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ABSTRACT

The primary method for inferring the stellar mass (M∗) of a galaxy is through spectral energy

distribution (SED) modeling. However, the technique rests on assumptions such as the galaxy star

formation history and dust attenuation law that can severely impact the accuracy of derived physical

properties from SED modeling. Here, we examine the effect that the assumed star formation history

(SFH) has on the stellar properties inferred from SED fitting by ground truthing them against mock

observations of high-resolution cosmological hydrodynamic galaxy formation simulations. Classically,

star formation histories are modeled with simplified parameterized functional forms, but these forms

are unlikely to capture the true diversity of galaxy SFHs and may impose systematic biases with under-

reported uncertainties on results. We demonstrate that flexible nonparametric star formation histories

outperform traditional parametric forms in capturing variations in galaxy star formation histories, and

as a result, lead to significantly improved stellar masses in SED fitting. We find a decrease in the

average bias of 0.4 dex with a delayed-τ model to a bias under 0.1 dex for the nonparametric model,

though this is heavily dependent on the choice of prior for the nonparametric model. Similarly, using

nonparametric star formation histories in SED fitting result in increased accuracy in recovered galaxy

star formation rates (SFRs) and stellar ages.

1. INTRODUCTION

The ability to accurately infer the physical properties

of galaxies is critical for our understanding of galaxy

formation and evolution. Modeling the ultraviolet (UV)

to infrared (IR) spectral energy distributions (SEDs) of

galaxies is one of the main methodologies used to derive

the physical properties of galaxies such as the stellar

mass (M∗), star formation rate (SFR), and stellar age.

These techniques, pioneered by Tinsley (1968), Spinrad

& Taylor (1971), and Faber (1972), have seen an explo-

sion of interest and activity as space-based missions such

as Galaxy Evolution Explorer (GALEX) and the Hubble

Space Telescope have opened up ultraviolet and optical

wavelengths for galaxies near and far respectively. Sim-

ilarly, advances in infrared and submillimeter detector

technology have opened up infrared windows that pro-

vide constraints for SED models that consider energy

balance between UV/optical photons and thermal in-

frared emission from dust.

The abundance of panchromatic data available has

spurred the development of many SED modeling codes

(e.g. cigale; Boquien et al. 2019, fast; Kriek et al.

2009; Kriek et al. 2018, and magphys; da Cunha et al.

2008) that were developed to estimate physical proper-

ties from observed broadband data. These codes rely on

models describing the stellar populations, nebular emis-

sion, and dust content in the galaxy, along with an opti-

mization method to fit the SED and return the resulting

physical parameters

The basic components in an SED model include in-

formation about stellar populations – the stellar ini-

tial mass function (IMF), stellar isochrones and spec-

tral templates, and star formation history (SFH) – along

with emission from nebular regions and active galactic
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nuclei (AGN), dust emission, and attenuation from dust.

The robustness of an SED model and our ability to accu-

rately recover physical properties of a galaxy depend on

our confidence in each model component to accurately

capture the complexity of the many physical processes

that occur in a galaxy (see e.g. Conroy 2013, for an in

depth review).

Despite the widespread use of SED modeling by the

observational galaxy community, it remains difficult

to establish the efficacy of the technique due to the

many weakly-constrained components and relative lack

of ground-truth (see Mobasher et al. 2015 and reviews

by Conroy 2013; Walcher et al. 2011). Indeed, some

efforts have emerged in recent years to provide such a

ground-truth in the context of extensive comparisons

between SED modeling codes (e.g. Hunt et al. 2019)

or comparisons between input mock SEDs drawn from

known physical proprieties and the output properties

from SED modeling. Examples of the latter context

range from testing on a library of SEDs from an em-

pirical mock catalog (Mobasher et al. 2015; Leja et al.

2019a) to SED modeling of idealized galaxies (Hayward

& Smith 2015) and galaxies from a cosmological simu-

lation (Iyer & Gawiser 2017; Katsianis et al. 2020).

One of the more influential yet poorly constrained

components of SED fitting is the assumed form of the

star formation history (SFH) (e.g. Ocvirk et al. 2006;

Iyer & Gawiser 2017; Carnall et al. 2019). The most

common models for SFHs are parameterized by a simple

functional form, and the parameters varied in the SED

fit describe that functional form. Hereafter, we refer to

these as ”parametric” star formation histories. Exam-

ples include the τ and delayed-τ models, which model

the SFH as exponentially declining with some character-

istic e-folding time. Although these models describe the

SFHs of galaxies in a closed box (i.e. isolated with no

inflow of pristine gas) where gas forms stars with con-

stant star formation efficiency, the restricted nature of

the functional forms does not match the diversity of true

galaxy SFHs (Gallagher et al. 1984; Sandage 1986; Lee

et al. 2009; Oemler et al. 2013; Simha et al. 2014; Diemer

et al. 2017). Carnall et al. (2019) has shown the cosmic

SFR density (CSFRD) inferred from delayed-τ SFH fits

to galaxies from the GAMA survey (Driver et al. 2011)

are incompatible with the CSFRD predicted by the Uni-

verse Machine (Behroozi et al. 2019). Leja et al. (2019b)

found that the backwards-evolved stellar mass functions

(SMFs) inferred from SED fits to galaxies from the 3D-

HST survey using a delayed-τ SFH model are in tension

with observed SMFs at z= 3. The assumed SFH and as-

sociated priors can also strongly bias the inferred phys-

ical properties of galaxies (Simha et al. 2014; Acqua-

viva et al. 2015; Salmon et al. 2015; Ciesla et al. 2017;

Iyer & Gawiser 2017; Carnall et al. 2019; Curtis-Lake

et al. 2020). For instance, Micha lowski et al. (2012)

found that the assumed star formation history model

had the largest impact out of all other SED model com-

ponents on the stellar masses inferred for observations of

sub-millimeter galaxies (SMGs). Similarly Dudzevičiūtė

et al. (2020) found that the average difference between

the stellar masses predicted by the magphys SED model

and the true stellar masses for galaxies from the eagle

cosmological simulation was close to 0.5 dex. This bias,

attributed to the assumed SFH module, is consistent

with the earlier results of Micha lowski et al. (2012).

Parametric SFHs with more flexibility have also been

explored in the literature (e.g. Papovich et al. 2011;

Simha et al. 2014; Ciesla et al. 2017; Carnall et al. 2018).

One example is the log-normal parametrization, which

has been shown to reproduce the evolution of the cos-

mic star formation rate history (Gladders et al. 2013)

and provide a reasonable match to the Illustris galaxy

SFHs (Diemer et al. 2017). However, the log-normal pa-

rameterization still suffers from similar stellar age biases

as the simpler parametric forms (Ciesla et al. 2017; Iyer

& Gawiser 2017; Carnall et al. 2019; Leja et al. 2019a).

This happens because the SFH is constrained to either

have recent star formation or have a population of old

stars (Leja et al. 2019a) – a consequence of the inflexible

mathematical form. Moreover, Diemer et al. (2017) fit

a log-normal SFH directly to the SFHs of the Illustris

galaxies instead of via SED modeling where all galaxy

properties must be inferred simulatenously, thus biases

such as outshining (Papovich et al. 2001) did not affect

the fit.

An alternative to the parametric models described

above are nonparametric forms. Nonparametric SFH

models, defined as models that do not explicitly assume

a functional form, have been shown to have the flexibil-

ity to reproduce the variation in SFHs seen in observa-

tions and galaxy formation simulations. Examples in-

clude models sampled from a diverse basis of analytical

SFH models (Iyer & Gawiser 2017), flexible piece-wise

linear functions in time (Reichardt et al. 2001; Heav-

ens et al. 2004; Tojeiro et al. 2007; Kelson 2014; Leja

et al. 2017; Morishita et al. 2019; Leja et al. 2019a),

models drawn from simulations or semi-analytical mod-

els (SAMs) (Brammer et al. 2008; Pacifici et al. 2012;

Pacifici et al. 2016; Zhang et al. 2017), and models uti-

lizing machine learning methods (Lovell et al. 2019; Iyer

et al. 2019). Most early implementations of nonparamet-

ric SED fitting methods relied on spectroscopic data but

models like those presented in (e.g. Iyer & Gawiser 2017;
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Leja et al. 2017) have been shown to produce reasonable

results with broadband data only.

While ground-truth tests of parametric SFHs have

generally found poor agreement with both real and sim-

ulated SFHs, the opposite is typically true for nonpara-

metric models. Focusing on results from broadband

SEDs, Iyer et al. (2019) validated the reconstruction of

SFHs using Gaussian processes with a sample of galaxies

from the Santa Cruz SAMs and the mufasa hydrody-

namical cosmological simulation and found good agree-

ment between the mock galaxy SFHs and the SFHs re-

constructed from Gaussian processes. Leja et al. (2019b)

demonstrated that galaxies selected from the 3D-HST

photometry catalog (Skelton et al. 2014) were inferred

systematically more massive and older when modeled

with the nonparametric SFHs in prospector compared

to previously published results using parametric SFHs.

However, extensive tests and ground-truthing the results

from SED fitting have lacked either in ground-truth sam-

ple technique (as in the case of e.g. Leja et al. (2019a)

where the mock galaxy SFHs used to generate synthetic

SEDs were relatively simple), sample size, or a combi-

nation of both (as in the case of e.g. Hayward & Smith

(2015) where just two scenarios of simplified idealized

simulated galaxies were used).

