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We demonstrate a one-to-one correspondence between idempotent closure operators 
and the so-called saturated quasi-uniform structures on a category C. Not only this 
result allows to obtain a categorical counterpart P of the Császár-Pervin quasi-
uniformity P, that we characterize as a transitive quasi-uniformity compatible with 
an idempotent interior operator, but also permits to describe those topogenous 
orders that are induced by a transitive quasi-uniformity on C. The categorical 
counterpart P∗ of P−1 is characterized as a transitive quasi-uniformity compatible 
with an idempotent closure operator. When applied to other categories outside 
topology P allows, among other things, to generate a family of idempotent closure 
operators on Grp, the category of groups and group homomorphisms, determined 
by the normal closure.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The Császár-Pervin ([13,2]) fundamental result that every topological space admits at least one quasi-
uniformity motivated the study of quasi-uniform structures compatible with a given topology (see e.g. [7]
with references therein). It is this great generality of quasi-uniformities which allows one to view in some 
sense the study of quasi-uniform spaces as an alternative approach to the study of topological spaces. 
In [12,8] a quasi-uniform structure is introduced on a category C as a suitable endofunctor category on 
the subobject lattice, subX, for each object X in C and characterized as an appropriate family of closure 
operators ([5]). It is therefore not hard to observe that every quasi-uniformity on C induces a closure operator 
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(resp. interior [14]) in a natural way. This motivates us to ask if given a closure operator (resp. interior) 
on a category one can always find at least a quasi-uniformity which generates that closure operator (resp. 
interior). The present paper aims to address this question. We show that there is a subconglomerate of 
the conglomerate of all quasi-uniform structures on C which is order isomorphic to the conglomerate of 
all idempotent closure operators. With the help of categorical topogenous structures ([9]), we demonstrate 
that for any idempotent interior operator i (closure c) on C, there is at least a transitive quasi-uniformity 
which generates i (c). A condition under which a topogenous order is compatible with a transitive quasi-
uniformity is found. This allows us to characterize closure operators (resp. interior) that are compatible 
with a transitive quasi-uniformity.

2. Preliminaries

Our primary reference for categorical terminology is [1]. For the basic facts on categorical closure and 
interior operators we refer to [4,5] and [14]. Concerning the categorical topogenous, quasi-uniform and 
syntopogenous structures, we use [12,8,9]. Throughout the paper, we consider a category C supplied with a 
proper (E , M)-factorization system for morphisms. The category C is assumed to be M-complete so that 
pullbacks of M-morphisms along C-morphisms and arbitrary M-intersections of C-morphisms exist and 
are again in M. For any X ∈ C, subX = {m ∈ M | cod(m) = X}. It is ordered as follows: n ≤ m ⇔
∃ j | m ◦ j = n. If m ≤ n and n ≤ m then they are isomorphic. We shall simply write m = n in this 
case. SubX is a (possibly large) complete lattice with greatest element 1X : X −→ X and the least element 
0X : OX −→ X. Any C-morphism, f : X −→ Y induces an image/pre-image adjunction

f(m) ≤ n ⇔ m ≤ f−1(n)

for all n ∈ subY , m ∈ subX with f(m) the M-component of the (E , M)-factorization of f ◦ m while 
f−1(n) is the pullback of n along f . We have from the image/pre-image adjunction that f(f−1(n)) ≤ n

(with f(f−1(n)) = n if f ∈ E and E is pullback stable along M-morphisms) and m ≤ f−1(f(m)) (with 
m = f−1(f(m)) if f ∈ M) for any n ∈ subY and m ∈ subX. We shall sometimes find it important to 
assume that for any C-morphism f : X −→ Y , the inverse image f−1 commutes with the joins of subobjects 
so that it has a right adjoint f∗ given by f∗(m) =

∨
{n ∈ subY | f−1(n) ≤ m}. Thus f−1(n) ≤ m ⇔ n ≤

f∗(m), f−1(f∗(m)) ≤ m (with f−1(f∗(m)) = m if f ∈ M) and n ≤ f∗(f−1(n)) (with f∗(f−1(n)) = n if f ∈
E and E stable under pullbacks).

