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Introduction

Imbalance between energy production and consumption calls
forth a great demand for efficient energy storage technologies
[1], particularly when using renewables as primary energy
sources [2]. The renewable energy sources are characterised
by non-uniformity of power generation which fluctuates in
time. In order to manage the fluctuations and utilize surplus
electric power, the most promising way is in the use of
hydrogen as an efficient energy carrier. When the surplus
power is available, hydrogen is produced by water electrolysis.
When the power generation is insufficient (e.g. during periods
of low solar radiation), hydrogen is oxidized in a fuel cell (FC)
to produce on-demand electricity.

The hydrogen based energy storage is beneficial in energy
intensive systems (>10 kWh) operating in a wide range of unit
power (1—-200 kW), especially when the footprint of the system
has to be limited. The cost of ownership for backup power
systems (10 kW/120 kWh) with hydrogen energy storage be-
comes lower than for alternative energy storage methods
when the operating time exceeds 5 years [3].

The main challenge hindering implementation of the
hydrogen energy storage systems is safe and efficient
hydrogen storage and supply [4,5].

Hydrogen storage in metal hydrides (MH) based on
reversible reaction of hydrogen with metals, alloys and
intermetallic compounds is a promising option for small-to-
medium-scale applications (0.01-30 Nm?> H,) [6—19]." Apart
from compact hydrogen storage at modest pressures, MH
systems can utilize heat released during fuel cell operation for
H, desorption thus improving overall system efficiency
[15,18—20]. The integration of MH in “electrolyser — fuel cell”
energy system also allows for the efficient heat management
providing end-user with heating and cooling in addition to
electric power supply [21-25]. The available heat can also be
used to drive metal hydride hydrogen compressor which
provides storage of H, as compressed gas. Thermally driven
hydrogen compression utilising MH is particularly promising
due to several other advantages including absence of moving
parts, simplicity in design and operation, high purity of the
delivered hydrogen [26,27].

There is a number of existing or recently completed pro-
jects worldwide related to the implementation of MH com-
pressors for different applications. Typical examples include
the EU-funded ATLAS-H2 [28], ATLAS-MHC [29], COSMHYC
and COSMHYC XL [30] projects. Another example is a US DoE
funded project aimed at the development of MH compressor
for high-pressure (>875 bar) hydrogen delivery to refuel fuel
cell powered vehicles [31]. The companies and institutions
involved in the development of industrial-scale MH hydrogen
compressors include HYSTORSYS AS (Norway, http://
hystorsys.no/), HYSTORE Technologies Ltd. (Cyprus, https://
www.hystoretechnologies.com/), South African Institute for

! These values represent typical hydrogen storage capacities of
individual MH containers. Due to modular design of MH hydrogen
storage tanks, they can be built as several containers connected
in parallel thus providing the required amount of the stored H,.
For example, a 7 Nm> H, MH hydrogen storage tank used in Refs.
[13] comprises of seven MH containers, 1 Nm? H, each.

Advanced Materials Chemistry (https://www.uwc.ac.za/
Faculties/NS/SAIAMC/) and HySA Systems Centre of Compe-
tence (http://hysasystems.com/), both hosted by the Univer-
sity of the Western Cape (South Africa), as well as SKTBE OAO
(Russia, https://intelhim.ru/).

In this work, we summarise our results of development of
integrated energy storage systems utilising metal hydride
hydrogen storage and compression, as well as their metal
hydride based components.

Metal hydride materials

Selection criteria of metal hydride materials for hydrogen
storage and compression applications depend on a number of
factors. First of all, the processes of hydride formation and
decomposition must be reversible in the range of operating
temperatures and hydrogen pressures specific for the appli-
cation.” Secondly, the material has to have high reversible
hydrogen storage capacity at the operating conditions. These
properties are determined by pressure — composition — tem-
perature (PCT) characteristics in the systems of H, gas with
hydride-forming materials when the reversible capacity is
associated with plateau width on the pressure — composition
isotherm and the process direction (hydrogenation/H, uptake
or dehydrogenation/H, release) depends on the relation be-
tween the actual H, pressure and the plateau pressure at the
actual temperature [26,32]. Plateau slope and hysteresis spe-
cific to the PCT behaviour of most of the real systems are very
important for hydrogen compression applications since they
result in the significant decrease of the compression ratio [26]
and process efficiency [33] achieved in the given temperature
range.