Thus, in this paper, we advance our understanding of

the efficacy of SED modeling by fitting nonparametric

SFH models to mock SEDs generated from 3D radiative

transfer on a large galaxy sample from a hydrodynami-

cal cosmological simulation. First, we focus on the im-

pact of the assumed SFH on the stellar masses and other

galaxy properties inferred from SED fitting by isolating

the SED fits from dust. Specifically, we fix the dust-to-

stellar geometries in our radiative transfer calculations

and match that geometry in our SED fits to effectively

obtain the baseline uncertainties on the inferred galaxy

properties that can be attributed to just the assumed

form of the SFH model. This is distinguished from pre-

vious observationally based studies, where all compo-

nents of the SED model are necessarily tested at once.

In other words, we ignore the uncertainty from other

model components to first understand the biases and un-

certainties imposed by just the SFH model. While the

main goal of this paper is to isolate the impact of galaxy

SFHs on SED fitting techniques, specifically to ground-

truth the efficacy of various SFH models, we then briefly

generalize these results by re-running our dust radiative

transfer using the intrinsic dust-stellar geometries and

dust properties from the simulations.

The paper is organized as follows: in § 2, we describe

our numerical methods (including cosmological simula-

tions, radiative transfer, and SED fitting). In §3 we

describe the results of the SED fitting through compar-

isons to the true values from the simulations. In §4 we

discuss the results, the possible origins of fitting failures,

and the inclusion of realistic dust in the mock SEDs.

In §5 we conclude and propose a pathway towards im-

proving our dust models to better accommodate realistic

galaxies in SED fitting.

2. NUMERICAL METHODS

2.1. Overview

For this analysis, we fit the SEDs of galaxies from

a cosmological hydrodynamical simulation to determine

the robustness of stellar masses estimated from SED

modeling. The simulated galaxy SEDs are generated

with post-processing radiative transfer that propagates

the intrinsic stellar SEDs through dust in the interstellar

medium (ISM).

We fit these mock SEDs using the Bayesian inference

code prospector. We ”observe” the mock SEDs in the

same broad-band filters for all galaxies and use the same

models for stellar metallicity and dust attenuation when

fitting, so that the only difference between the results

shown below originate from differences in the assumed

star formation history model in the SED fit. In the

remainder of this section, we describe these methods in

more detail.

2.2. The simba Galaxy Formation Model

We first need a population of model galaxies to gener-

ate the SEDs from. For this, we use the simba cosmo-

logical simulation, described in full in Davé et al. (2019).

Briefly, simba is the descendant of the simulation suite

mufasa and relies on gizmo’s meshless finite mass hy-

drodynamics. New sub-resolution prescriptions for stel-

lar and AGN feedback as well as black hole growth have

enabled simba to accurately reproduce observables like

the galaxy stellar mass function and the star forming

main sequence. simba additionally includes an on-the-

fly self-consistent model for the formation, growth, and

destruction of dust that reproduces both the z = 0 dust

mass function, as well as the scaling between the dust

to gas ratio and metallicity (Li et al. 2019).

We employ a box with 25/h Mpc side length with 5123

particles, resulting in a baryon mass resolution of 1.4×
106 M�. To identify galaxies, we have employed a modi-

fied version of caesar1 (Thompson 2014). We focus on

the z = 0 snapshot, in which there are ∼ 1600 galax-

ies identified with a minimum of 32 bound star particles

with a 6D friends-of-friends galaxy finder. The choice of

1 https://github.com/dnarayanan/caesar
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Figure 1. Example powderday mock SED with ’observed’ photometric bands highlighted, spanning from GALEX FUV
to Herschel SPIRE, totaling 25 bands resulting in almost complete coverage across all wavelength regimes. All galaxies are
observed with the same filters, and photometric errors are fixed at 3%. Photometry is ’observed’ for each filter and convolved
over the filter bandwidth. We ignore NIR photometry, spanning from ∼ 2µm to 20µm, to avoid dependence on the ultra small
grain size fractions chosen for the powderday calculations.

32 star particles is motivated by the mass resolution of

this simulation. These galaxies lie within a mass range

of 4.4 × 107 − 1.4 × 1012M�.

2.3. Dust Radiative Transfer

We use the 3D radiative transfer code powderday2

(Narayanan et al. 2020) to construct the synthetic SEDs

by first generating with fsps (Conroy et al. 2009; Con-

roy & Gunn 2010) the dust free SEDs for the star parti-

cles within each cell using the stellar ages and metallic-

ities as returned from the cosmological simulations. For

these, we assume a Kroupa (2002) stellar IMF and the

mist stellar isochrones (Paxton et al. 2011; Dotter 2016;

Choi et al. 2016).

2 https://github.com/dnarayanan/powderday

Traditionally, powderday then propagates the emis-

sion from these stars through the diffuse dusty interstel-

lar medium using hyperion as the dust radiative trans-

fer solver (Robitaille 2011; Robitaille et al. 2012a). How-

ever, this then imposes the uncertainty of the diverse

attenuation laws that vary from galaxy to galaxy on our

SED fits (Narayanan et al. 2018a,b; Salim & Narayanan

2020). We therefore abandon the diffuse dust in our

powderday radiative transfer simulations, and instead

employ a dust screen surrounding all stars. This is akin

to how prospector treats dust obscuration, and there-

fore allows us to isolate the impact of the galaxy star

formation history on our SED fits. In the dust screen

setup for powderday, we assume a uniform dust screen

around all stars with an optical depth of τuniform = 0.7.

Younger stars (< 10 Myr old) have an additional as-

sumed source of extinction from their birth clouds that



SFHs & Stellar Masses from SED Modeling 5

have an optical depth of τBC = 0.7. This fiducial dust

screen model ensures an apples-to-apples comparison be-

tween the creation of the SEDs and the technique used

to fit them. We then generalize this comparison in §4.4

where we re-run our dust radiative transfer with pow-

derday using the intrinsic dust-stellar geometries and

dust properties from the simulations.

The result of the powderday radiative transfer is the

UV - FIR spectrum for each galaxy. We extract model

photometry from these dust spectra, selecting 25 bands

from the GALEX FUV filter at 1542 Å through the Her-

schel SPIRE band at 500 µm as shown in Figure 1 and

Table 1. The SED coverage is comparable to galaxies

in the e.g. CANDELS GOOD-S field (Guo et al. 2013).

And while SED coverage necessarily impacts the accu-

racy of galaxy properties inferred from SED fitting, we

leave an in-depth investigation into these factors to a

future work. Further, we fixed uncertainties to 3% of

the flux value, since the aim of this study is not to an-

alyze the effect of photometric uncertainties but rather

the systematics that arise from the use of various SFH

models.

2.4. SED Fitting

In order to model the mock SEDs generated by pow-

derday, we use the Bayesian inference code prospec-

tor3 (Leja et al. 2017, 2019a). Prospector derives

galaxy physical properties using stellar population syn-

thesis evolved with dust within the framework of fsps.

powderday and prospector rely on the same spec-

tral libraries, IMF, and stellar isochrones within fsps.

And though the assumptions made when modeling stel-

lar spectra, especially concerning the impact of late stel-

lar evolutionary stages on a galaxy’s SED, are impor-

tant and the physical parameters derived from SED can

be greatly influenced by these assumptions (e.g. San-

tini et al. 2015; Mobasher et al. 2015), this exploration

is ultimately outside the scope of this paper as we are

focusing on the targeted question of understanding the

impact of the assumed SFH on derived stellar masses.

Additionally, the use of the fiducial dust screen model

enables the subsequent SED fitting procedures and re-

sults to be isolated from assumptions about the dust at-

tenuation model. In other words, the models described

below will vary due to assumptions about the SFH only,

effectively isolating our results to the differences between

these models and providing a baseline uncertainty esti-

mate arising from just the SFH model.

prospector uses a Bayesian inference framework via

dynesty nested sampling (Speagle 2020) to fit the ob-

3 https://github.com/bd-j/prospector

Instrument Filter Effective Wavelength (Å)

GALEX FUV 1549

NUV 2304

HST/WFC3 F275W 2720

F336W 3359

F475W 4732

F555W 5234

F606W 5780

F814W 7977

F105W 10431

F110W 11203

F125W 12364

F140W 13735

F160W 15279

SDSS u 3594

g 4640

r 6122

i 7439

z 8897

Spitzer/MIPS 24 µm 232096

Herschel/PACS Blue 689247

Green 979036

Red 1539451

Herschel/SPIRE PSW 2428393

PMW 3408992

PLW 4822635

Table 1. Table of the 25 filters used to extract photometry
from the synthetic powderday spectra. Broadband fluxes
are assigned a 3% fractional uncertainty.

served SEDs and provide posterior distribution func-

tions (PDFs) for physical parameters such as stellar

mass, stellar metallicity, and star formation rate. The

power of dynesty lies in its ability to efficiently sample

multi-model distributions and have well-defined stop-

ping criteria based on evaluations of Bayesian evidence

ensuring model convergence. Below we describe the SED

model components and their prior distributions, which

are summarized in Table 2. Because dynesty is based

on Bayesian inference, all results in our analysis are sam-

pled from the resulting PDF from the nested sampling

iterations (as opposed to so-called ’best-fit’ parameters

quoted by a χ2 minimization algorithm), with uncer-

tainties quoted as the 16th through 84th percentiles of

the posterior distributions.

