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A B S T R A C T   

Accurate estimates of orchard evapotranspiration (ET) and its components are important for precise irrigation 
scheduling, irrigation system designs, and optimal on-farm water allocation particularly in water-limited envi
ronments. Direct measurements of ET remain costly, laborious and sometimes difficult to apply over heteroge
neous surfaces such as crop fields. Therefore, accurate crop water-use models are required for on-farm precise 
water resources management. In this study, we adopted and improved the Priestley-Taylor Jet Propulsion 
Laboratory (PT-JPL) model developed by Fisher et al 2008 to estimate crop water use across different apple 
plants. Specifically, the model was developed to quantify the partitioning of apple orchard water use into 
beneficial (tree transpiration) and non-beneficial water use (orchard floor evaporation) as influenced by tree 
canopy cover. Data were collected in twelve orchards spread across key apple producing regions in the Western 
Cape Province of South Africa over three growing seasons (2014/15, 2015/16, 2016/17). Model ET estimates 
were tested against ET data measured; using the eddy covariance method and transpiration measured based on 
sap flow monitoring techniques. The results showed that the original Fisher PT-JPL model performed poorly in 
ET estimation across all the orchards under study. The model yielded lower R2, ranging from 0.02 to 0.64 and 
Nash-Sutcliffe Efficiency (NSE) from -10.93 to 0.20. Thus, we subsequently improved the model by incorporating 
soil moisture and vapour pressure deficit stress factors and by introducing a variable Priestley and Taylor co
efficient (α). The modified PT-JPL model demonstrated an improvement in ET estimates. The root mean square of 
error (RMSE) of the estimated daily ET varied from ±0.60 mm/d to ±1.99 mm/d whereas the mean absolute 
error (MAE) varied from ±0.49 mm/d to ±1.91 mm/d, while the R2 varied from 0.54 to 0.75 in orchards with 
varying canopy cover. The findings of this work underscore the utility of the modified PT-JPL model for esti
mating ET and its components in apple orchards from planting until the trees reach full-bearing age.   

1. Introduction 

Evapotranspiration (ET) generally represents the greatest loss of 
water from irrigated orchards in semi-arid regions and it is sensitive to 
changes in the cover of vegetation (Wang and Wang, 2017). Accurate 
estimates of orchard ET and its components are important for precise 
irrigation scheduling, irrigation system designs, and optimal on-farm 
water allocation. This information is particularly important in coun
tries like South Africa where the frequency and severity of droughts is 
increasing in the major fruit producing regions (Volschenk, 2017). In 
these regions, it is expected that irrigation demand will increase in the 

near future yet water resources face serious threats (Midgley and Lotze, 
2011). There therefore, is a need to identify and adopt effective irriga
tion management strategies that increase the water productivity, i.e. 
producing more fruit per unit volume of water used (Gush et al., 2019). 

In recent years, methods and tools needed to improve management 
of actual water use by crops in irrigated agriculture have significantly 
increased providing useful insights on plant water use patterns (Koech 
and Langat, 2018). These include:1) the soil water balance methods 
(Gong et al., 2007), 2) lysimetry (Mpelasoka et al., 2001), 3) eddy 
covariance (Ouyang et al., 2013), 4) Bowen ratio energy balance 
(Zanotelli et al., 2019), 5) scintillometry, 6) sap flow methods 
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(Fernández, 2017), (7) remote sensing energy balance (Odi-Lara et al., 
2016), and 8) satellite based evapotranspiration (ET) estimates using 
vegetation indices (Liou and Kar, 2014). However, the drawback of 
these methods is that they are expensive and computationally complex. 
For example, they require unique technical expertise and a considerable 
dedication of time and effort (Elfarkh et al., 2020). Given the practical 
limitations of these methods, the development of simple but robust and 
operational models for estimating water use is required. 

To date, a number of models were developed and are presently used 
to estimate actual water use in fruit trees. Examples include the Soil 
Water Balance (SWB) model (Annandale et al., 2003; Volschenk et al., 
2003), the big leaf Penman-Monteith type model (e.g. Dragoni and 
Lakso, 2011; Rana et al., 2005), dual source Shuttleworth and Wallace 
type models (e.g. Ortega-Farias et al., 2012; Li et al., 2010; Allen et al., 
1998 and Dzikiti et al., 2018a) and models using remote sensing data 
(Odi-Lara et al., 2016). Given the heterogeneity that characterises or
chard environments comprising trees in rows, bare ground, cover crops, 
and at times the mulch, dual source models provide more accurate ET 
estimates. These models partition ET into transpiration (T) and sub
strate/orchard floor evaporation (Es) components (Kool et al., 2014; 
Dzikiti et al., 2017, 2018a). However, many of these models require 
parameters such as the aerodynamic and stomatal resistances, which are 
not easy to obtain, and they can be sources of uncertainty. 

