determine from our simulated
light cone, we find 339 halos with log(Mhalo/Me)>13.7
from 0.1<z<1.6 and a peak of z∼0.8. Their number
and redshift distribution are consistent with expectations
from our simulated light cone.

4. Among our likely massive halo overdensities, we recover
43 of the 70 known spectroscopically confirmed X-ray
clusters in the field (Adami et al. 2018). The unrecovered
ones are predominantly below z∼0.4, where the X-ray

Figure 10. Potential new z=1.28 cluster merger. The middle panel shows the peak density redshift slice for this structure, with the neighboring overlapping redshift
slices shown on either side. The bottom left panel shows all available spectroscopic redshifts showing a clear peak at z∼1.28, corresponding to the middle of the peak
density redshift slice. The bottom right panel shows that Component A is behind Component B in redshift space.

Figure 11. Three-color RGB image of the field of the z=1.28 cluster merger,
with contours of overdensity in the 1.207<z<1.372 redshift slice as
follows; 0.25 in white, 0.5 in yellow, and 1.0 in orange. The red channel is
Spitzer IRAC 4.5 μm, the green channel the VIDEO H band, and the blue
channel the HSC ultradeep i band. Galaxies with spectroscopic z≈1.28 are
marked with light-blue circles.
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clusters tend to have lower masses than our target
threshold.

5. We present some interesting case studies, including a
potential massive evolved cluster at z∼1.5 and a
potential cluster merger at z∼1.28.

This paper is proof of concept on the degree to which we can
reliably probe both the local and large-scale environment of
galaxies using photometric redshifts of the quality already
achievable for moderately large area surveys such as SERVS.
The next papers in the series will use these density maps to
further quantify the presence of filaments and look at the role of
local and large-scale environment on the growth of galaxies
and their supermassive black holes.
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Appendix
Photometric Redshift Comparison

In this paper we use photometric redshifts based on the template
fitting code EAZY as described in detail in the body of the paper.
However, this may lead to a potential bias driven by the particular
choice of templates. Our zero-point offset corrections are meant to
mitigate such biases to some extent, but this correction is driven by
the available spectroscopic redshifts, which represent a biased
subset of the whole as shown in Figure 2. The HELP team
performed a more sophisticated photometric redshift analysis in
this field, considering several different template libraries and
performing a hierarchical Bayesian analysis to find the best redshift
overall. While this is clearly a more sophisticated approach, the
downside for us is that that work uses the data fusion catalogs that
adopt the single-band SExtractor IRAC photometry. However, we
now have the Tractor forced photometry (Nyland et al. 2017),
which is better at deblending IRAC sources, leading to more
accurate results, especially at higher redshifts (z>1).

In Figure 12, we show the direct comparison between our
EAZY photometric redshifts and the HELP photometric
redshifts.29 This plot shows very good agreement in the range
0.3<z<1.0 but also has significant deviations at either end
outside this range. We performed the pair analysis for the
HELP redshifts at those two ends—for the z<0.3 bin and the
z>1.2 bin, we get σ/(1+z) of 0.016 and 0.053, respectively.
At the lower-redshift end, this is better than EAZY (see
Figure 3), but in the higher-redshift bin this is much worse than
EAZY, as expected given the effect of blended IRAC
photometry therein. While there are clearly advantages and
disadvantages to both approaches, we chose our EAZY
redshifts for our analysis in particular because of this behavior
at z>1. This comparison highlights the significant biases that
can exist between photometric redshifts derived based on
different photometric catalogs and using different approaches.
Therefore, we reemphasize that the list of overdensities we
present here are only candidates. Their confirmation requires
high spectroscopic completeness out to z∼1.5 as expected

from the PFS galaxy evolution survey, which will include the
XMM-LSS field (e.g., Tanaka et al. 2018).
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