Definition 2.1. A topogenous order � on C is a family {�X | X ∈ C} of relations, each �X on subX, such 
that:

(T1) m �X n ⇒ m ≤ n for every m, n ∈ subX,
(T2) m ≤ n �X p ≤ q ⇒ m �X q for every m, n, p, q ∈ subX, and
(T3) every morphism f : X −→ Y in C is �-continuous, m �Y n ⇒ f−1(m) �X f−1(n) for every 

m, n ∈ subY .

Given two topogenous orders � and �′ on C, �⊆�′ if and only if m �X n ⇒ m �′
X n for all m, n ∈ subX. 

The resulting ordered conglomerate of all topogenous orders on C is denoted by TORD(C, M).
A topogenous order � is said to be

(1)
∧

-preserving if (∀i ∈ I : m �X ni) ⇒ m �X

∧
ni;

(2)
∨

-preserving if (∀i ∈ I : mi �X n) ⇒
∨

mi �X n;
(3) interpolative if m �X n ⇒ ∃ p | m �X p �X n for all X ∈ C.
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The ordered conglomerate of all 
∧

-preserving and 
∨

-preserving topogenous orders is denoted by ∧
−TORD(C, M) and 

∨
−TORD(C, M) respectively. 

∧
−INTORD(C, M) (resp. 

∧
−INTORD(C, M)) 

will denote the conglomerate of all interpolative meet preserving (resp. join preserving) topogenous orders.

Definition 2.2. A closure operator c on C with respect to M is given by a family of maps {cX : subX −→
subX | X ∈ C} such that:

(C1) m ≤ cX(m) for all m ∈ subX;
(C2) m ≤ n ⇒ cX(m) ≤ cX(n) for all m, n ∈ subX;
(C3) every morphism f : X −→ Y is c-continuous: f(cX(m)) ≤ cY (f(m)) for all m ∈ subX.

We denote by CL(C, M) the conglomerate of all closure operators on C with respect to M ordered as 
follows: c ≤ c′ if cX(m) ≤ c′X(m) for all m ∈ subX and X ∈ C. A closure operator c on C is idempotent 
if cX(cX(m)) = cX(m) for all m ∈ subX and X ∈ C. ICL(C, M) will denote the conglomerate of all 
idempotent closure operators on C. For any c ∈ CL(C, M), there is a least idempotent closure operator 
ĉ ≥ c, the idempotent hull of c. A subobject of an object X ∈ C is said to be c-closed if cX(m) = m.

Definition 2.3. An interior operator i on C with respect to M is given by a family of maps {iX : subX −→
subX | X ∈ C} such that:

(I1) iX(m) ≤ m for all m ∈ subX and X ∈ C;
(I2) m ≤ n ⇒ iX(m) ≤ iX(n) for all m, n ∈ subX, X ∈ C;
(I3) every morphism f : X −→ Y is i-continuous: f−1(iY (n)) ≤ iX(f−1(n)) for all n ∈ subY .

INT (C, M) will denote the conglomerate of all interior operators on C with respect to M. It is ordered 
as follows: i ≤ i′ if iX(m) ≤ i′X(m) for all m ∈ subX, X ∈ C. A subobject of an object X ∈ C is said to 
be i-open if iX(m) = m. An interior operator i is said to be idempotent provided that iX(m) is i-open for 
every m ∈ subX and X ∈ C. We write IINT (C, M) the ordered conglomerate of all idempotent interior 
operators on C.

Associated closure and interior operators provide an equivalent description a topology. This natural 
correspondence between these two notions no longer holds in abstract categorical settings since the subobject 
lattices are not necessarily boolean algebras. The categorical topogenous order that is defined above allows 
to obtain a nice relationship between closure and interior operators on a category in the sense that many 
concepts and definitions that have been studied separately for categorical closure and interior operators can 
be shown to be exactly the same using topogenous orders (see for example the notion of �-strict subobject 
defined and used in third section of this paper). The next result that we recall from ([9]) exhibits the clear 
relationship between closure, interior and topogenous order in a category while it is also known from the 
same paper that a topogenous order on C is basically equivalent to a neighbourhood operator ([10]).