To address this, we modified the PT-JPL model developed by Fisher 
et al., 2008, which avoids the calculation of both the aerodynamic and 
surface resistances. The accuracy of this method depends mainly on the 
biophysical multipliers or stress factors that scale potential ET to actual 
ET, using a minimum amount of meteorological data and vegetation 
parameters (Aragon et al., 2018). The PT-JPL model has intensively 
been used for estimating ET worldwide and has been successfully 
applied over a wide range of biomes that included croplands, deciduous 
broadleaf forests, evergreen needle leaf forests, and grasslands, mixed 
forests, Savannas and open shrub-lands (Zhang et al., 2017; Shao et al., 
2019; and Yang et al., 2019) but its application and performance in 
orchards remains undocumented. The results from these studies showed 
moderate to strong relationships between observed and actual ET esti
mated using the PT-JPL (García et al., 2013; Ding et al., 2013; Zhang 
et al., 2017; Moyano et al., 2018; Shao et al., 2019; Dzikiti et al., 2019; 
and Gomis-Cebolla et al., 2019). This information therefore indicated 
that this model can be useful where detailed meteorological data are not 
available. 

The goal of this present work was to parameterize and evaluate the 
utility and the performance of the PT-JPL model in twelve apple or
chards with varying canopy sizes ranging from young low canopy to 
mature high canopy cover orchards in the Western Cape Province of 
South Africa. To our knowledge, this model has not widely applied to 
crop fields and its performance in orchards of varying canopy cover 
characteristics remains unknown. The main objectives of this study 
were; (1) to apply the original PT-JPL model as published in apple or
chards with varying fractional canopy cover and different cultivars, and 
(2) to re-parameterize and improve the PT-JPL model applied to row 
irrigated tree crops such as fruit orchards in semi-arid regions. 

2. Materials and methods 

2.1. Study site and experimental orchards 

To evaluate and validate the performance of the PT-JPL model across 
orchards with varying attributes (canopy cover and cultivar), in-situ data 
were collected from 12 commercial apple (Malus domestica Borkh) or
chards over three growing seasons 2014/15, 2015/16 and 2016/17. The 
orchards were situated in two prime apple-producing regions in the 
Western Cape Province of South Africa. The regions include the Koue 
Bokkeveld (KBV) plateau near the town of Ceres (-33◦ 22ʹ 8.00ʺ S, 19◦

18ʹ 39.42ʺ E, 457 m asl) and the lower-lying Elgin/Grabouw/Vyeboom/ 
Villiersdorp (EGVV) near the town of Villiersdorp (-33◦ 58ʹ 59.99ʺ S, 19◦

16ʹ 60.00ʺ E, 336 m asl). 
During the first and second growing seasons, data were collected in 

eight orchards, which included four mature orchards ranging between 
9–29 years (with effective canopy cover varying from 45 to 52 %) and 
four young non-bearing orchards aged three to four years (with low 
canopy cover of between 14 % and 26 %). Mature high canopy cover 
orchards were planted to the Golden Delicious and Cripps Pink cultivars, 
whereas young low canopy cover orchards were planted to Golden De
licious Reinders® and Cripps Red/Rosy Glow apple cultivars. Data were 
collected in four orchards (comprising two mature high and two young 
low canopy cover orchards) in KBV during the 2014/15 season and a 
further four orchards in EGVV during the 2015/16 growing season. The 
two mature high canopy Golden Delicious (22 yrs old) and Cripps Pink 
(~9 yrs old) orchards studied in KBV were located next to each other, 
each planted on 6 ha in size. Tree spacing in both mature high canopy 
cover orchards were 4m × 1.5m giving a plant density of 1 667 trees per 
hectare. The young low canopy cover orchard on the other hand 
comprised a three year old Golden Delicious Reinders® cultivar. The 
orchard was about 3.17 ha in size and tree were spaced at 4m × 1.5m (i. 
e. 1 667 trees/ha). The second low canopy cover Rosy Glow orchard was 
about 4 yrs old and 6.3 ha in size. Tree spacing was 3.5m × 1.25m giving 
a substantially higher plant density of 2 285 trees per hectare. 