2.4.1. Star Formation History

prospector includes several models for a galaxy’s

SFH, including the commonly used delayed-τ model,

along with flexible nonparametric models. The non-

parametric models are constrained by priors that can
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Model Parameters Prior Distribution

Delayed τ Age Uniform(0.01, 13.8) Gyr

τ LogUniform(0.001, 10) Gyr−1

SFH Delayed τ+burst Age, τ As above

Burst time as a fraction of age Uniform(0.5, 1.0) * Age

Burst M∗ fraction Uniform(0.0, 5.0) * M∗

Constant Age As above

Nonparametric M∗ fraction per time bin (N = 10) Dirichlet

Concentration parameter α Fixed at 0.7

M∗ - Z Gallazzi et al. (2005) Log(M∗ formed) Uniform(7, 13) M�

Stellar Metallicity Z∗ ClippedNormal(-1.9, 0.19)

Dust Emission Draine & Li (2007) Minimum radiation field Umin Uniform(0.1, 30)

Warm dust fraction γ Uniform(0.0, 1.0)

PAH mass fraction qPAH Fixed at 5.86%

Dust Absorption Fixed Dust Screen Uniform dust screen opacity τuniform Fixed at 0.7

Birth cloud dust opacity τBC Fixed at 0.7

Powerlaw index Fixed at -0.7 (uniform) & -1.0 (birth cloud)

Table 2. Table of SED models and associated parameters and prior distributions for prospector SED fitting. All powderday
SEDs are fit four separate times with a different SFH model. Three commonly used parametric SFH models are considered
(delayed-τ , delayed-τ with a burst component, and a constant SFR across time) in addition to a nonparametric SFH model.
The dust and stellar mass−stellar metallicity models are kept the same between runs though the parameters are allowed to vary.

either enforce continuity (i.e. the SFH is smooth rather

than bursty) or that allow for episodes of SF bursts.

We show the prior probability distribution for one such

model in Figure 2. As a means for comparison, we con-

sidered three simple parametric star formation histories,

an example of which is also shown as a prior probabil-

ity distribution in the left panel of Figure 2. All star

formation history models used in this analysis are de-

scribed in depth in Carnall et al. (2019) and Leja et al.

(2019a), while we provide a more top level view here.

Three commonly used parametric models are considered

(delayed-τ , delayed-τ with a burst component, and a

constant SFR across time) as well as a nonparametric

SFH model.

Delayed−τ : The delayed-τ model is an exponentially

declining SFH, parameterized by the e-folding time that

is informed by a log-uniform prior. The free parameters

for this model also include the stellar mass formed by the

galaxy and the maximum age of the stellar population.

Delayed−τ + burst: This is the same as above but

including a random burst of star formation. During a

burst, some fraction of mass is formed in an instanta-

neous burst of star formation.

Constant: The constant star formation history

model is set to a uniform value for all times. These

are often used for modeling star forming galaxies at

high redshift.

Nonparametric: The nonparametric SFHs as imple-

mented in prospector fit for the fractional stellar mass

formed in a particular time bin, independent of the total

mass formed (i.e. the shape of the SFH is separate from

the normalization). For this model, the marginal prob-

ability distribution on the specific star formation rate

in each bin follows a Dirichlet prior centered on a con-

stant SFR(t). The time bins can be adjusted in both

number and size by the user, but remain fixed during

the fit. An additional parameter, called the concentra-

tion parameter, is required to specify the prior and con-

trols the concentration of stellar mass formation across

time bins. Lower concentration values (∼ 0.2) result in

more bursty star formation histories, while higher values

(∼ 1.0) result in smoother SFHs. We chose a value of

0.7 to allow for short timescale variations in the SFH,

though we briefly explore the impact of this prior choice

in Appendix A. We also choose 10 time bins spaced log-

arithmically in time motivated by Ocvirk et al. (2006)

who found that the ability to distinguish separate stellar

populations is proportional to their difference in age in

logarithmic time. The last two bins do not follow this

prescription and instead span the previous 100 Myr and

100 − 300 Myr, allowing for a minimally young popula-

tion of stars. The choices for this model are motivated

largely by the the impact of each choice on the priors

for sSFR and stellar age: priors that are too narrow in

inferred property space can result in biased estimates

while priors that are too wide can hinder model conver-

gence. Though this model depends on the choice of time

bins, as shown in Appendix A of Leja et al. (2019a) and
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our Appendix A, the stellar masses inferred from this

model are robust against perturbations in the number

and spacing of time bins while the assumed prior on the

fractional masses has a much larger impact. We will

refer to this model as ’nonparametric’ throughout our

following analysis.

2.4.2. Metallicity and Dust

Dust and metallicity also significantly impact the SED

of a galaxy. Below we describe the models for each com-

ponent. The same models and parameter prior distribu-

tions are used for each of the SFH model fits.

Metallicity: Following Leja et al. (2019b), we use

a prior on the stellar metallicities as a modified ver-

sion of the stellar mass−stellar metallicity relationship

from z = 0 Sloan Digital Sky Survey (SDSS) data (Gal-

lazzi et al. 2005). In practice, fsps, and subsequently

prospector, will effectively assume a uniform metal-

licity across the galaxy for all time, constrained by the

stellar mass−stellar metallicity relation. This is in con-

trast to the metallicity and chemical enrichment history

present in the simba simulation and prospector stel-

lar SEDs, where each star particle in a galaxy has an

individual metallicity that contributes to the galaxy’s

overall enrichment history. This complexity has yet to

be implemented in most SED fitting codes in part due to

the degeneracies arising between metallicity, dust, and

stellar age.

Dust Emission: Constrained by energy balance,

where the thermal emission from dust in the far-infrared

is assumed to be equal to the stellar light absorbed by

dust (da Cunha et al. 2008), dust emission is modeled

following Draine & Li (2007), which describes dust emis-

sion using three parameters: Umin which is the the min-

imum radiation field strength in units of the MW value,

qPAH which is the mass fraction of dust in PAH form,

and γ which is the fraction of dust in high radiation

fields. Umin and γ are allowed to vary in the fits, but

the PAH mass fraction is fixed to the true value (5.86%)

because the synthetic PAH spectra are not sampled.

Dust Attenuation: The dust attenuation model

is fixed to match the powderday dust screen model.

Thus the SEDs have a uniform dust component with an

optical depth of 0.7 affecting all stars and a birth cloud

dust component affecting young stars (less than 10 Myr

old) with an optical depth of 0.7.

3. RESULTS

We fit SEDs for all SFH models described above. The

following sections detail the results of the output of each

SED fit from the fiducial run (i.e. with dust attenuation

fixed to the true model). In general, we find that the

commonly used parametric SFHs struggle to reproduce

the physical properties of the simba galaxies, including

the stellar mass, mass-weighted age, and the recent rate

of star formation. For instance, the three parametric

models systematically under-estimate the stellar masses

of the simba galaxies by 0.4 dex on average. The prop-

erties mentioned above are directly dependent on the

assumed SFH model: the stellar mass is the integral of

the SFH across time (modulo the fraction of stars that

now exist as stellar remnants and mass loss from post

main sequence stars) and will depend on the amplitude

of the SFH across time. The mass-weighted age of the

galaxy will depend on the the shape of the SFH and the

SFR depends only on the SFH over the last 100 Myr.

We examine the efficacy of each SFH model to recover

the above properties in the following sections.

3.1. Stellar Mass Recovery

In Figure 3, we examine the impact of the star for-

mation history model on the derived stellar mass (M∗)

of our galaxies. In the top plot, we show a compari-

son between the stellar masses inferred from the vari-

ous SFH models described above. The contours show

the delayed-τ , delayed-τ+burst, and constant paramet-

ric star formation histories, while the orange points show

the distribution of galaxies when using the flexible non-

parametric SFH model. We compare the derived M∗ on

the y-axis to the true M∗ on the x-axis. The derived

quantities are the median of the stellar mass PDF for

each galaxy. The stated biases for each model is the

average offset between the inferred stellar mass and the

true value. The scatter is the 1σ standard deviation of

this distribution.

The nonparametric models recover the true stellar

masses with significantly better accuracy afforded by the

flexibility of the SFH model. To quantify this, we use

two plots to show the improved accuracy and uncer-

tainty estimates afforded by the nonparametric model.

On the bottom left, we show the cumulative inferred

stellar mass offset for each SFH model. The stellar

masses inferred from the nonparametric model have are

all within 0.4 dex of the true stellar mass, compared

to the stellar masses inferred from the τ models which

suffer larger offsets. On the bottom right, we show the

fraction of true stellar masses contained within the 1σ

region of each galaxy stellar mass posterior, i.e. the true

stellar mass falls between the estimated 16th and 84th

mass percentiles. In other words, the uncertainty quan-

tified by the stellar mass posterior width includes the

true stellar mass. While the stellar mass PDFs inferred

from the nonparametric SFH capture the true stellar

mass for 50% of galaxies, the PDFs from the τ models

include the true stellar mass value for only 20% of galax-
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Figure 2. Left: Prior probability distributions for the nonparametric SFH model and the Delayed-
tau model. Middle: Effective prior distribution on the specific star formation rate averaged over the last 100 Myr. Right:
Effective prior distribution on the mass-weighted stellar age. The constant SFH mass-weighted age prior is not computed as
this is simply 0.5×tH .

ies. The other 80% of galaxies have a stellar mass that

is offset from the true value with error bars that do not

capture the true value. Thus the reported model uncer-

tainties do not reflect the systematic biases imposed on

the inferred galaxy properties.