Proposition 2.1.

(1)
∨
−TORD(C, M) is order isomorphic to INT (C, M). The inverse assignments of each other are given 

by i�X(m) =
∨
{p | p �X m} and m �i

X n ⇔ m ≤ iX(n) for all X ∈ C.
(2)

∧
−TORD(C, M) is order isomorphic to CL(C, M). The inverse assignments of each other are given 

by c�
X(m) =

∧
{p | m �X p} and m �c

X n ⇔ cX(m) ≤ n for all X ∈ C.

It is well known (see e.g. [6]) that an (entourage) quasi-uniformity on X can be equivalently expressed as 
an appropriate family of maps U : X −→ P(X). Since these maps can easily be extended to endomaps on 
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P(X), it is possible to think of a quasi-uniformity on C as a suitable family of endomaps on subX for each 
X ∈ C. This is the point expressed in Definition 2.4. Let us denote by F(subX) the endofunctor category 
on subX for each X ∈ C. It is clear that for all U, V ∈ F(subX), U ≤ V if U(m) ≤ V (m) for all m ∈ subX.

Definition 2.4. A quasi-uniformity on C with respect to M is a family U = {UX | X ∈ C} with UX a full 
subcategory of F(subX) for each X such that:

(U1) For any U ∈ UX , 1X ≤ U .
(U2) For any U ∈ UX , there is U ′ ∈ UX such that U ′ ◦ U ′ ≤ U .
(U3) For any U ∈ UX and U ≤ U ′, U ′ ∈ UX .
(U4) For any U, U ′ ∈ UX , U ∧ U ′ ∈ UX .
(U5) For any C-morphism f : X −→ Y and U ∈ UY , there is U ′ ∈ UX such that f(U ′(m)) ≤ U(f(m)) for 

all m ∈ subX.

We shall denote by QUNIF (C, M) the conglomerate of all quasi-uniform structures on C. It is ordered as 
follows: U ≤ V if for all X ∈ C and U ∈ UX , there is V ∈ VX such that V ≤ U . In most cases we describe a 
quasi-uniformity by defining a base for it. A base for a quasi-uniformity U on C is a family B = {BX |X ∈ C}
with each BX a full subcategory of F(subX) for all X ∈ C satisfying all the axioms in Definition 2.4 except 
(U3). If BX for any X ∈ C is a base element with a single member V , we shall write VX . A base for quasi-
uniformity on C is transitive if for all X ∈ C and U ∈ BX , U ◦U = U . A quasi-uniformity with a transitive 
base is called a transitive quasi-uniformity. The ordered conglomerate of all transitive quasi-uniformities 
on C will be denoted by TQUNIF (C, M). A quasi-uniformity U on C is a uniformity provided that for every 
U ∈ UX and X ∈ C, there is V ∈ U such that m ≤ U(n) ⇔ n ≤ V (m) for any m, n ∈ subX. We denote 
by UNIF (C, M) the conglomerate of all uniform structures on C. It is also clear that if U ∈ UX for any 
X ∈ C then U(m) ≥ 0X for all m ∈ subX, otherwise any U ∈ F(subX) can belong to UX since 0X is the 
least element of subX. The unique U ∈ F(subX) such that U(m) = 1X for any m ∈ subX will be denoted 
by 1X while dX will denote the map U ∈ F(subX) with the property that U(m) = m.

Definition 2.5. A syntopogenous structure on C with respect to M is a family S = {SX | X ∈ C} such that 
each SX a family of relations on subX satisfying:

(S1) �X is a relation on subX satisfying (T1) and (T2).
(S2) SX is a directed set with respect to inclusion.
(S3) �X=

⋃
SX is an interpolative topogenous order.