In EGVV, the mature high canopy cover Golden Delicious orchard 
was 29 yrs old and the trees were planted on gentle sloping terrain in an 
east-west direction. Orchard size was approximately 5.5 ha and trees 
were planted with 4m × 2m spacing. The mature high cover Cripps Pink 
orchard was about 5.2 ha in size and it was planted in 2004 (~12 yrs 
old) on an east facing slope. Tree spacing was about 4m × 1.5m. The 
young low canopy cover Golden Delicious Reinders® orchard was 
planted in 2011 (~4 yrs old) and the orchard was 6.0 ha in size and tree 
spacing was 4m × 2m. The non-bearing Cripps Red orchard on the other 
hand was 3 yrs old and it was more than 5.0 ha in size. Tree spacing was 
3.5m × 1.25m (i.e. 2 285 trees per ha). 

In the 2016/17 season, measurements were taken in two orchards in 
each production region with medium fractional canopy cover ranging 
from 0.26 to 0.37 planted to the same cultivars. A detailed description of 
the study sites is given by Mobe et al. (2020a, b) and Dzikiti et al. 
(2018a, b). All the orchards were planted on deep sandy to sandy loam 
soils except for the mature high canopy cover Cripps Pink, young low 
canopy cover Golden Delicious Reinders® and the medium canopy cover 
Cripps Pink in the EGVV region. Soil texture in these orchards was 
predominantly dark red clay loam soils of the Kroonstad soil form 
(Ochric Planosol) according to the Soil Classification Working Group 
(1991). 

2.2. Transpiration, evapotranspiration and weather data 

Transpiration in the medium and mature high canopy cover orchards 
were monitored using the heat ratio method (HRM) for measuring sap 
flow rates in plants described by (Burgess et al., 2001). Three to six trees 
with different stem sizes in each orchard were instrumented from the 
beginning of October to the end of May in each of the seasons. In young 
low canopy cover orchards, sap flow was measured using commercially 
available Granier probes (Model: TDP 10, Dynamax Inc., Houston USA) 
(Granier, 1987). Further details on the installation of HRM and Granier 
probe equipment utilised are provided by Mobe et al. (2020a, b). Actual 
evapotranspiration (ET) was measured using an open-path eddy 
covariance (EC) system that was deployed in each orchard during spe
cific window periods to measure the latent and sensible heat fluxes. 
Details regarding the instrumentation, data processing and deployment 
periods can be found in Mobe et al. (2020a). Orchard microclimate was 
measured using automatic weather stations installed in an open space 
with uniform grass close to each orchard. 

N.T. Mobe et al.                                                                                                                                                                                                                                 



Scientia Horticulturae 283 (2021) 110051

3

2.3. Soil water content 

In each orchard, detailed seasonal dynamics of the soil water content 
was monitored continuously at different depths in the root zone and 
beyond (~30 to 110 cm). Three to 30-time-domain reflectometer probes 
(Model: CS616, Campbell Sci. Inc., Logan, UT, USA) connected to 
dataloggers (Model: CR1000, Campbell Scientific, Inc., Logan UT, USA) 
were used to measure the soil water content and all the outputs were 
sampled every 60 min. 

2.4. Satellite data 

Since PT-JPL model requires the normalized difference vegetation 
index (NDVI) and fractional vegetation cover as input parameters, 
Landsat and Sentinel images with less than 10 % cloud cover were 
downloaded from the USGS Earth Explorer data portal (http://earth 
explorer.usgs.gov) website for the three growing seasons. Landsat 8 
images were only used for one growing season (2014/15) in the KBV 
region since Sentinel 2 was launched in June 2015. The images were 
atmospherically corrected using the Dark Object Subtraction (DOS1) 
model under Semi-Automated Classification (SCP) embedded in Quan
tum GIS 3.4.10 software. All image bands were converted from digital 
number values to reflectance. The NDVI values can range from -1.0–1.0, 
where NDVI close to 1 indicates dense green vegetation cover and a 
value close to 0 no vegetation, possibly urban areas and negative values 
mainly result from water. 

The NDVI was calculated as: 

NDVI =
NIR − RED
NIR + RED

(1)  

where NIR and RED are the reflectance of near infrared and red wave
bands, respectively. A description of the spectral bands that make up 
Sentinel 2 and Landsat 8 are shown in Table 1. For Sentinel, Band 8 and 
band 4 were used whereas for Landsat, bands 5 and 4 were used. 