These three plots demonstrate the significantly im-

proved accuracy afforded by the nonparametric SFHs as

compared to the traditional parametric forms. Though

M∗ is traditionally considered the most robust property

derived from SED fitting, the results here paint a differ-

ent picture: parametric SFHs fail at recovering the true

stellar mass for a majority of galaxies, across all stel-

lar mass ranges, even when we fix the dust attenuation

model to be the same in the SED generation and SED

fits. Furthermore, the uncertainties associated with the

inferred physical properties from parametric SFHs tend

to be under-reported because the model priors and sub-

sequently posteriors are highly informative. Meaning,

stellar masses inferred from parametric SFH models will

be systematically under-estimated with under-reported

uncertainties (i.e. the uncertainties do not increase with

increasing bias). The average offset in stellar mass for

the nonparametric model is −0.02 dex with an aver-

age uncertainty of 0.11 dex, whereas for the delayed-τ

model, these values change to 0.38 dex and 0.19 dex

respectively.

3.2. Star Formation History Recovery

A natural question is how well a given model recovers

the true star formation history of a galaxy. In Figure 4,

we show a randomly chosen galaxy’s SFH and compare

the recovered SFH for both a parametric and nonpara-

metric SFH model. For this particular galaxy, the non-

parametric model reasonably matches the true SFH with

the median fit (solid, orange line), and the 1σ region (or-

ange shaded region) also capturing the stochastic behav-

ior in the true SFH over short time scales. The median

delayed−τ model, however, fails to match the amplitude

of the true SFH over much of cosmic time, which will

result in an inferred stellar mass that is over-estimated.

The 1σ region for the delayed−τ also covers the true

SFH but shows the large dispersion in SFH solutions

throughout the fit.

That the nonparametric star formation histories are

more accurate at recovering the stellar mass of a galaxy

is mainly attributed to the fact that they are signif-

icantly more flexible and thus better at describing the

various star formation histories seen in the simba galaxy

formation simulation. With only a small number of pa-

rameters describing the width and location of the curve,

the three parametric SFHs (delayed-τ , delayed-τ with a

burst component, and constant), struggle to match the

true SFH for most galaxies. This will affect not only

the stellar masses inferred from each model but also the

stellar ages and SFRs. The two delayed-τ models strug-

gle to match the true SFHs that rise over time, as only

very large values of τ allow for a slower decline at late

times.

For massive galaxies (M∗ > 1011M�) at z = 0, the ex-

ponential decline of the parametric SFHs can match the

true galaxy SFHs at late times as these massive galaxies

are typically quenched or quiescent, but only at the ex-

pense of missing the large, extended early periods of star

formation and thus missing out on the bulk of formed

stellar mass. The lower mass galaxies tend to be bluer,

star forming galaxies with SFHs ill-suited for the expo-

nential decline at late times, so that the true SFHs are

not well recovered and the stellar mass estimates will be

worse, a point confirmed by Figure 3.

Building on Figure 4, in Figure 5, we compare the off-

sets between the inferred SFHs and the true SFHs for

all galaxies again for the nonparametric model and the

delayed-τ model. The solid lines refer to the median

offset for the entire galaxy distribution for each model

while the shaded regions include the 16th through 84th

percentiles. The offsets were calculated between the me-

dian model SFH and the true SFH in 100 Myr inter-

vals over the entire history. The median SFH offsets for
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(a)

(b) (c)

Figure 3. Top: Comparison of inferred stellar M∗ to true stellar M∗ of simba simulated galaxies for all SFH models. The bias
is the average offset between the inferred stellar mass and the true. The scatter is the 1σ standard deviation of this distribution.
The masses inferred from the nonparametric SFH are shown in orange. Light blue contours show the delayed−τ + burst SFH
(a parametric model). Right panel is the same as left but green contours are for the constant SFH model and dark blue contours
show the delayed−τ model. Contour levels for the three parametric models highlight the 16th, 50th, and 84th percentiles. The
black dashed line is the 1:1 relation (i.e. the ideal case where the inferred mass perfectly matches the true mass). Bottom Left:
Cumulative fraction of galaxies with inferred M∗ offsets. The stellar mass offsets are calculated as the absolute value of the
difference between the log(inferred M∗) and log(true M∗). Bottom Right: Fraction of true galaxy M∗ that are within 1σ of
the median inferred M∗ for each SFH model, where 1σ includes the 16th through 84th percentiles of the stellar mass posteriors.
The stellar mass PDFs inferred from the nonparametric model capture the true stellar mass for more than 50% of galaxies,
compared to just 20% for the τ models.
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Figure 4. Star formation history for an example galaxy.
The true galaxy SFH is shown in black. Two of the model
SFHs are shown, the nonparametric in orange and the para-
metric (delayed-τ) is shown in blue. The 50th percentile
value is shown as the solid line while the shaded regions in-
clude the 16th through 84th percentiles.

Figure 5. Comparison of the SFH residuals normalized by
stellar mass of all galaxies for the nonparametric model and
the delayed-τ model across time. The black dashed line rep-
resents the ideal scenario of a perfect match. Offsets were
calculated between the median model SFH and true SFH ev-
ery 100 Myr across the entire history. The solid lines refer
to the median offset for each model while the shaded regions
include the 16th through 84th percentiles. The nonparamet-
ric model outperforms the delayed-τ model on average for all
times.

both models are centered around zero for most of cosmic

time, but the delayed-τ model has a much larger disper-

sion. Iyer & Gawiser (2017) found similar results with

the Dense Basis nonparametric SFH method for stellar

mass, SFR, and stellar age when fitting mock broad-

band SEDs from simulations and a sample of galax-

ies from CANDELS and comparing these results using

SpeedyMC (Acquaviva et al. 2011a, 2015).

3.3. Ages and Star Formation Rates

The mass-weighted stellar age of a galaxy depends on

the shape of the SFH, and the accuracy these inferred

properties therefore depends on the model SFH accu-

rately matching the true galaxy SFH. We show the off-

sets from the true values for the mass-weighted stellar

ages and star formation rates, along with stellar mass,

in Figure 6. The offsets are defined as the difference be-

tween the median inferred value for each property and

the corresponding true value for each galaxy. The M∗
offsets are shown in the left, alongside the offsets in star

formation rate over the last 100 Myr in the middle, and

the mass-weighted stellar age on the right, derived from

the average of the inferred SFHs over the last 100 Myr

and the full SFH, respectively.

The nonparametric model shows significantly better

fits for each galaxy property when compared to the para-

metric models. The stellar mass is the most robustly in-

ferred property, followed by the SFR and mass-weighted

stellar age. The parametric models struggle to match

all three properties simultaneously. For example, the

constant SFH tends to capture the late time SFR of

the simba galaxies, but the mass-weighted stellar ages

cannot be accurately derived as the age inferred from

a constant SFH is just 0.5×tH . All three parametric

models systematically under-estimate the stellar mass

and mass-weighted age of all galaxies. This bias is a

consequence of the use of strong priors and the behavior

of these priors when fitting photometry that tends to

prefer younger stellar populations, as shown in Figure 2

and (Carnall et al. 2019; Leja et al. 2019a). A drawback

of the delayed-τ -like models is the trade off between cor-

rectly inferring stellar age or SFR for a declining SFH.

Unless the prior space is manipulated to allow for a ris-

ing SFR by, e.g., allowing for very large τ values (as in

the case of (e.g. Acquaviva et al. 2011b; Ciesla et al.

2017; Aufort et al. 2020)), the SFRs will be biased low.

On the other hand, the SFRs may be correctly inferred

if the peak of the SFH is placed relatively close to the

time of observation, but this will occur at the expense

of inferring the correct stellar age.

4. DISCUSSION

On average, the nonparametric SFH model outper-

forms the parametric SFHs on all metrics, including re-

covering the M∗, mass-weighted stellar ages, and late

time star formation rate of the simba galaxies. The

flexible nonparametric model used here is able to more
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(a) (b) (c)

Figure 6. Offsets from the true values of inferred galaxy properties. Properties inferred from the nonparametric model lie
much closer to offsets of 0 than the parametric models. The stated biases for each model is the average offset between the
inferred galaxy property and the true value. The scatter is the 1σ standard deviation of this distribution. Left: Inferred stellar
mass offsets for each SFH. 13% of galaxies fit with a constant SFR have M∗ offsets > 1 dex. Middle: Same as left but for star
formation rate over the last 100 Myr. Right: Same as left and middle but for mass-weighted age. Note that the mass-weighted
age for the constant SFH is 0.5×tH , so we neglect plotting this inferred distribution.

accurately infer the physical properties and growth his-

tories of galaxies from the simba cosmological simula-

tion. The flexibility of the nonparametric model, com-

pared to the relatively inflexible parametric models, is

twofold: (1) the time resolution allows the SFH model to

describe the shorter timescale fluctuations in the galaxy

SFH and (2) the prior on the fractional SFR in each time

bin results in effectively unbiased priors on sSFR and

stellar age. Though the priors on these properties are

not flat, they are unbiased in the sense that the center

of the prior distributions do not prefer high or low val-

ues for each property; the median of the mass-weighted

stellar age distribution is centered on the Madau & Dick-

inson (2014) estimate of the median stellar age derived

from the cosmic star formation rate density while the

median sSFR is centered at log(1/tuniv) ∼ −10.1/ yr

which corresponds to a constant SFR. This latter point

is in contrast with the τ models, where younger stellar

populations are preferred due to the priors imposed on

the shape of the SFH.