The ordering of topogenous orders can be extended to syntopogenous structures in the following way: 
S ≤ S ′ if for all X ∈ C and �X∈ SX , there is �′

X∈ S ′
X such that �X⊆�′

X . The resulting conglomerate 
will be denoted by SY NT (C, M). S ∈ SY NT (C, M) is co-perfect if each �X∈ SX is 

∧
-preserving for 

all X ∈ C. It is interpolative if every �X∈ SX interpolates. The ordered conglomerate of all interpolative 
co-perfect syntopogenous structures will be denoted by INTCSY NT (C, M).

Theorem 2.2. TQUNIF (C, M) is order isomorphic to INTCSY NT (C, M). The inverse morphisms of each 
other U −→ SU and S −→ US are given by

SB
X = {�U

X | U ∈ BX} where m �U
X n ⇔ U(m) ≤ n, and

BS
X = {U� | �X∈ SX} where U�(m) =

∧
{n | m �X n}

for all X ∈ C and m, n ∈ subX.
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Since SX ⊆
∧
−TORD(C, M) for each S ∈ SY NT (C, M), it follows from Theorem 2.2 that a quasi-

uniformity on C is a collection of families of closure operators. By Proposition 2.1, 
∧

−INTORD(C, M) is 
isomorphic to the conglomerate of idempotent closure operators and from Theorem 2.2, CSY NT (C, M) ∼=
QUNIF (C, M). Thus every idempotent closure operator on C is a base for a quasi-uniformity.

3. Idempotent closure operators or saturated quasi-uniform structures

Lemma 3.1. Let U ∈ QUNIF (C, M). Then B = {BX |X ∈ C} is a base for U if and only if for any U ∈ UX , 
there is V ∈ BX such that V ≤ U .

A quasi-uniform structure U on C is said to be saturated if for any X ∈ C, 
∧
{U : U ∈ UX} ∈ UX . 

SQUNIF (C, M) will denote the conglomerate of all saturated quasi-uniform structures on C.

Proposition 3.2. Let U ∈ QUNIF (C, M) and X ∈ C. Then U ∈ SQUNIF (C, M) if and only if there is a 
unique base B for U such that BX has a single member.

Proof. Sufficiency is clear. Let V (m) =
∧
{U(m) : U ∈ UX} for any m ∈ subX. By assumption, V ∈ UX . 

Now, let BX = {V }. We must show that V ◦ V ≤ V and satisfies (U5). Since V ∈ UX , there is U ∈ UX

such that U ◦ U ≤ V . But V ≤ U and so V (V (m)) ≤ V (U(m)) ≤ U(U(m)) ≤ V (m). Let f : X −→ Y and 
VY ∈ BY . Then VY ∈ UY and there is U ′ such that f(U ′(m)) ≤ V (f(m)) for all m ∈ subX. Since VX ≤ U ′, 
f(VX(m)) ≤ f(U ′

X(m)) ≤ V (f(m)). The uniqueness of B is easily seen. �
As mentioned earlier, every idempotent closure operator is a base for a quasi-uniform structure on B. 

Proposition 3.2, allows now to identify those quasi-uniform structures that are in one to one correspondence
with idempotent closure operators.

Theorem 3.3. SQUNIF (C, M) is order isomorphic to ICL(C, M). The inverse assignments of each other 
U −→ cU and c −→ Uc are given by

Uc
X = {U ∈ F(subX) : cX ≤ U} and

cUX =
∧

{U : U ∈ UX}

for all X ∈ C

Proof. The assignment c −→ Uc is clearly well defined. For U −→ cU , we only need to show that for any 
U ∈ SQUNIF (C, M), cU ◦ cU = cU . So for all U ∈ UX , there is V ∈ UX such that V ◦ V ≤ U . Now, 
V (cUX(m)) ≤ V (V (m)) ≤ U(m). Thus cUX(cUX(m)) =

∧
{V (cUX(m)) : V ∈ UX} ≤

∧
{U(m) : U ∈ UX} =

cUX(m). Let c ∈ CL(C, M), cUc(m) =
∧
{U(m) : U ∈ Uc

X} = cUX(m) and for any U ∈ SQUNIF (C, M), 
UcU = {U ∈ F(subX) : cUX ≤ U} = U . �

Recall that a morphism f : X −→ Y is said to be U-initial if for any U ∈ UX there is V ∈ UY such that 
f−1(V (f(m))) ≤ U(m) for all m ∈ subX. It is c-closed if f(cX(m)) = cY (f(m))

Proposition 3.4. Let U ∈ SQUNIF (C, M) and f : X −→ Y be a C-morphism. Then

(1) f is U-initial if and only if f−1(cUY (f(m)) ≤ cUX(m) for any m ∈ subX.
(2) f is cU -closed if and only if for any U ∈ UX there is V ∈ UY such that V (f(m)) ≤ f(U(m))) for all 

m ∈ subX
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Proof. (1) Assume f is U-initial. Then for any U ∈ UX there is V ∈ UY such that f−1(V (f(m))) ≤ U(m). 
Thus f−1(

∧
{V (f(m)) : V ∈ UY }) ≤ U(m) ⇒ f−1(cUY (f(m)) ≤

∧
{U(m) : U ∈ UX} = cUX(m). Conversely 

if f−1(cUY (f(m)) ≤ cUX(m) and U ∈ UX then f−1(
∧
{V (f(m)) : V ∈ UY }) ≤

∧
{U(m) : U ∈ UX} ≤ U(m). 

Since U ∈ SQUNIF (C, M), V = cUY ∈ UY and f−1(V (f(m))) ≤ U(m).
(2) If f is cU -closed and U ∈ UX then cUY (f(m)) ≤ f(cUX(m)) ≤ f(U(m)). Since U ∈ SQUNIF (C, M), 

there is V = cUY ∈ UY such that V (f(m)) ≤ f(U(m)). On the other hand if for any U ∈ UY there is V ∈ UY

such that V (f(m)) ≤ f(U(m)), then cUY (f(m)) ≤ f(U(m)) ⇒ cUY (f(m)) ≤ f(
∧
{U(m) : U ∈ UY }) =

f(cUX(m)). �
One can show from Theorem 3.3 that ICL(C, M) embeds as a sublattice in QUNIF (C, M). First, we 

take a closer look at the lattice structure of QUNIF (C, M), the conglomerate of all quasi-uniform structures 
on C.

As noted in section two, QUNIF (C, M) is ordered as follows: U ≤ V if for all U ∈ UX there is V ∈ VX

such that V (m) ≤ U(m) for any m ∈ subX. This order confers to QUNIF (C, M) the structure of a complete 
lattice.

Theorem 3.5. Let A = {U i | i ∈ I} ⊆ QUNIF (C, M). Then B = {BX | X ∈ C} with BX = {U1 ∧ ... ∧
Un | for every 1 ≤ i ≤ n, U i ∈ U i

X for some U i ∈ A and n ∈ N} is a base for the supremum U = A of A. If 
each U i is a uniformity (resp transitive quasi-uniformity) on C then U is also a uniformity (resp. transitive 
quasi-uniformity).

Proof. (U1) and (U4) are clearly satisfied. For (U2), let U = ∧n
i U

i ∈ Bi
X , U i ∈ U i for some U i ∈ A. Then 

there are V 1, ..., V n such that V i ◦V i ≤ U i. Now, V = ∧n
i V

i and V ◦V ≤ ∧n
i (V i ◦V ) ≤ U . Let f : X −→ Y

be a C-morphism and U = ∧n
i U

i ∈ Bi
Y . Then there are V 1, ..., V n such that f(U i(m)) ≤ V i(f(m)). Thus 

f(U(m)) = f(∧n
i U

i(m)) ≤ ∧n
i f(U i(m)) ≤ ∧n

i V
i(f(m)) ≤ (∧n

i V
i)(f(m)) = V (f(m))). It is clear that U is 

finer than each U i and if V is another quasi-uniformity on C that is finer than each U i, then U is coarser 
than V.