2.5. Modelling water use of apple orchards with the PT-JPL model 

The daily ET and its components were modelled using the PT-JPL 
model. The accuracy of this model mainly depends on accurate deter
mination of eco-physiological constraint functions to downscale poten
tial ET to actual evapotranspiration. A detailed description of the 
original PT-JPL model is provided in Fisher et al. (2008). Here the focus 
is on changes that improved the performance of the model in apple or
chards with varying canopy cover. The latent heat flux (λE, in W m− 2) 
was calculated as: 

λE = λEc + λEs (2)  

where λEc (W m− 2) is the energy equivalent of canopy transpiration and 
λEs (W m− 2) is the energy for soil evaporation. For this particular study, 
the evaporation from a wet canopy surface was not considered, as this 
did not improve the model given that we were dealing with micro- 
sprinkler irrigated crops. Using the original model and the suggested 

eco-physiological stress factors and parameters as published by Fisher 
et al. (2008) on apple orchards led to significant poor model perfor
mance for ET estimation and its constituent components (T and Es) for 
orchards of all age groups as will be discussed in detail in the results 
section. It is known that water use from apple orchards is highly sensi
tive to soil water deficit and the vapour pressure deficit of the air (VPD) 
(Dzikiti et al., 2018a; Lo Bianco, 2019). Therefore, the model was sub
sequently improved by introducing two stress factors; one for soil 
moisture (fSM) and the other for vapour pressure deficit of the air (fVPD). 
We also replaced the general P & T coefficient often take as ~1.26 by 
adopting a variable coefficient as described by Tanner and Jury (1976). 
This approach partitions the P & T coefficient into the soil evaporation 
(αs) and canopy transpiration coefficients (αc), respectively. A number of 
studies have shown that the general P & T coefficient is not constant over 
the entire growing season. It however, varies greatly with crop type, soil 
moisture availability and climatic conditions (Lei and Yang, 2010; Per
eira et al., 2007). Soil evaporation (αs) and canopy transpiration (αc) 
coefficients were then calculated according to Agam et al. (2010) as: 

∝s =

⎧
⎪⎨

⎪⎩

1 for τ ≤ τ0

α −
(α − 1)(1 − τ)

1 − τ0
for τ > τ0

(3)  

αc =
(α − αsτ)
(1 − τ) (4)  

where α is the P & T coefficient, taken as 1.26, τ0 is a critical value of τ at 
which canopy cover is sufficient, which ranges between 0.20− 0.50 and τ 
is the fraction of net radiation transmission reaching the soil surface, 
calculated based on the Beer-Lambert’s law as: 

τ = exp( − kRn × LAI) (5)  

where kRn is the extinction coefficient for net radiation, which was taken 
as a constant with a value of 0.6 (Li et al., 2010) and LAI is the leaf area 
index which was calculated as: 

LAI = ( − ln(1 − fIPAR)/kPAR ) (6)  

where kPAR is the extinction coefficient for photosynthetically active 
radiation with a value of 0.5 and fIPAR is the fraction of the photosyn
thetically active radiation (IPAR) intercepted by the canopy calculated 
as: fIPAR = NDVI − 0.05 (Ershadi et al., 2014). 

The canopy transpiration was estimated, using four physiological 
constraints/ stress factors considered to regulate potential transpiration. 

λEc = fgfT fSMfVPDαC
Δ

Δ + γ
(Rn − Rns) (7)  

where fg is the green canopy fraction, fT is the plant temperature 
constraint, fSM is the soil moisture constraint, fVPD is the vapour pressure 
deficit (VPD) constraint, αc is the modified canopy transpiration P & T 
coefficient, Δ is the slope of the saturated vapour pressure versus air 
temperature curve (kPa oC− 1), γ is the psychrometric constant (kPa 
oC− 1), Rn is the net radiation (W m-2) incident at the top of the canopies 

Table 1 
Corresponding Landsat-8 and Sentinel-2 bands and characteristics considered in this study.  