Moreover, the danger in applying a τ model to a sam-

ple of galaxies lies in the false constraints on galaxy

properties imposed by the SFH priors. This results in

biased inferred galaxy properties with under-estimated

uncertainties (i.e. the uncertainties do not increase with

bias). In this section, we discuss the ways in which

each SFH model impacts the inferred galaxy properties

and why some models perform better than others. We

also discuss the importance of carefully chosen priors

when fitting SED photometry, for both nonparametric

and parametric SFH models, and briefly discuss how in-

cluding diffuse dust in this analysis impacts the inferred

stellar masses.

4.1. Parametric Models

All three parametric SFH models considered (con-

stant SFR across time, delayed-τ exponentially declin-

ing SFH, and delayed-τ with an additional burst compo-

nent) have been shown to systematically under-estimate

the stellar masses of the simba galaxies. This is true for

galaxies of all masses and specific star formation rates.

We show the stellar mass offsets as a function of galaxy

stellar mass in the top right panel of Figure 7 for the two

delayed-τ models (the constant model is neglected for

the sake of clarity). The solid lines refer to the running

median of the stellar mass offset distribution for each

model. The τ models systematically under-estimate the

stellar masses by approximately 0.4 dex for all galaxies.

Compared to previous studies on the effect of assuming

a parametric SFH model (e.g. Pforr et al. 2013; Carnall

et al. 2019), our inferred stellar mass offsets for the τ

models are similar. Pforr et al. (2012) found average

stellar mass offsets of 0.6 dex for mock galaxies at z∼0.5

when reddening effects were considered. Ruling out un-

realistic dust and age solutions lowered these median

offsets to 0.2 dex. Though we could, in principle, apply

a correction for the offset in the τ models, we choose

not to do so because such a correction would depend

on the model assumptions made here, both in the SED

fitting procedure and in the simba model, and because

the scatter of the tau stellar mass distributions are suf-

ficiently large. Our aim of this analysis is not to provide

correction estimates for SED models or to advocate for

any one set of SED models or parameters but to provide

ground-truth tests for these assumptions. Additionally,

for real observations, due to the complex degeneracies

in SED fitting, an inaccurately inferred SFH typically
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Figure 7. left: A binned 1:1 stellar mass comparison including uncertainties for high mass galaxies. The sizes of the points
reflect the number of galaxies in each bin. The average uncertainties for each mass bin cover the biases for the nonparametric
model, while the uncertainties are smaller than the biases for the parametric models for the highest mass bins. Top Right:
Stellar mass offset as a function of true stellar mass (left) and metallicity offset (right). Bottom Right: Inferred SFRs as a
function of inferred metallicities for the delayed-τ and nonparametric SFH models.

means the inferred dust, metallicity, nebular properties,

etc. are also wrong. An overall correction applied to

mass is not only dependent on the model assumptions

in this analysis, but ultimately it is unsatisfactory be-

cause stellar mass is not the only output that depends on

an accurate SFH and would otherwise negatively impact

results inferred for real observations.

The inability of the parametric models to accurately

recover the stellar mass of the simba galaxies is a conse-

quence of the restrictive nature of these models. We find

that unless the inferred e-folding time is sufficiently large

to allow prolonged star formation, especially at early

times, the stellar masses recovered from these models

will be under-estimated. A by-eye analysis of the library

of star formation histories measured from the simba sim-

ulation show that the τ and delayed-τ SFH models are

a poor match for a majority of the star forming galaxy

population at redshift z = 0 unless the e-folding time

is sufficiently large (τ ∼ 5 Gyr−1) to model the slow

decline of quenching or to model a rising SFH. This is a

consequence of the specific galaxy formation models im-

plemented in simba but is not unique to simba or galaxy

formation simulations in general. While a delayed-τ

SFH model may match the SFR over time of an iso-

lated closed-box galaxy (i.e. no gas inflows or outflows

such that star formation is an exponential function of the

in-situ gas mass and gas depletion time), it is not flexi-

ble enough to describe the shorter timescale fluctuations

seen in both simulated and observed SFHs. Flexibility

in the form of additional bursts of SFH or the use of a

lognormal model with a large volume of parameter prior

space to sample from as presented in Diemer et al. (2017)

can result in more accurate stellar masses, but do not

remedy the wide dispersion in late-time SFR and stellar

age as discussed below. And though the photometry in-

ferred from each model is a reasonable fit to the observed

SEDs, the inferred stellar masses differ from the true val-

ues by −0.38 dex on average. Again focusing on the τ

models, the inferred value of τ and the placement of the

peak of the SFH will impact the inferred stellar age and

recent SFR. These models can also under-estimate the

recent SFR of the galaxy by several orders of magnitude,

evidenced by Figure 6(b), and severely under-estimate

the age of the galaxy in order to match the observed

SFR, evidenced by Figure 6(c). These biases are driven

by the strong priors such that the parametric model is

forced between including either recent star formation or

an older population of stars, but not both unless the

model is distorted and forced away from an exponential

decline. The strongly peaked priors are also responsible

for the uncertainties that do not increase in step with

biases. We show in the left panel of Figure 7 a binned

1:1 stellar mass plot, zoomed in to show galaxies in the

highest mass bins. The size of the points represents the

number of galaxies in each bin. The uncertainties for

a majority of the bins do not compensate for the large

biases seen with either τ model.
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4.2. Nonparametric Model

Again in the top right panel of Figure 7, we show the

stellar mass offsets for the nonparametric SFH model

in orange. This model, in contrast with the parametric

models, achieves much more accurately inferred stellar

masses for galaxies of all masses. The average stellar

mass offset improves from 0.38 dex with the delayed-

τ model to under 0.1 dex for the nonparametric model.

We note the increasing trend the magnitude of offsets for

high mass galaxies (M∗ > 1011M�). However, only 20

galaxies populate this region of stellar mass space so it

is difficult to draw conclusions about the performance of

this model on high mass galaxies. We show a zoomed-in

1:1 stellar mass plot for these galaxies in the left panel

of Figure 7. Though the stellar mass offsets grow for

increasing stellar masses, the uncertainties increase in

step for the nonparametric model.

For the handful of high mass galaxies in this particular

simba snapshot, star formation has effectively stopped

anywhere between 1 and 4 Gyr ago. To accurately in-

fer the stellar mass of a galaxy, the model must match

the true SFH at early times when the older stars that

dominate the stellar mass are formed. However, early

bursts of star formation, even for prolonged periods of

time, do not leave obvious artifacts on a galaxy’s SED,

so accurately matching the early SFH is difficult for any

SED model. Anecdotally, many of the massive galaxies

from this simba snapshot experienced prolonged peri-

ods of enhanced star formation peaking at ∼ 100 M�
yr−1 around 10−12 Gyr ago that are not recovered well

by any star formation model considered here. This is

demonstrated in Figure 8, where we show the distribu-

tions of the average sSFR over the first 2 − 4 Gyr for

the simba galaxies compared to the inferred early sSFRs

from two of the SFH models. As explored in (Iyer et al.

2019), inferred star formation rates from more than a

couple Gyr ago are dominated by the prior set on the

SFH rather than the fit to photometry, as little evidence

exists in the observed SEDs of these early star forming

episodes. This problem is not unique to prospector

or the nonparametric SFH model used here but to all

models as SFHs are only minimally informed by broad-

band photometry due to lack of SED features left by

old stellar populations. The distribution of early sS-

FRs inferred from nonparametric SFH model is nar-

rowly peaked at log(sSFR)∼ −10.5, so that galaxies

with smaller or larger sSFRs at early times will have

inferred stellar masses that deviate from the true value

as long lived stars with solar masses or lower will domi-

nate the stellar mass content of a galaxy.

For galaxies that are actively star forming, the prob-

lem of ’outshining’ will augment the above difficulties, as

Figure 8. Distributions of the average sSFRs between the
first 1.5 − 4 Gyr. The true distribution for the simba galax-
ies is shown by the gray histogram. Top: Nonparametric
inferred sSFR posteriors for 300 randomly selected galaxies.
The prior distribution on early sSFR is shown in the bold
maroon line. Bottom: Same as the top panel, but for the
delayed-τ model. The prior distribution is shown in the bold
light blue line with individual posteriors drawn in dark blue.

the massive stars that are formed recently will outshine

the older stellar populations that dominate a galaxy’s

stellar mass such that the inferred stellar mass will be

heavily dependent on the priors informing the stellar age

distribution (e.g. Papovich et al. 2001; Pforr et al. 2012).

In other words, the stellar masses inferred for these sys-

tems are dominated by the constraints from the prior

(shown in Figure 2 and Figure 8) in addition to the con-

straints from photometry. In both cases, for quiescent

and actively star forming galaxies, the underlying cause

of the differences in model and true stellar masses is

the inability to capture early, prolonged star formation

activity with the model SFH.

Besides the assumed SFH, assumptions about a

galaxy’s stellar metallicity and the mapping from metal-

licity to the SED will also impact the inferred stellar
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mass. In this analysis, we used the Gallazzi et al. (2005)

stellar mass− stellar metallicity relation. However, as

noted in §2.4, this relatively simplistic model does not

entirely capture the growth history of the simba galax-

ies as the simulated star particles have metallicities that

are neither uniform nor static through time. Though we

isolated our results from the inclusion of a diffuse dust

component, in truth our assumptions in this metallic-

ity model will also impact the stellar masses inferred

by prospector. In the top right panel of Figure 7,

we show the stellar mass offsets as a function of the

stellar metallicity offsets. The solid lines refer to the

running median of each distribution. For the sake of

comparison, we take the true galaxy metallicity to be

the mass-weighted stellar metallicity for each galaxy.