Let each Vi be a uniformity and p ≤ U(m) for any U ∈ BX with p, m ∈ subX. Then p ≤ ∧n
i U

i(m)
for any U i ∈ U i, for some U i ∈ A and n ∈ N and there are V 1, ..., V n with m ≤ U i(p) for each i. Hence 
m ≤ ∧n

i V
i(p) = V (p). Assume that for each i, U i ∈ TQUNIF (C, M) and U ∈ UX . Then U = ∧n

i U
i, 

U i ∈ U i
X , for some U i ∈ A. Since U(U(m)) ≤ U i for each i, U(U(m)) ≤ ∧n

i U
i(m) = U(m). �

Corollary 3.6. QUNIF (C, M) is a complete lattice.

Proof. The least element is IX = 1X for any X ∈ M while the greatest is the quasi-uniformity DX =
{U ∈ F(subX) | dX ≤ U}. For any A = {Ui | i ∈ I} ⊆ QUNIF (C, M), U =

∨
A of A is constructed as in 

Theorem 3.5. Thus QUNIF (C, M)) is a complete lattice since the meet can be constructed as the join of 
all upper bounds of A. �

A reader familiar with the theory of closure operators would have noticed that dX and 1X in Corollary 3.6, 
as defined earlier, are the discrete and trivial closure operators, respectively (see e.g. [4]).

Corollary 3.7. UNIF (C, M)) and TQUNIF (C, M)) are complete sublattices of QUNIF (C, M)).

Theorem 3.8. The conglomerate UNIF (C, M)) and TQUNIF (C, M)) are correflective in QUNIF (C, M)).

Theorem 3.9. Let c, c′ ∈ ICL(C, M)). Then Uc
∨

Uc′ = Uc∧c′ and Uc
∧

Uc′ = Ûc∧c′ where ̂c ∧ c′ is the 
idempotent hall of c ∧ c′.
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4. The Császár-Pervin quasi-uniform structure

Proposition 4.1. Let U be a quasi-uniformity on C and X ∈ C. Then �U
X=

⋃
{�U

X : U ∈ UX} is an interpola-
tive topogenous order. Consequently

(i) cUX(m) =
∧
{U(m) : U ∈ UX} is an idempotent closure operator on C.

(ii) If for any C-morphism f : X −→ Y , f−1 commutes with the joins of subobjects, then iU(m) =
∨
{p ∈

subX U(p) ≤ m for some U ∈ UX} is an idempotent interior operator on C.

The above proposition motivates the next definition.

Definition 4.1. Let U ∈ QUNIF (C, M). We shall say that U is compatible with a topogenous order � or 
the topogenous order � is induced by U if �X=

⋃
{�U

X : U ∈ UX} for all X ∈ C.

Because of Proposition 2.1, we can say that U ∈ QUNIF (C, M) is compatible with a closure operator 
c (interior i) if cX(m) =

∧
{U(m) : U ∈ UX} (iX(m) =

∨
{n | U(n) ≤ m for some U ∈ UX}) for any 

m ∈ subX. One observes from Theorem 3.3 that given an idempotent closure operator c on C there is a 
quasi-uniformity with a unique base B, where BX = {cX} for any X ∈ C, which induces c. Since each member 
of a base for the Császár-Pervin quasi-uniformity of a topological space depends on a finite number of open 
sets, we wish to depart from an interior operator i (closure c) and form a base B of a quasi-uniformity 
on C such that each member of B depends on a somehow finite number of i-open (c-closed) subobjects. 
As our subobject lattices are not boolean algebras in general, we make use of the categorical notion of 
syntopogenous structure to avoid complements that are used in the classical case.
Let us start by recalling from [11] a concept that provides a common categorical treatment of the notions 
of i-open and c-closed. For �∈ TORD(C, M), a subobject m of an object X ∈ C is �-strict if m �X m.

Lemma 4.2. Let X ∈ C and A� = {m ∈ subX | m is � −strict}.

(1) If �∈
∧

−INTORD(C, M) or �∈
∨

−INTORD(C, M), then A� is complete sublattice of subX.
(2) If �∈

∨
−INTORD(C, M), m is �-strict if and only if i�X(m) = m

(3) If �∈
∧

−INTORD(C, M), then m is �-strict if and only if c�
X(m) = m.

Theorem 4.3. Let �∈
∨
−INTORD(C, M). Then there is a transitive quasi-uniformity U on C compatible 

with �.