Other important properties of the MH materials for
hydrogen storage and compression include fast hydrogen
absorption and desorption kinetics, tolerance to poisoning
with impurities in the feed H,, easy activation, cyclic stability,
low cost and ease of the manufacturing [26,32].

Table 1 presents summary of hydrogen storage perfor-
mances of various metal hydride materials used in hydrogen
storage and compression systems. The typical values were
taken from previously published data analysed by the authors
[7,15,26,34—41].

As it can be seen, most commonly used “low-temperature”
intermetallic hydrides are characterised by weight hydrogen
storage density between 1.5 and 1.9 wt%, while the use of BCC
solid solution alloys on the basis of Ti—Cr—V system allows to
reach H storage capacity up to ~2.5 wt%; the latter materials,
as well as some AB,-type intermetallics, can be used in
“hybrid” hydrogen storage systems charged with H, gas at
high pressures and subzero temperatures [36,38]. Hydrogen
storage materials on the basis of MgH, are characterised by
significantly higher weight hydrogen storage densities but
require high operating temperatures that limits their appli-
cation by only several cases when the high-temperature heat
source, e.g. SOFC [22,23], is available.

2 We do not consider hydrogen storage systems with off-board
regeneration of the hydrogen storage material.
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Table 1 — Summary on performances of metal hydride materials for hydrogen storage and compression systems.

Parameter [units]

Typical range/value

ABs AB, AB?* BCC-Ti—Cr—V Mgsz
Operating temperatures [°C] 0 to 200 —50 to 150 0 to 100 —20 to 30 250 to 400
Operating H, pressures [atm] 0.1 to 500 1 to >1000 1 to 30 10 to 300 1to 20
Gravimetric hydrogen storage density [wt.%] 1.50 1.90 1.75 2.5 55t07.5
Volumetric hydrogen storage density [kg/L] Material 0.10 0.10 0.09 0.11 0.11
System* 0.063 0.061 0.055 0.069 0.066

@ TiFe and related intermetallics.
® Including alloys and nanocomposites on the basis of Mg.
¢ According to the analysis of reference data presented in Ref. [35].

In spite of very high volumetric hydrogen storage density
in the considered hydride materials significantly (typically by
half) exceeding the density of liquid hydrogen (~0.07 kg/L), the
volumetric hydrogen storage density on the system level will
be lower due to the limited safe densities of filling the mate-
rials in the containment, as well as differences in the densities
of the parent materials [35]. As a result, the system volumetric
hydrogen storage densities will take similar (though still high)
values for the different materials (last row in Table 1), and for
stationary energy storage systems the material selection
criteria will be mainly related to conditions and performances
of their operation (e.g. pressure/temperature ranges, ease of
activation, hydrogen absorption/desorption kinetics, cycle
stability) rather than the hydrogen storage densities.

ABs- and AB,-type intermetallics are the most frequently
used hydride materials in hydrogen storage and its supply to
fuel cell systems [15], as well as in hydrogen compression
applications [26]. The main reason for that is the tunability of
hydrogen sorption properties of these types of materials by
small variations of their composition. This gives an opportu-
nity to align the pressure/temperature operating perfor-
mances of these materials with the application conditions.

ABs-type intermetallics where A = rare earth metal (RE), B
=Ni, Co, Al, Mn, Sn, etc., are characterised by easy activation,
fast kinetics of hydrogen absorption and desorption, and
relatively high stability of hydrogen sorption properties during
cyclic hydrogenation/dehydrogenation (including the opera-
tion in H, gas containing impurities of oxygen and water va-
pours in moderate concentrations).

For the parent intermetallic, LaNis, the plateau pressure is
equal to 1.8 atm at T = 25 °C [32]. The plateau pressure can be
decreased by the substitution of Ni with Al, Sn, Mn, Co, while the
substitution of La with Ce (or Mm/mischmetal), Y, Ca results in
the pressure increase [26,32,42—45]. The substitution with Sn
[42], Al [43], or Ce [45] also improves stability of LaNis towards
disproportionation during prolonged pressure/temperature
cycling while Ca substitution worsens the cycle stability [45].