This way, we have an aggregate metallicity to compare

to the inferred stellar metallicities. We see a strong

inverse correlation between the offset distribution for

galaxies fit with the nonparametric model but not for

either parametric model. This trend is also seen in fits

where the stellar metallicity is not tied to the stellar

mass. One explanation for this is the inability of the

uniform and static metallicity model to recover the dis-

tribution in true stellar metallicities. A model describ-

ing the chemical enrichment history of galaxies could

be implemented but would be minimally constrained by

broadband photometry and most likely highly degen-

erate with the SFH and dust model. In the absence

of dust, stars with lower inferred metallicity will have

excess UV compared to stars with higher inferred metal-

licity. This change in UV light in the SED can impact

both the inferred star formation rate, and to a lesser

degree, the inferred stellar mass. In Figure 7(c) we see

that a trend also exists between the inferred SFR and

metallicity from the nonparametric model, where gen-

erally galaxies with larger inferred SFRs will have large

metallicites. These recent SFR bins are covariant with

metallicity and allowing freedom in these, which is not

allowed by the tau models, introduces a covariance with

stellar mass could explain the trend we see in Figure

7(b).

4.3. Model Priors, Uncertainties, and Degeneracies

An underlying theme of this analysis is the flexibility

afforded by the nonparametric SFH model. This flexi-

bility is in the form of both model variability and min-

imally informative (i.e. only moderately peaked) pri-

ors. Here, we briefly comment on the dependence of

our results on the choice of hyper-parameters for the

nonparametric model (concentration of mass formation,

number of times bins). We also comment on the change

in performance in the presence of additional uncertain-

ties from the stellar population synthesis models and

observational noise.

4.3.1. Tuning of the Nonparametric Model

The nonparametric model hyper-parameters and

other priors described in §2.4.1 were chosen for maxi-

mum flexibility. While the choice of prior for the degree

of mass concentration (i.e. large variations over short

timescales vs. a smoother SFH) matters for the non-

parametric SFH (Appendix A), we find that the results

presented here are not heavily dependent on the choice

of time bins. The priors on either end of the spectrum

in terms of favoring smooth SFHs result in stellar mass

offsets that are smaller than the parametric models but

are much larger compared to the fiducial nonparametric

SFH model used in this analysis. The choice of prior is

equivalent to constraining the shape of the SFH; thus

the strongest prior on the inferred stellar mass is set

by the choice of a SFH form that a priori assumes a

certain shape, as is the case for the parametric models.

Moreover, the priors on the τ model parameters (i.e. τ

and the time at which the SFH peaks) generally cannot

be tuned to a given data set because (i) that could ex-

clude large regions of parameter space for the inferred

properties and (ii) the parameters couple differently in

different contexts. For instance, if we want to do well

in recovering SFHs for galaxies with rising SFRs at late

times, we could impose a prior on τ that would favor

large e-folding times. But this would necessarily bias the

results against galaxies that do not have rising SFHs.

Furthermore, the influence of the priors of the paramet-

ric model parameters like τ and tage on the subsequent

galaxy physical properties are not straightforward; set-

ting an uninformative prior on τ will not result in a

flat prior on SFR, sSFR, or stellar age. The effective

priors on galaxy properties are primarily driven by the

choice of a declining exponential form in the first place.

Comparing the delayed-τ model to the simpler τ model,

which does not allow for rising SFHs even with large τ ,

Wuyts et al. (2011) found little difference between ages

and stellar mass functions inferred from either model,

especially for galaxies subjected to outshining. In other

words, modifying the τ model to allow for rising SFRs

did not result in significantly better results for stellar

mass or age. Because the nonparametric model does

not favor any SFH shape beforehand, the model can

tackle the wide diversity of SFHs as seen in simba and

elsewhere.

4.3.2. Uncertainties from Stellar Evolution and
Observational Noise

A major source of uncertainty in SED modeling

originates from stellar evolution; the choice of stellar
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isochrones, spectral libraries, and initial mass function

(IMF) contribute to large uncertainties in stellar mass

(e.g. Conroy 2013; Pforr et al. 2013; Santini et al. 2015).

Our results have been independent of these uncertain-

ties since we mirror the stellar population synthesis

(SPS) models between the synthetic powderday SEDs

and the SED modeling with propsector. One such

aspect of SPS modeling is the assumed stellar IMF.

Re-modeling the powderday SEDs with a mismatched

IMF (Chabrier (2003) vs. Kroupa (2002)), we find that

even in the presence of SPS uncertainty, the distribution

of stellar mass offsets between the nonparametric model

and the delayed-τ model remain clear (Appendix B).

However, the assumed stellar IMF is just one component

of an SPS model. The assumed stellar spectral library,

and whether to use an empirically based or theoretical

library, along with the choice of stellar isochrones have

been shown to impart serious uncertainties on inferred

stellar masses (Conroy et al. 2009). These uncertainties

stem from difficulty in sampling rare stars (e.g. mas-

sive, low metallicity) and stars in relatively short-lived

phases (e.g. thermally-pulsating AGB stars) as well

as difficulties in modeling stellar atmospheres to pro-

duce theoretical spectra. The issue of how to model

thermally-pulsating AGB stars is of particular interest

as it has been shown to largely impact inferred stellar

masses since these stars dominate the near-IR luminos-

ity of intermediate-aged galaxies (Maraston et al. 2006;

Conroy et al. 2009).

Further observational uncertainties on inferred stellar

masses originates from photometric noise, especially for

data sets containing spectral line and continuum infor-

mation. The additional information provided by spec-

tra helps to discern different stellar populations and

provides more information about the metal content in

galaxy, potentially helping to avoid degeneracies be-

tween these parameters. However, spectra tends to suf-

fer from calibration issues and the information provided

by spectra is dependent on the signal-to-noise of said

spectra. Though we do not consider spectra from neb-

ular emission in this analysis, we conduct a brief test

of the performance of the SFH models in the presence

of noise by perturbing the input broadband photometry

points within the 3% uncertainties. We show in Ap-

pendix 11 that fits to these noisy SEDs produce results

similar to the above analysis, thus the results presented

here, isolated from additional sources of uncertainty,

hold. However, in future work we will conduct a more

in-depth investigation into how these results change as

a function of varying signal-to-noise and SED coverage;

and for a thorough investigation into the efficacy of these

models for varying signal-to-noise ratios of mock empir-

ical spectra, see Leja et al. (2019a).

4.3.3. Uncertainties from Model Degeneracies

How an SED model handles degeneracies between

model parameters and their mapping to the observed

SED is a large difference between the parametric and

nonparametric SFH models studied here. For the para-

metric SFHs, placing a strong prior on, e.g., the shape

of SFH will affect the properties derived from the model

and the correlations between properties by ruling out

certain parameter combinations from the beginning.

Though this can break degeneracies between, e.g., dust

and stellar age, it is done so through strongly peaked

priors with little physical basis and results in strongly

biased predictions. For instance, we see in Figures 2

and 6(c) that the parametric models all favor younger

stellar populations than the true ages even in the ab-

sence of realistic dust, an aspect of the τ model priors

noted by Carnall et al. (2019). Because many degener-

ate, though physically plausible, solutions are ruled out

a priori by the model choice (e.g. two stellar popula-

tions produced by two separate star bursts), the inferred

uncertainties on galaxy properties like stellar mass are

under-estimated, as shown in Figures 3(c) and 7(a). The

nonparametric SFH, on the other hand, is subject to

the same degeneracies but do not impose such strong

biases on inferred properties as a result of the carefully

applied priors. In the Bayesian framework, an overly

complex model will provide unconstrained results; thus

if the chosen number of time bins is too great relative to

the input information or the model solutions are highly

degenerate, the galaxy properties inferred with a flex-

ible nonparametric SFH model will return increasingly

larger posteriors. We see evidence of this in the middle

panel of Figure 7, where average uncertainties for some

of the high stellar mass bins extend more than 2 dex.

Focusing on the stellar mass inferred from the

prospector SED fits, the non-uniform sensitivity to

variations in the SFH of a galaxy make it difficult to

untangle the contribution of old stars, young stars, and

metallicity, and dust to the integrated SED of a galaxy

and can result in inaccurately inferred galaxy properties.

It is worth restating that the results from the specific

implementation of nonparametric SFHs presented here

outmatch the accuracy of the three commonly used

parametric forms considered, as shown in Figures 3 and

6. The use of more simple parametric SFH forms to de-

termine the physical properties of galaxies will result in

systematically biased stellar mass estimates with SFRs

and stellar ages that are not well constrained, even in a
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best case scenario of 25 broadband photometry points

and a constrained dust model.

4.4. The Impact of Diffuse Dust

The results discussed so far do not consider the im-

pact of diffuse galactic dust on the inferred stellar mass

from SED modeling. Instead, we forced the powder-

day dust radiative transfer simulations to employ a dust

screen model around stars in order to force an apples-to-

apples comparison with the SED fitting techniques that

also model dust via a screen model. This allowed us to

isolate the differences between the input powderday

SEDs and the output prospector SEDs and focus on

how the assumed SFH model affects the inferred stellar

mass. However, by neglecting the true dust distribu-

tion and dust-to-star geometry, we under-estimate the

uncertainty with which we can infer the stellar mass of

a galaxy. In this section, we now briefly explore how

including diffuse dust impacts the results presented so

far (noting that a full exploration of the impact of dust

attenuation will be presented in future work).