Proof. Let �∈
∨

−INTORD(C, M). Then for any X ∈ C, A� is a complete sublattice of subX. If F (A�) is 
the collection of all finite sublattices of A�, then SX = {�L

X | L ∈ F (A⊂)} where m �L
X n ⇔ ∃ p ∈ L | m ≤

p ≤ n is an interpolative co-perfect syntopogenous structure. By Theorem 2.2, BS
X = {U�L | L ∈ F (A�)} is a 

base for a transitive quasi-uniformity US on C. Now, let P = US then m �U
X n ⇔ ∃ L ∈ F (A�) | U�L(m) ≤

n ⇔ m �L
X n ⇔ ∃ p ∈ L | m ≤ p �X p ≤ n. On the other hand, m �X n ⇔ m ≤ i�X(n) ⇒ m �X

i�X(m) �X n. Since i�X(m) ∈ A�, put L = {i�X(m), 0X} to have that m �U
X n ⇔ U�L(m) ≤ n ⇔ m �U

X n. 
Thus �P=�. �

In a similar way to the above, we prove the Theorem.

Theorem 4.4. Let �∈
∧
−INTORD(C, M). Then there is a transitive quasi-uniformity U on C compatible 

with �
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Theorems 4.3 and 4.4 are very important. On the one hand Theorem 4.3 allows to conclude that for 
any i ∈ IINT (C, M), there is a transitive quasi-uniformity U on C compatible with i while Theorem 4.4
provides us with another transitive quasi-uniformity compatible c ∈ ICL(C, M). On the other hand they 
present a categorical version of the well known Császár-Pervin ([2,13]) quasi-uniformity and its inverse. In 
the light of our previous observation that a quasi-uniformity on C is collection of families of closure operators, 
Theorems 4.3 and 4.4 say that given an idempotent interior operator i (closure c), one can construct a family 
of idempotent closure operators determined by i (c). This understanding allows one to apply these results 
to categories outside topology. Furthermore, the analysis of the proof of Theorem 4.3 allows to obtain a 
categorical generalization of A. Császár theorem (see [3]), which characterizes a topogenous order that is 
compatible with a transitive quasi-uniformity.

Theorem 4.5. Let �∈ TORDC(C, M). Then � is compatible with U ∈ TQUNIFC(C, M) if and only if 
�=�A for some complete sublattice A of subX, where m �A

X n ⇔ ∃ p ∈ A | m ≤ p ≤ n.

Proof. Assume that U ∈ TQUNIF (C, M) and �=�U . For any X ∈ C, let A = A⊂. If m ∈�X n then there 
is U ∈ UX such that U(m) ≤ n. By assumption, U(m) � U(m) ⇒ U(m) ∈ A so that m �A

X n. On the 
other hand, m �A

X n ⇒ ∃ p ∈ A such that m ≤ p �X p ≤ n ⇒ m �X n. Conversely let A be a complete 
sublattice of subX for any X ∈ C and �=�A. Let F (A) be the collection of all finite sublattices L of A. Then 
S ∈

∧
−INTCSY NT (C, M) where SX = {�L

X | L ∈ F(A)} and m ∈�X n ⇔ ∃p ∈ L | m ≤ p ≤ n. By 
Theorem 2.2, UA

X = {U�L | L ∈ F (A)} is a base for a transitive quasi-uniformity on C. If m �X n, then there 
exists p ∈ A such that m ≤ p ≤ n. Put L = {0X , p, 1X} to have m �UA

X n. On the other hand if m �L
X n for 

some L ∈ F (A), then there is p ∈ L such that m ≤ p ≤ n ⇒ m �X n since �U=
⋃
{�U : U ∈ UX}. Thus 

�=�UA . �
From Theorems 4.3 and 4.4 and Proposition 2.1, we can characterize a closure operator (interior) com-

patible with a transitive quasi-uniformity.

Corollary 4.6. Let i ∈ INT (C, M). Then i is compatible with U ∈ TQUNIF (C, M) if and only if for any 
X ∈ C and m ∈ subX, iX(m) =

∨
{n | ∃ p ∈ A : n ≤ p ≤ m} for some complete sublattice A of subX.