As a rule, pressure — composition isotherms in H—ABs
systems exhibit one flat plateau with not very high H,
absorption-desorption hysteresis which, however, increases
in the substituted alloys. As an example, for LaNis at
T = 20-25 °C, the ratio of H, absorption (P,) and desorption
(Pp) pressures at the H concentration corresponding to plateau
midpoint is about 1.45; for LagsCeosNis the ratio Po/Pp in-
creases to 3.55 at the same conditions [45].

AB, type materials used for H, storage and compression are
C14 (less frequently, C15 and C36) Laves phase intermetallic

compounds mostly formed by Ti and Zr as A component, and
B component is usually represented by several transition
metals including Mn, Cr, Fe, V, etc. AB,.x intermetallics are
even more flexible than ABs’s in the tuning of their PCT
properties by the variation of the composition [26,46,47]. The
equilibrium H, desorption pressures for hydrides of the AB,-
type alloys cover practically unlimited range: from
~3.10"% atm at T = 227 °C for ZrV, (calculated from the values
AS° = —88.4]/(mol H,K), AH® = —78 kJ/mol H, [48]) to >5000 atm
at the room temperature for TiFe, (calculated in Ref. [49]). The
thermal stability of the hydrides (the absolute value of their
formation enthalpy, |AH®|) can be increased by the increase of
Zr:Ti atomic ratio from the A-side and/or by introducing V as
one of the B-components. Conversely, the AB, hydride sta-
bility can be decreased by the decrease of the Zr:Ti ratio,
decrease of V content or its elimination, increase of Fe con-
tent, as well as increase of stoichiometric B:A ratio. The
balancing between the content of other components (e.g. Cr
and Mn) allows to further modify the PCT properties
[46,47,50,51]. Usually H—AB, interaction is characterised by a
sloping plateaux on the pressure — composition isotherms
and small hysteresis, with values of Po/Pp at T = 20—25 °C in
the plateau midpoint ranging from 1.14 to 1.46, even in the
multi-component alloys when A = Ti,Zr;_y (x = 0.15-0.85) and
B is a mixture of 45 transition metals including Cr, Mn, Ni, Fe
and V [47,52].

The AB,-type alloys are generally less easy activated than
ABs ones, and for facilitation of their activation they can be
doped by small amounts (~1 at%) of rare earth elements [53].
Once activated, they exhibit excellent hydrogenation/dehy-
drogenation kinetics and a good cycle stability [32,54]. Their
components are less expensive than the ones used for the
making of RE-based ABs’s, but manufacturing of the AB,-type
alloys experiences some metallurgical difficulties due to
higher melting temperatures, high reactivity of the compo-
nents and other factors [32,55]. When activated, the AB,-type
alloys, particularly those ones which contain Zr and Mn, are
highly pyrophoric; these materials are also more sensitive to
impurities in H, than ABs’s [32].

The La; xRExNis (RE = Ce, Mm) and Tij_xZrx
(Mn,Cr,Fe,V,Ni), intermetallics were used by the authors in a
number of MH hydrogen storage systems operating at near-
ambient temperatures and hydrogen pressures above 1 atm,
as well as for thermally-driven H, compression from 3 to 35 to
100—150 atm (ABs) and from 50 to 100 to 200—500 atm (AB,) at
T = 15-150 °C (will be discussed in Sections Hydrogen storage
and Hydrogen compression below).
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For the determination of hydrogen concentrations in the
studied materials at variable temperatures and H, pressures,
we applied earlier developed model of phase equilibria in
metal — hydrogen systems [56]. Within this model, the pres-
sure — composition isotherms were constructed as pseudo-
convolutions of an “ideal” isotherm built according to the
model of van der Waals lattice gas (hydrogen — metal phase
diagram), with two modified asymmetric pseudo Voight dis-
tribution functions (one for H desorption and another for H
absorption) modelling plateau slope and hysteresis. In doing
so, the median of the absorption distribution was shifted from
the one of the desorption distribution towards higher pres-
sures, by the value related to a minimum of a hysteresis free
energy loss and an excessive chemical potential of hydrogen
in over-saturated a-solid solution. According to the model, the
PCT diagram as a whole is described by a set of parameters (16
per a plateau segment) some of which (e.g. critical tempera-
ture, hysteresis energy loss, enthalpy and entropy of hydride
formation) have a clear physical sense and others, describing
temperature- and concentration-dependent plateau slope, are
semi-empirical.