4.4.1. Diffuse Dust Radiative Transfer

For the exploration of diffuse dust on our results, we

use powderday to perform radiative transfer on the

simba galaxies, as described in §2.3. In this situation,

however, we abandon our initial assumption of a uniform

dust optical depth for all stars. Instead, the fsps stel-

lar SEDs are propagated through the dusty ISM. The

diffuse dust content is derived from the on-the-fly self-

consistent model in simba (Li et al. 2019), and this dust

is assumed to have extinction properties following the

carbonaceous and silicate mix of Draine & Li (2007),

that follows the Weingartner & Draine (2001) size dis-

tribution and the Draine (2003) renormalization relative

to hydrogen. We assume RV ≡ AV/E(B − V ) = 3.15.

We do not assume further extinction from sub-resolution

birth clouds. PAHs are included following the Robitaille

et al. (2012b) model in which PAHs are assumed to oc-

cupy a constant fraction of the dust mass (here, modeled

as grains with size a < 20Å) and occupying 5.86% of the

dust mass. The dust emissivities follow the Draine & Li

(2007) model, though are parameterized in terms of the

mean intensity absorbed by grains, rather than the av-

erage interstellar radiation field as in the original Draine

& Li model.

4.4.2. Impact of Diffuse Dust on the Inferred Stellar Mass

To include the impact of diffuse dust in this analysis,

we again fit the simba broadband SEDs with prospec-

tor, this time allowing a flexible dust attenuation curve

following the parametrization presented in Kriek & Con-

roy (2013). In Figure 9, we compare the stellar mass

Figure 9. Distribution of stellar mass offsets for the dust
screen models (filled histograms) and the models including
diffuse dust and a variable dust attenuation curve (unfilled
histograms). The median and 1-σ width of each distribution
is shown.

offsets from two of the SFH models with and without

diffuse dust for a subset of simba galaxies. The stellar

masses inferred from the nonparametric SFH model are

only marginally affected by the addition of diffuse dust.

The difference in the median of the distribution of stellar

mass offsets between the two data sets is statistically in-

significant. The delayed-τ model, on the other hand, is

significantly affected by the addition of diffuse dust: the

magnitude of stellar mass offsets extends to just over

1 dex. And while, like the nonparametric model, the

median of the stellar mass offset distribution remains

largely unchanged for the dealyed-τ model, the disper-

sion of the distribution has increased, such that a larger

fraction of galaxies have larger offsets compared to the

SED fits without diffuse dust.

The addition of diffuse dust and variable attenuation

curve increases not only increase the number of model

parameters prospector must fit simultaneously, but

introduces degeneracies between model parameters that

are difficult to untangle, even with the constraints on,

e.g., stellar metallicity in place. The addition of diffuse

dust amplifies the drawbacks of using a parametric SFH

model shown previously. In future work, we will explore

these drawbacks in detail by considering a flexible dust

attenuation curve to capture the diversity of attenuation

curves present in the Universe and to follow up this anal-

ysis by determining the impact of observational sources

of uncertainty on inferred galaxy properties.

5. CONCLUSIONS
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We have used simulated galaxies from the simba cos-

mological simulation to understand our current ability

to infer the stellar mass of a galaxy with SED modeling.

In particular, we assessed the impact of the star forma-

tion history model in SED fitting. We considered four

SFH models, three commonly used parametric models

and one nonparametric model, included in the prospec-

tor modeling framework. We have demonstrated that

the biases in stellar mass estimates decreases signifi-

cantly with the use of nonparametric SFHs, falling below

0.09 dex for a majority of modeled simba galaxies. The

conclusions from our analysis are:

• Stellar masses derived from the prospector non-

parametric SFH models are much more accurate

on average than those derived from parametric

models, for galaxies of all stellar masses, ages,

and morphologies. Figure 3(a) shows the median

derived M∗ for galaxies assuming different SFHs

models. We find that the offset between the in-

ferred M∗ and the true M∗ decrease from 0.4 dex

on average when modeled with a delayed-τ SFH

to −0.02 dex when modeled with a nonparametric

SFH. Outliers exist for galaxies at the high mass

end, caused by failures to recover early periods of

intense star formation. An important note is that

while our results improve when using this particu-

lar nonparametric model, the differences between

nonparametric and parametric begin to smear out

once diffuse dust, noise, and other model uncer-

tainties are considered. That said, we present

here an estimate for the baseline M∗ uncertainties

achievable with current broadband SED models.

• Parametric SFHs suffer from biases that are larger

than their associated uncertainties, as explored in

this analysis and in, e.g., Simha et al. (2014);

Salmon et al. (2015); Carnall et al. (2019) and

Curtis-Lake et al. (2020). The danger in apply-

ing a delayed-τ SFH to a sample of galaxies, aside

from the relatively poor match to true SFHs on

average, lies in the false constraints imposed on

galaxy properties by the SFH priors. As shown in

Figure 3(c), we find that the nonparametric SFHs

tend to capture the true mass value within the 1σ

M∗ posterior width for a much higher fraction of

galaxies compared to the three parametric models

considered.

• Nonparametric SFHs in prospector are also able

to match the true simba SFHs across time sig-

nificantly better than the parametric models, as

shown in Figure 5. This increase in accuracy is

owed to the well-constrained (i.e. through the

choice of prior) flexibility permitted by the non-

parametric model, so that the SFR at any one

epoch is not determined by the SFR at another

time. Mass recovery can be further improved by

using more discerning data such as spectra or nar-

row band photometry, which could provide better

constraints for early star formation activity.

Though the nonparametric SFH model used here out-

performed the other parametric models on all metrics,

it is important to note that these models must be used

carefully. As described in Leja et al. (2019a), the priors

that are chosen to constrain a nonparametric SFH are

the primary drivers of the size of the inferred M∗ pos-

terior. For the nonparametric models in prospector,

this means that the stellar mass posteriors, while wider

than those of the parametric SFH models, are able to

capture the true stellar mass of the simulated galaxies

at much higher fractions. The prospector nonpara-

metric priors, including the Dirichlet prior chosen for

this analysis, perform much better than the parametric

SFHs across the board but the degree to which this per-

formance improves is dependent on the choice of prior,

as shown in Appendix A.

The difficulty in SED modeling lies in the fact that the

star formation history is only moderately constrained

by broadband photometry, so priors must be carefully

implemented to allow a diverse range of SFHs to be

modeled while simultaneously fitting for dust and other

model parameters. On this point, the prospector non-

parametric models are significantly better than the para-

metric SFHs used here and some more simplistic imple-

mentations of nonparametric SFHs at producing mean-

ingful error bars thanks to the carefully chosen priors

and SED modeling can only benefit from other thought-

ful implementations of model priors. Finally, cosmo-

logical simulations can play an important role in future

work to constrain priors not only for SFHs but also dust

attenuation laws. We can also develop nonparametric

models for dust attenuation in a similar way but the

increase in computational resources and model degen-

eracies warrant caution. As such, we hope to explore

further improvements to SED modeling and deriving

physical properties from broadband photometry.
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APPENDIX

A. NONPARAMETRIC SFH HYPER-PARAMETERS

Figure 10. Cumulative fraction of galaxies with inferred stellar mass offsets for Left: varying numbers of time bins and Right:
prior on fractional mass per time bin used in the nonparametric SFH model. The data presented in this analysis is shown by
the dashed lines.

The nonparametric SFH used in this analysis (described in full in Leja et al. (2019a) along with all other models

available in prospector) is described by N bins of constant SFR, where N = 10 and the fraction of mass formed

in each bin of star formation is constrained by a transformation of the Dirichlet prior (Betancourt & Girolami 2013)

parametrized by α, which sets the concentration of mass formation. Modulating the value of α modulates the preference

for all stellar mass to be formed in one bin (α < 1) vs. a smoother distribution of stellar mass (α > 1). In practice,

the fractional mass formed in each bin is fit, as opposed to the actual value of mass formed in each bin, so as to avoid

sampling from a large volume of prior space and to separate fitting the shape of the SFH (done by the fractional mass)

from the surviving stellar mass (the normalization of the SFH). Many tests were run to determine the dependence of

the inferred stellar masses on these hyper-parameters. Figure 10 shows the inferred stellar mass offsets for different

choices of time bins and priors. We also include summary statistics in Table 3. The choice of priors includes changing

α in the Dirichlet prior along with a different prior distribution, called the Continuity prior, which favors small changes

between adjacent time bins of star formation (similar to Dirichlet priors with large α values though star formation

between bins is explicitly tied to each other). The dominant factor is the choice of prior constraining the fractional

mass in each time bin, highlighting the importance of choosing a prior suited to a particular data set.

The continuity prior was tuned in Leja et al. (2019a) to galaxy SFHs from the Illustris hydrodynamical simulation.

As recently presented in Iyer et al. (2020), galaxy SFHs in Illustris have less power on short timescales compared

to galaxies from simba. This means that simba galaxies tend to have more fluctuations on short timescales, so

implementing a SFH prior favoring small fluctuations would tend to give worse stellar mass estimates. Furthermore,

because the ’correct’ choice of prior for any sample of galaxies, both simulated and observed, will change depending

on the class of galaxy (star forming vs. quiescent, local vs. high redshift), we do not suggest that the particular priors

we imposed on the simba data set will be correct for all galaxies.
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SFH Model Dataset / Model Median M* Offset

Nonparametric

Concentration Parameter 0.2 0.22 ±0.12

0.7a -0.02±0.13

1.0 0.08±0.13

continuity prior 0.24±0.15

Time Resolution 3 bins -0.06±0.21

6 bins -0.03±0.12

10 bins -0.02±0.13

12 bins -0.03±0.14

Initial Mass Function Kroupa 2002 -0.02±0.13

Chabrier 2003 -0.04±0.21

Noisy SED 3 % uncertainties -0.02±0.13

Perturbed w/3% unc. 0.15±0.72

Delayed-τ

Initial Mass Function
Kroupa 2002 -0.39±0.12

Chabrier 2003 -0.48±0.89

Noisy SED 3 % uncertainties -0.39±0.12

Perturbed w/3% unc. -0.47±1.16

aFiducial model choices are highlighted in bold.