Landsat 8 Sentinel 2 

Band Wavelength (μm) Resolution (m) Band Wavelength (μm) Resolution (m) 

Band 2 – Blue 0.45 – 0.51 30 Band 2 - Blue 0.46 – 0.52 10 
Band 3 – Green 0.53 – 0.59 30 Band 3 - Green 0.54 – 0.58 10 
Band 4 – Red 0.64 – 0.67 30 Band 4 - Red 0.65 – 0.68 10 
Band 5 – NIR 0.85 – 0.88 30 Band 8 – NIR 0.79 – 0.90 10    

Band 8A – vegetation red edge 0.85 – 0.87 20 
Band 6 – SWIR 1 1.57 – 1.65 30 Band 11 – SWIR 1 1.57 – 1.66 20 
Band 7 – SWIR 2 2.11 – 2.29 30 Band 12 - SWIR 2 2.10 – 2.28 20 

NIR = Near infrared and SWIR = Shortwave infrared. 
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and Rns (W m-2) is the net radiation that reaches the soil surface which 
was calculated following Beer’s law: 

Rns = (Rnexp( − kRnLAI) ) (8) 

The soil evaporation component was then calculated as: 

λEs = fSMαs
Δ

Δ + γ
(Rns − G) (9)  

where αs is the modified soil evaporation P & T coefficient and G is the 
soil heat flux (W m− 2). The eco-physiological constraint functions which 
are used as a proxy for plant and water stress are given by the following 
(Ershadi et al., 2014): 

fg =
fAPAR

fIPAR
(10)  

fT = exp

(

−

(
Tmax − Topt

Topt

)2
)

(11)  

fSM =

(
SWC − SWCmin

SWCmax − SWCmin

)β

(12)  

fVPD = exp
(
− kvpd × VPD

)
(13)  

where fAPAR is the fraction of the photosynthetically active radiation 
absorbed PAR calculated as: fAPAR = m1 × NDVI + b1 where m1, b1, β and 
kvpd are parameters obtained by model optimization (Table 2),Tmax is the 
daily maximum temperature at which stomata close (in oC), Topt is the 
optimum temperature for the growth of apple trees (in oC), SWC is the 
average daily volumetric soil water content (cm3/cm3) measured using 
the CS616 soil moisture probes, SWCmin is the volumetric soil water 
content at the permanent wilting point and SWCmax is the volumetric soil 
water content at the field capacity. 

2.6. Assessment of model performance 

Daily values of measured and estimated actual ET, and its component 
(T) were compared using the linear regression analysis. Root mean 
square error (RMSE), mean absolute error (MAE), and Nash-Sutcliffe 
efficiency (NSE) were used to evaluate the model’s performance as: 

RMSE =

[
1
N
∑N

i=1

(
Yobs

i − Ysim
i

)2

]0.5

(14)  

MAE =
1
N
∑N

i=1

⃒
⃒Yobs

i − Ysim
i

⃒
⃒ (15)  

NSE = 1 −

⎡

⎢
⎢
⎣

∑n

i=1

(
Yobs

i − Ysim
i

)2

∑n

i=1

(
Yobs

i − Ysim
i
)2

⎤

⎥
⎥
⎦ (16)  

where N is the total number of observations, the subscript i denoted the 
ith observation, Yobs and Ysim superscripts refers to the measured and 
modelled values and Ymean are the means of the model-based and 
measured values, respectively. 

3. Results and discussion 

The normalised difference vegetation index has been used widely to 
study the relation between spectral variability and the changes in 
vegetation growth rate. It is also used as a proxy for vegetation green
ness as well as to detect vegetation changes. The time series of the 
monthly NDVI values in apple orchards with varying canopy cover are 
depicted in Fig. 1a–c. The mature high canopy orchards had the highest 
NDVI values, followed by medium canopy cover orchards and young low 
canopy cover orchards had the lowest values. As shown in Fig. 1 a, the 
highest NDVI values in mature orchards were found when the trees 

Table 2 
Model parameters used in estimating Priestley–Taylor Jet Propulsion Laboratory 
(PT-JPL) daily biophysical constraints, plant variables and energy variables 
applied to high, medium and low canopy cover orchards.  

Parameter Description Values References 

αPT  Priestly and Taylor coefficient 1.26 (Priestley and 
Taylor, 1972) 

β   1 Fisher et al., 
2008 

b1   1.2*-0.04 Fisher et al., 
2008 

b2   − 0.05 Fisher et al., 
2008 

m1   1.2*1.136 Fisher et al., 
2008 

m2   1.0 Fisher et al., 
2008 

τ0  Critical value of τ at which canopy 
cover is sufficient  

0.20− 0.50 Agam et al., 2010 

kvpd   0.20 This study 
kPAR  Extinction coefficient for 

photosynthetically active radiation 
0.50 Fisher et al., 

2008 
kRn  Extinction coefficient for net 

radiation 
0.60 Li et al., 2010 

Topt  Optimum temperature for plant 
growth 

25 ◦C Fisher et al., 
2008  

Fig. 1. Time series of normalised difference vegetation index (NDVI) values of 
apple orchards with a) high and low, b) medium canopy covers. 
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reached full canopy and the values ranged between 0.64 and 0.74 with 
the average orchard LAI of ~ 3.4. The young low canopy cover orchards 
had the lowest NDVI values when compared to the medium and mature 
orchards, with values ranging from 0.38 to 0.51. It can be seen from the 
study, that the denser the canopy cover, the higher the values of NDVI as 
expected. 