Table 2 presents characteristics of the studied MH mate-
rials including hydrogen absorption capacities at the room
temperature (20 °C) and the specified H, pressures, as well as
temperatures which correspond to the specified plateau
pressures of H, desorption at H concentrations which corre-
spond to the plateau midpoint. The presented values were
calculated from hydrogen absorption and desorption iso-
therms for the specified materials built at different tempera-
tures using the authors’ experimental PCT data further
processed by the model [56]; so as the fitted model parameters
allowed to build the isotherm at any selected temperature.

As it can be seen from Table 2, the ABs-type materials with
different Ce/La ratios and AB,-type ones with different Zr/Ti
ratios (both from the A side) allow to develop on their basis
various hydrogen storage and compression systems operating
in various ranges of temperatures and H, pressures. However,
the presented data do not allow to estimate the useable
hydrogen storage capacities for the hydrogen storage, as well
as cycle productivities of the hydrogen compressors. These
estimations can also be derived from the PCT diagrams of the
used MH materials and will be presented in the next sections.
The calculations of reversible hydrogen storage capacities or
the materials assumed to be close to the useable hydrogen
storage capacities of hydrogen storage systems (Section
Hydrogen storage) or cycle productivities of H, compressors
(Section Hydrogen compression), were carried out similarly,
from the modelled hydrogen absorption (ABS) and desorption
(DES) isotherms (see example in Fig. 1 (D)).

Hydrogen storage

Fig. 1(A—C) shows the useable (reversible) hydrogen storage
capacities for ABs- and AB,-type materials in the hydrogen
storage systems which were developed at the author’s
institutions.

When charged with H, at T = 20 °C and the pressure cor-
responding to the end of H absorption plateau on the pressure
— composition isotherm, all the materials allow to use ~90% of
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Fig. 1 — A—C: amounts of desorbed H, (useable H storage capacity) for some ABs- and AB,-type materials as functions of
operating temperature at different H, desorption pressures (Pp); H, absorption pressures (P,) are specified in the graphs. D:
Example of determination of the amounts of the desorbed H, for Tig 65Zro 35(Cr,Mn,Fe,Ni), (C) at T = —25 °C.

their full capacity at T = 50 °C and P(H,) = 5 atm that is enough
to supply hydrogen to low-temperature PEM FC stack using
the heat released during its operation for the heating of the
MH bed [15]. Moreover, most of the MH materials are able to
desorb H, at pressures above atmospheric and subzero tem-
peratures (Fig. 1(D)) thus making it possible to start-up the FC
power system even during winter time.

It has to be noted that the useable hydrogen storage ca-
pacities of MH materials shown in Fig. 1 are the maximum
theoretical values. Real amounts of H, supplied from the MH
to the FC stack also depend on the hydrogen supply flow rate
and, in turn, the stack power. At the high rate, the endo-
thermic H, desorption results in the cooling the MH bed thus
slowing the H, release down. As a result, the useable H, ca-
pacity of the MH at a specified rate of H, desorption/stack
power will decrease; this effect can be minimised by the
improvement of the heat exchange between the MH and the
heating fluid, as well as by other engineering solutions [12].

Table 3 summarises performances of several metal hydride
hydrogen storage units for hydrogen energy storage systems
developed at the Institute of Problems of Chemical Physics of
Russian Academy of Sciences (IPCP) and "Hydrogen South
Africa" System Integration and Technology Validation Centre
of Competence (HySA Systems). The units use MH materials
on the basis of La;_xRExNis (RE = Ce, Mm) and multicompo-
nent AB,-type alloys (A = Ti + Zr) characterised by H, equi-
librium desorption pressures from 2.2 to 40 atm at the room
temperature and can supply H, to PEM FC stacks, 1-15 kW in

the nominal power. The tanks number 1, 2 and 5 utilising
more stable MH materials can be charged directly from a PEM
electrolyser with H, output pressure 15—20 atm while for the
tanks number 3 and 4 the feed H, should be compressed to
50 atm or higher, if a fast H, charge is necessary.

The units developed by IPCP (number 1-3; Fig. 2) use
standard composite cylinders (carbon- or glass-fibre wounded
stainless steel liner) as a containment heated and cooled from
the outside by natural air convection or flow of heating/cool-
ingliquid; in the latter case the containment is enveloped in a
stainless steel heating/cooling jacket. This solution is light-
weight, simple and inexpensive but it is characterised by a
poor heat exchange between the MH and the heating/cooling
fluid that results in rather slow H, charge and discharge.