Table 3. Summary statistics for SED models with differing parameter choices. Median stellar mass offsets are shown for
each SED model distribution with the associated 1σ width and the fiducial model choices are highlighted in bold. The choice
of prior for the nonparametric model (Dirichlet+concentration parameter and continuity prior) have the largest effect on the
stellar masses inferred from the nonparametric model. Using a perturbed input SED or a mismatched IMF slightly increase the
median stellar mass offsets for each respective SFH model, though effectively each distribution is smeared out by the increased
uncertainty in the inputs/model. Concentration parameter : The concentration parameter controls for the distribution of mass
formation across bins. Low values (α < 1) prefer to put all of the weight in one bin while higher values more evenly ditribute
the weight across all bins. The continuity prior is an alternative nonparametric model prior available in prospector and favors
smoother SFHs, explicitly weighting against sharp changes in mass formation between adjacent time bins. Time resolution:
The nonparametric model depends on a choice of time bins, both in number and location. Based on Ocvirk et al. (2006), we
set our time bins to be evenly spaced in logarithmic time and focus on the impact the time resolution (number of bins) has on
the inferred stellar masses. IMF and Noise: For both the nonparametric and delayed-τ SFH model, we tested the impact of
the assumed initial mass function (IMF) and the input SED noise level.

B. VARIATIONS IN THE SPS MODEL AND SYNTHETIC SEDS

To quantify the impact of the assumed stellar population synthesis (SPS) model, we changed the model IMF in

prospector to no longer match the IMF used in the powderday radiative transfer. Though the IMF represents just

one uncertainty in an SPS model, the impact on the inferred stellar mass offsets is noticeable for both parametric and

nonparametric SFH models, shown in the left panel of Figure 11 with statistics given in Table 3. Even so, the average

galaxy has a more accurately inferred stellar mass from the nonparametric model than the delayed-τ model. An IMF

change, to first order, is a multiplicative offset in stellar mass with no change to the observed photometry. Switching

from a Kroupa (2002) IMF to a Chabrier (2003) will decrease the mass by 0.03 dex; fitting a Salpeter (1955) IMF to

photometry generated from a Chabrier (2003) IMF would consistently over-estimate masses by 0.2 dex.

Similarly, we simulated the effect of photometric noise on the inferred stellar mass. This was done by modulating

the input photometry within the 3% uncertainties. Again, we see noticeable decreases in accuracy from both nonpara-

metric and parametric SFH models when noise is added, though the nonparametric SFHs continue to outperform the

traditional parametric models, with offsets extending to 1.5 dex.
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MNRAS, 365, 74

Oemler, Augustus, J., Dressler, A., Gladders, M. G., et al.

2013, ApJ, 770, 63

http://arxiv.org/abs/astro-ph/0608003
https://doi.org/10.5281/zenodo.12157
http://arxiv.org/abs/astro-ph/0506539
https://iopscience.iop.org/article/10.1088/0004-637X/770/1/64
https://iopscience.iop.org/article/10.1088/0004-637X/770/1/64
http://academic.oup.com/mnras/article/446/2/1512/2892706/Should-we-believe-the-results-of
http://academic.oup.com/mnras/article/446/2/1512/2892706/Should-we-believe-the-results-of
http://arxiv.org/abs/1809.04088
http://stacks.iop.org/0004-637X/838/i=2/a=127?key=crossref.bc28ec9eed1ded968aa34464fe32ad0e
http://stacks.iop.org/0004-637X/838/i=2/a=127?key=crossref.bc28ec9eed1ded968aa34464fe32ad0e
https://doi.org/10.3847%2F1538-4357%2Fab2052
http://arxiv.org/abs/2001.06025
http://arxiv.org/abs/1406.5191
https://iopscience.iop.org/article/10.1088/2041-8205/775/1/L16
https://iopscience.iop.org/article/10.1088/2041-8205/775/1/L16
https://science.sciencemag.org/content/295/5552/82
https://doi.org/10.3847%2F1538-4357%2Fab133c
http://arxiv.org/abs/1609.09073
https://iopscience.iop.org/article/10.3847/1538-4357/ab1d5a
https://iopscience.iop.org/article/10.3847/1538-4357/ab1d5a
http://arxiv.org/abs/1906.09277
http://arxiv.org/abs/1108.6058
https://iopscience.iop.org/article/10.3847/1538-4357/ab1d53
https://iopscience.iop.org/article/10.3847/1538-4357/ab1d53


22 S. Lower et al.

Pacifici, C., Charlot, S., Blaizot, J., & Brinchmann, J. 2012,

Monthly Notices of the Royal Astronomical Society, 421,

2002. https://academic.oup.com/mnras/article-lookup/

doi/10.1111/j.1365-2966.2012.20431.x

Pacifici, C., Kassin, S. A., Weiner, B. J., et al. 2016, ApJ,

832, 79

Papovich, C., Dickinson, M., & Ferguson, H. C. 2001, The

Astrophysical Journal, 559, 620.

http://stacks.iop.org/0004-637X/559/i=2/a=620

Papovich, C., Finkelstein, S. L., Ferguson, H. C., Lotz,

J. M., & Giavalisco, M. 2011, MNRAS, 412, 1123

Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192,

3

Pforr, J., Maraston, C., & Tonini, C. 2012, Monthly Notices

of the Royal Astronomical Society, 422, 3285.

https://academic.oup.com/mnras/article-lookup/doi/10.

1111/j.1365-2966.2012.20848.x

Pforr, J., Maraston, C., & Tonini, C. 2013, MNRAS, 435,

1389

Reichardt, C., Jimenez, R., & Heavens, A. F. 2001,

Monthly Notices of the Royal Astronomical Society, 327,

849. https://academic.oup.com/mnras/article-lookup/

doi/10.1046/j.1365-8711.2001.04768.x

Robitaille, T. P. 2011, Astronomy & Astrophysics, 536,

A79, arXiv: 1112.1071. http://arxiv.org/abs/1112.1071

Robitaille, T. P., Churchwell, E., Benjamin, R. A., et al.

2012a, A&A, 545, A39

—. 2012b, A&A, 545, A39

Salim, S., & Narayanan, D. 2020, arXiv e-prints,

arXiv:2001.03181

Salmon, B., Papovich, C., Finkelstein, S. L., et al. 2015,

The Astrophysical Journal, 799, 183. https:

//doi.org/10.1088%2F0004-637x%2F799%2F2%2F183

Salpeter, E. E. 1955, ApJ, 121, 161

Sandage, A. 1986, A&A, 161, 89

Santini, P., Ferguson, H. C., Fontana, A., et al. 2015, ApJ,

801, 97

Simha, V., Weinberg, D. H., Conroy, C., et al. 2014,

arXiv:1404.0402 [astro-ph], arXiv: 1404.0402.

http://arxiv.org/abs/1404.0402

Skelton, R. E., Whitaker, K. E., Momcheva, I. G., et al.

2014, ApJS, 214, 24

Speagle, J. S. 2020, MNRAS, arXiv:1904.02180

Spinrad, H., & Taylor, B. J. 1971, ApJS, 22, 445

Thompson, R. 2014, pyGadgetReader: GADGET snapshot

reader for python, , , ascl:1411.001

Tinsley, B. M. 1968, ApJ, 151, 547

Tojeiro, R., Heavens, A. F., Jimenez, R., & Panter, B.

2007, Monthly Notices of the Royal Astronomical

Society, 381, 1252. https://academic.oup.com/mnras/

article-lookup/doi/10.1111/j.1365-2966.2007.12323.x

van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011,

Computing in Science Engineering, 13, 22

Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020,

Nature Methods, 17, 261

Walcher, C. J., Groves, B., Budavari, T., & Dale, D. 2011,

Astrophysics and Space Science, 331, 1, arXiv: 1008.0395.

http://arxiv.org/abs/1008.0395

Weingartner, J. C., & Draine, B. T. 2001, ApJ, 548, 296

Wuyts, S., Förster Schreiber, N. M., Lutz, D., et al. 2011,

ApJ, 738, 106

Zhang, H.-X., Puzia, T. H., & Weisz, D. R. 2017, ApJS,

233, 13

https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2012.20431.x
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2012.20431.x
http://stacks.iop.org/0004-637X/559/i=2/a=620
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2012.20848.x
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2012.20848.x
https://academic.oup.com/mnras/article-lookup/doi/10.1046/j.1365-8711.2001.04768.x
https://academic.oup.com/mnras/article-lookup/doi/10.1046/j.1365-8711.2001.04768.x
http://arxiv.org/abs/1112.1071
https://doi.org/10.1088%2F0004-637x%2F799%2F2%2F183
https://doi.org/10.1088%2F0004-637x%2F799%2F2%2F183
http://arxiv.org/abs/1404.0402
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2007.12323.x
https://academic.oup.com/mnras/article-lookup/doi/10.1111/j.1365-2966.2007.12323.x
http://arxiv.org/abs/1008.0395