3.1. Measured vs original PT-JPL modelled ET 

Fig. 2 (a–c) shows the correlations between the flux tower and 
modelled ET performance for selected window periods when actual ET 
data was collected, and Table 3 highlights the model performance. The 
regression analysis showed a poor linear relationship between simulated 
and measured daily ET for all the orchards with high, medium and low 
canopy cover (Fig. 2). The coefficient of determination (R2) ranged be
tween 0.21 and 0.35, NSE was -1.55, -1.19 and 0.20 for mature high, 
medium and young low canopy covers, respectively (Table 3). The NSE 
values were significantly less than zero and not closer to one for all the 
orchards suggesting poor performance of the model. Similar results were 
observed for the remaining four orchards that had sufficient ET data 
points. 

Fig. 3a & b, presents the variation of the modified canopy transpi
ration and soil evaporation P & T coefficient for orchards with varying 
age groups. It is evident from results that the modified P & T coefficient 
differed greatly from the general value of 1.26. The ranges of the 
modified canopy transpiration P & T coefficient values were 1.33–1.39, 

1.41–1.58, and 1.48–1.58 for the mature high canopy, medium canopy, 
and young low canopy cover orchards, respectively. For the soil evap
oration, the P & T coefficient was highest under the young low canopy 
cover orchards, followed by the medium and then the mature high 
canopy cover orchards. The magnitude of both the canopy transpiration 
and soil evaporation P & T coefficients were mainly driven by the direct 
effect of LAI. Therefore, it can be deduced from the study that the 
smaller the fractional cover (LAI), the higher the soil evaporation and 
canopy transpiration P & T coefficient. 

Although a number of studies have showed that the constant 
Priestley and Taylor coefficient of 1.26 gives accurate ET estimates on 
some vegetation types (Pereira, 2004; Utset et al., 2004), the present 
study showed that a variable coefficient was required for orchards with 
different canopy cover. This is consistent with the findings from other 
researchers (e.g. Pereira et al., 2007; Qiu et al., 2019; Ding et al., 2013; 
Agam et al., 2010) that indicated that (α) had a large variation over the 
whole growing season, especially for daily time scales. The main re
ported factors affecting (α) include mulching method, green canopy 
fraction, air temperature, soil moisture availability, relative humidity, 
etc. (Ding et al., 2013; Yao et al., 2013; Ershadi et al., 2014; Ai and Yang, 
2016). In this study the P & T coefficient was not constant, it varied with 
the size of canopy cover for apple orchards, with (αs) and (αc) values 
relatively larger in young open canopy orchards (LAI ~ 1.0) as 
compared to mature high canopy orchards (LAI ~ 3.0). These results 
suggest that the modified PT-JPL model could accurately estimate 
evapotranspiration of irrigated apple orchard from planting until they 

Fig. 2. Relationships between the daily measured evapotranspiration (ET) using the eddy covariance system and estimated by the original Fisher Priestley–Taylor Jet 
Propulsion Laboratory (PT-JPL) model in apple orchards with (a) high and (b) medium and (c) low canopy covers. 
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reach full-bearing age in the semi-arid region of Western Cape on a daily 
time scale. 

3.2. Performance of the improved PT-JPL model 

The modified PT-JPL model predicted the daily transpiration rates 
for the entire season reasonably well except in May and June when the 
trees were reaching the senescence stage (Fig. 4). Typical examples for 
three orchards with high, medium and low canopy cover are shown in 
Fig. 4 a–c. The trends in the other orchards were similar to those shown 
in Fig. 4 and statistical comparisons of the model estimates against 
measured transpiration data are shown in Table 4. Daily transpiration in 
mature high canopy cover orchard was reasonably predicted by the 
modified PT-JPL model throughout the growing season with an R2 