The HySA Systems MH tanks (number 4, 5) use multiple MH
containers, ~40 mm in internal diameter, equipped with inner
copper fins (see Fig. 3 (A)) and heated/cooled from the outside.
Additionally, a small amount of expanded natural graphite was
added to the MH powder that allowed to increase the safe MH
filling density® and to further improve the heat transfer in the MH

? The limitation of the filling density is necessary to avoid
appearance of stresses in the container walls due to expansion of
the MH material upon hydrogenation. As a rule, the filling density
of MH powders into HySA Systems containers for hydrogen
storage and compression was about 55% of the density of the
material in the hydrogenated state. The maximum safe limit of
the filling density was reported as 61% (50% typically applied) [57].
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Developer/Number of the unit (with reference to figure)

Characteristic

HySA Systems

IPCP
2 (Fig. 2 (B))

5 (Fig. 3 (C)

4 (Fig. 3 (B))

3 (Fig. 2 (O))

1 (Fig. 2 (A))

20.0

10.0
Tio.65Zr0.35(Cr,Mn,Fe,Ni),

0.5 3.5 6.0

Useable H, storage capacity [Nm?]

MH material

Features

Tio 55Zr0.45(Cr,Mn,Fe,Ni),

Stainless steel containment with inner finning, external heating/cooling.
>50 (150—180)*

Lag.sMmg sNis

Lag gCep oNis
Composite containment, external heating/cooling.

Lag gCeo oNis

>15 (100—150)*

>1.3

50—-100

30

15—-20

>1.2
1.1

H, charge pressure [atm]

>13

H, discharge pressure [atm]

<170

<170

0-60

<25

H, discharge flow rate [NL/min)]

0-60

0-90

0-80

0—30 (environment)
1(1x 1L cylinder)

4.6

Operating temperature range [°C]

Volume [dm?]
Weight [kg]

160 (40 containers + heat exchanger + encasing)

350/1200°

80 (20 containers + water tank)

184

70 (5 x 2 L cylinders + case)

7 (1 x 7 L cylinder)
45

28

& To achieve short refuelling time (10—15 min) at the ambient temperature (25—30 °C).

® For the lead-encased MH containers.

bed. Though this solution is more labour-consuming and
expensive, it allowed to significantly increase H, supply rate to
the fuel cell stack whose cooling system is thermally coupled
with the heating system of the MH tank. A significant increase of
the tank weight associated with the heat transfer improvements
is not an issue for the stationary and even some special mobile
applications. For example, in the HySA Systems MH tank (num-
ber 5; Fig. 3(C)) initially designed for hydrogen storage on-board
fuel cell forklift, the weight was even intentionally increased by
encasing the MH containers in lead to provide counterbalance
weight necessary for the safe forklift operation [58].

Hydrogen compression

When hydrogen energy storage system stores hydrogen in
compressed gas cylinders or in metal hydrides whose equi-
librium H, absorption pressure at the operating temperature
for H, charge exceeds H, pressure provided by electrolyser,
hydrogen compression is necessary. As it was mentioned in
the Introduction, the use of MH for the H, compression brings
a number of benefits including the increase of the overall
system efficiency by the use of waste heat released during
operation of the electrolyser.

Fig. 4(A—E) presents dependencies of cycle productivities of
MH compression on the suction (P;) and discharge (Py) pres-
sures, at the cooling temperature Ty = 20 °C and heating
temperature Ty = 150 °C. The graphs similar to the ones pre-
sented in the review on MH H, compressors (see Refs. [26], Fig.
4) were built from the calculated isotherms (see Section Metal
hydride materials for the details) for H, absorption at T, and
H, desorption at Ty (see example in Fig. 4(F)).