Corollary 4.7. Let c ∈ CL(C, M). Then c is compatible with U ∈ TQUNIF (C, M) if and only if for any 
X ∈ C and m ∈ subX, cX =

∧
{n | ∃ p ∈ A : m ≤ p ≤ n} for some complete sublattice A of subX.

Proposition 4.8. Let �∈ TORD(C, M). There is U ∈ QUNIF (C, M) such that U is compatible with � if 
and only if A� is a complete sublattice of subX for any X ∈ C.

Corollary 4.9. Let c ∈ CL(C, M). Then c ∈ ICL(C, M) if and only if for any X ∈ C there is a complete 
sublattice A of subX such that �c

X=�A
X .

5. Examples

(1) Consider C = Top the category of topological spaces and continuous maps with M the class of embed-
dings and (of course) ε the class of surjective continuous maps. For A, B ⊆ X:
(a) Let �= {�X | X ∈ Top} with A �X B | A ⊆ O ⊆ B for some O ⊆ TX . Then �∈∨

−INTORD(Top, M) and F (A�) = collection of all finite sublattices of OX where OX is col-
lection of open subsets of X. Now SX = {�L

X | L ∈ F (A�)} with A �L
X B ⇔ ∃O ∈ L | A ⊆ O ⊆ B

is an interpolative co-perfect syntopogenous structure. By Theorem 2.2, BS
X = {U�L | L ∈ F (A�)}

is a base for a transitive quasi-uniformity U on Top. One uses the observation that
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y ∈ U�L

[x] ⇐⇒ {x} �L
X X \ {y}

is not true to see that BS
X is a base for the Pervin quasi-uniformity P of TX .

(b) Let �= {�X | X ∈ Top} with A �X B ⇔ A ⊆ C ⊆ B for some C ⊆ TX . Then ∧
−INTORD(Top, M). Since A� = {C ⊆ X | C is closed in TX} is a complete lattice, SX =

{�L
X | L ∈ F (A�)} with A �L

X B ⇔ ∃ C ∈ L | A ⊆ C ⊆ B is an interpolative co-perfect synto-
pogenous structure and so BS

X = {U�L | L ∈ F (A�)} where (x, y) /∈ U�L ⇔ {x} �L
X X \ {y} is a 

base for a transitive quasi-uniformity U on Top. Since P−1 is generated by {SC | C is closed in T }
and SC = ((X \ C) ×X) ∪X × C, U = P−1.

(2) Let C = Grp be the category of groups and group homomorphisms with (surjective, injective)-
factorisation system. For any A, B ≤ G, let �G= {�G | G ∈ Grp} with A �G B ⇔ A ≤ N ≤ B with 
N � G is a meet preserving topogenous order on Grp. Then A� = {N ≤ G | N � G} is a complete 
lattice so that SX = {�L

X | L ∈ F (A�)} where A �L
X B ⇔ ∃ N ∈ L | A ⊆ N ⊆ B is an interpolative 

co-perfect syntopogenous structure, that is each U�L(A) = ∩{B ≤ G | ∃ N ∈ L : A ≤ N ≤ B} is 
an idempotent closure operator on Grp. Moreover, 

⋂
{U�L(A) | L ∈ F (A�)} = NG(A) the normal 

closure.
(3) Let C = Ring be the category of rings and their homomorphisms with (surjective, injective)-factorisation 

system. For any B, C ≤ A, let �= {�A | A ∈ Ring} with B �A B ⇔ B ≤ I ≤ B with I an ideal of A. 
�A is clearly a meet preserving topogenous order on Ring. Now F (A�) = {I ≤ A | I is an ideal of A}
is a complete lattice so that SX = {�L

X | L ∈ F (A�)} where B �L
X C ⇔ ∃I ∈ L | B ⊆ I ⊆ C is an 

interpolative co-perfect syntopogenous structure and each U�L(A) = ∩{B ≤ G | ∃ I ∈ L : B ≤ I ≤ C}
is an idempotent closure operator on Ring.
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