model of 0.78. The root mean square error was low at ±0.66 mm/ 
d while the mean absolute error (MAE) was only ±0.50 mm/d and the 
Nash-Sutcliffe efficiency (NSE) was 0.65 (Table 4). Model predictions of 
transpiration in medium canopy cover orchards were also reasonable 
with overestimation and underestimation at the start and end of the 
growing season, respectively. The root mean square and mean absolute 
errors were ±0.46 and ±0.35 mm/d, respectively (Table 4). The 
modelled vs measured transpiration in the young low canopy cover 

orchards was quite reasonable, although the scatter tended to be larger 
(Fig. 4c). Reasons for the low predictive ability of the model in young 
orchards are not clear. The R2 of modelled and measured T values was 
0.73, and the RMSE was ±0.29 mm/d. 

The modified PT-JPL model also estimated evapotranspiration quite 
well in all apple orchards with sufficient measured ET data (Table 3). 
Outputs from the model were compared against eddy covariance ET flux 
measured data for orchards with high, medium and low canopy cover. 
The results show that the modified model performed better that the 
original model, with the RMSE varying from ±0.60 mm/d to ±1.99 mm/ 
d, the MAE varied from ±0.49 mm/d to ±1.91 mm/d, and R2 varied 
from 0.54 to 0.75. Overall, the modified PT-JPL model performed better 
with lower RMSE and MAE and higher NSE (Table 3). 

Therefore, this study highlights that, for irrigated crops that are 
sensitive to soil water deficit and to the atmospheric vapour pressure 
deficit, constraint factors for these stressors should be included for 
optimal model performance. Besides the present study, Purdy et al. 
(2018) also investigated the incorporation of soil moisture to constrain 
soil evaporation and canopy transpiration in the PT-JPL model but in a 
natural ecosystem. In that study, they used soil moisture data derived 
from Soil Moisture Active Passive Mission (SMAP) to model ET. The 
modified model showed reduced errors and increased explanation of 

Table 3 
Summary statistics for the performance of the original Fishers and modified Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model for predicting evapotrans
piration at sites in Koue Bokkeveld (KBV) and Elgin/Grabouw/Vyeboom/Villiersdorp (EGVV) during the 2014/15, 2015/16 and 2016/17 growing seasons.  

Season Region Orchard name  PT-JPL Original Fishers  Modified PT-JPL     

Slope R2 NSE RMSE (mm/d) MAE (mm/d) Slope R2 NSE RMSE (mm/d) MAE (mm/d) N 

2014/15 KBV FBGD – – – – – – – – – – –   
FBCP – – – – – – – – – – –   
NBGD − 0.12 0.02 − 1.80 3.47 3.40 0.84 0.54 0.17 1.48 1.30 34   
NBRG – – – – – – – – – – –  

2015/16 EGVV FBGD − 0.12 0.11 − 5.25 3.41 2.96 0.58 0.75 0.41 1.07 0.91 28   
FBCP 0.77 0.35 − 1.55 1.01 0.94 1.20 0.55 0.42 0.60 0.49 29   
NBGR 0.42 0.29 0.22 0.76 0.60 0.92 0.71 0.50 0.64 0.57 19   
NBCR – – – – – – – – – – –  

2016/17 KBV BGD 1.34 0.65 − 0.31 0.70 0.59 1.21 0.67 0.12 1.09 1.00 14   
BCP 0.28 0.96 − 10.93 3.24 3.17 0.43 0.67 0.08 1.99 1.91 6  

EGVV BGD – – – – – – – – – – –   
BCP 0.17 0.21 − 1.19 2.07 1.78 0.72 0.57 0.35 0.63 0.54 16 

FBGD = Full-bearing Golden Delicious, FBCP = Full bearing Cripps Pink, BGD = Bearing Golden Delicious Reinders®, BCP = Bearing Cripps Pink, NBGD = Non- 
bearing Golden Delicious Reinders®, NBRG = Non-bearing Rosy Glow, NBCR = Non-bearing Cripps Red. 

Fig. 3. Relationships between modified (a) canopy transpiration (αc) and (b) soil evaporation (αs) Priestley & Taylor coefficient and leaf area index (LAI) for apple 
orchards with varying canopy cover. 
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variance with the greatest improvements in water limited natural 
ecosystems. 

The seasonal dynamics of ET and its components in high, medium 
and low canopy cover orchards are shown in Fig. 5 a–c. The modelled 
daily ET and its components showed that orchard floor evaporation 
dominated ET at the beginning of the season in all orchards. However, 
the rapid increase in leaf area after bud break resulted in transpiration 
being almost double the orchard floor evaporation in November and this 
trend persisted throughout the season for mature high canopy orchards 
(Fig. 5a). Transpiration contributed 75 % to ET in mature orchards. In 
young low canopy cover orchards, however, orchard floor evaporation 
was higher than tree transpiration throughout the growing season 
(Fig. 5c). The high evaporation from the orchard floor was a result of the 

relatively small canopy cover (peak LAI ~ 1.0) even in the summer 
season when the canopy size was at its maximum. The evaporation from 
the canopy and orchards floor accounted for 22 % and 78 %, respec
tively, of the total ET (Fig. 5c). Lastly, in the medium canopy cover or
chards the contribution of the orchard floor evaporation and 
transpiration to ET were almost equal throughout the growing season 
(Fig. 5b). In terms of the percentage of each component, transpiration 
contributed 59 % of the ET whilst, 41 % came from the soil evaporation. 

4. Conclusions 

An accurate estimate of ET is essential especially in semi-arid regions 
where there is less water being competed for by different users. Different 

Fig. 4. Comparisons between the measured and modelled daily transpiration (T) over the entire growing season in (a) high, (b) medium and (c) low canopy cover 
apple orchards. 
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ET models of varying complexities and data input requirements are 
available, and their applicability in different climatic regions and scales 
is consistently under scrutiny. In this study, we adopted, modified and 
applied PT-JPL evapotranspiration model in orchards with varying 
canopy cover. Our findings showed that the modified PT-JPL model 

performance was satisfactory in most instances although further vali
dation of the model with data from a range of sites is required to build 
confidence in the model. Model simulations of the transpiration 
component were most reliable, but uncertainties are higher with the 
orchard ET estimates given the difficulties to accurately model the 

Table 4 
Summary statistics for the performance of the original Fishers and modified Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model for predicting transpiration at 
sites in Koue Bokkeveld (KBV) and Elgin/Grabouw/Vyeboom/Villiersdorp (EGVV) during the 2014/15, 2015/16 and 2016/17 growing seasons.  

Season Region Orchard name  PT-JPL Original Fishers  Modified PT-JPL    

Slope R2 NSE RMSE (mm/d) MAE (mm/d) Slope R2 NSE RMSE (mm/d) MAE (mm/d) N 

2014/15 KBV FBGD 1.26 0.70 0.38 0.63 0.52 1.01 0.84 0.54 0.73 0.62 189   
FBCP 1.42 0.35 − 0.35 0.74 0.58 1.10 0.66 0.42 0.50 0.40 120   
NBGD 1.73 0.55 − 4.63 0.84 0.69 0.98 0.64 0.51 0.25 0.19 191   
NBRG 0.84 0.43 0.39 0.34 0.26 0.94 0.65 0.41 0.28 0.22 141  

2015/16 EGVV FBGD 1.00 0.74 0.50 0.80 0.63 0.91 0.81 0.65 0.66 0.50 274   
FBCP 1.14 0.78 0.50 0.63 0.54 1.13 0.81 0.61 0.55 0.44 266   
NBGR 1.33 0.57 − 0.84 0.47 0.38 0.89 0.73 0.35 0.29 0.23 197   
NBCR 2.07 0.20 − 5.19 0.59 0.45 0.39 0.71 0.16 0.32 0.26 258  

2016/17 KBV BGD 0.85 0.56 0.34 0.52 0.43 1.05 0.62 0.27 0.55 0.45 264   
BCP 0.72 0.33 − 1.42 0.82 0.70 1.09 0.63 0.20 0.42 0.35 127  

EGVV BGD 1.98 0.62 − 4.01 0.69 0.53 0.80 0.73 0.63 0.29 0.24 134   
BCP 1.12 0.76 0.66 0.39 0.30 1.09 0.80 0.55 0.46 0.35 251 

FBGD = Full-bearing Golden Delicious, FBCP = Full bearing Cripps Pink, BGD = Bearing Golden Delicious Reinders®, BCP = Bearing Cripps Pink, NBGD = Non- 
bearing Golden Delicious Reinders®, NBRG = Non-bearing Rosy Glow, NBCR = Non-bearing Cripps Red. 

Fig. 5. Modelled daily evapotranspiration (ET) and its components namely transpiration (T), and orchard floor evaporation (Es) for: (a) high, and; (b) medium and 
(c) low canopy cover compared with the measured ET from the eddy covariance system. 
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orchard floor evaporation fluxes. 
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