As it was shown in Refs. [26], if Py exceeds the plateau
pressure at T = Ty, very high compression ratios, Py/Py, can be
achieved even for quite stable MH, though at low cycle pro-
ductivities; and at Py/P;. below ~5 the cycle productivity ex-
ceeds ~70% of the full capacity of the MH material (see
examples in Fig. 4). As it can be seen from Fig. 4(A—C), at
Ty = 20°C and Ty = 150 °C and the target cycle productivity of
100 NL/kg, LaNis can provide H, compression from 3 to 25 atm,
Lag gCep »Nis from 10 to 100 atm, and Lag sCeq sNis from 40 to
170 atm. For the AB,-type H, compression alloys (Fig. 4(D and
E)), the corresponding ranges of the operating pressures
(PL—Py) are 50-270 and 70-350 atm, for TipesZro3s(-
Cr,Mn,Fe,Ni), and Tig;Zro 3(Cr,Mn,Fe,Ni),, respectively. Note
that the values specified above are only estimations based on
the analysis of PCT data for the MH materials and can vary
depending on the design features of the MH compressors and
their operating conditions. However, for the properly designed
compressor the deviations are not very high. For example, for
the two-stage compressor TSC2-3.5/150 (T, = 15 °C,
Tu = 150 °C, 15 Nm®/h) developed by Russian company SKTBE
under IPCP supervision, the cycle productivity of the first stage
(LaNis, P, = 3.5 atm, Py~35 atm) was about 75 NL/kg, and for
the second stage (Lag sCeg sNis, PL~35 atm, Py = 150 atm) about
100 NL/kg, taking into account cycle time 38 min and three H,
compression sections in the compressor [27].

A summary of features and performances of MH hydrogen
compressors for hydrogen energy storage systems developed
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Fig. 3 — Inner layout of HySA Systems MH container for H, storage (A), assembly of the containers in 10 Nm? (B) and 20 Nm?

H, (C) storage tanks.

under the authors’ supervision has been presented in Ref. [27],
as well as in a review [59] and references therein.

System integration

Table 4 presents main features and performances of two in-
tegrated hydrogen energy storage systems developed under
supervision of IPCP (number 1) and HySA Systems (number 2).

Both systems use gas cylinder packs as main and MH
hydrogen storage units as auxiliary hydrogen storage facil-
ities. The gas cylinder pack is filled with MH compressor
during system operation. The MH units can be charged either
from the output of the electrolyser (see example for system
number 2 in Fig. 5) or, if the output pressure is not high enough
(system number 1), from the discharge line of the compressor
via reducer. When charged, the smaller-scale MH units can be
moved to other premises where H, consuming fuel cell stacks
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Fig. 4 — A—E: cycle productivities of MH hydrogen compressors for ABs- and AB,-type materials used in MH H, compressors
developed at IPCP and HySA Systems as functions of suction (P,) and discharge (Py) pressures at T, = 20 °C and Ty = 150 °C.
F: Example of determination of the cycle productivity for Ti, ;Zr 3(Cr,Mn,Fe,Ni), (E). The values of Py are shown in X-axes

while the values of P, — as curve labels.

are installed. Alternatively, the bigger MH tanks (e.g. number
4, 5 in Table 3) can be permanently connected to a line sup-
plying hydrogen to the fuel cell stacks. These tanks can also be
used as buffers between the output of the electrolyser and the
input of the MH compressor (Fig. 5).

System number 2 (HySA Systems; see Fig. 5) provides
SAIAMC research facilities with hydrogen from H, cylinder
pack equipped with a gas distributing system connected to
three pipelines for H, supply to (i) fuel cell testing stations
(10 atm), (ii) other experimental facilities consuming medium-
pressure hydrogen (80 atm) and (iii) hydrogen dispensing
(30—200 atm) for the refuelling of fuel cell vehicle prototypes
(e.g. forklifts).

Though a big number of the integrated energy systems
“electrolyser — metal hydride — fuel cell” has been developed

up to date, they mainly used metal hydrides for hydrogen
storage (see e.g. Refs. [10,13,14,16,19]). As to the authors’
knowledge, there exists one development related to the inte-
gration of the MH compressor in a hydrogen-based power
system undertaken under support of EU-funded ATLAS-MHC
project [60]. The corresponding development of a prototype
MH compressor for this application including techno-
economic forecast was reported in Ref. [61]; a brief perfor-
mance summary for the prototype was presented in the re-
view [59]. The compressor developed by HYSTORE
Technologies Ltd. (Cyprus) provides H, compression from 7 to
220 atm with a productivity up to 2.5 Nm?h that s close to the
characteristics of the MH compressor integrated in HySA
Systems hydrogen production, storage and distribution sys-
tem (number 2 in Table 4, Fig. 5). The advantage of the
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Table 4 — Integrated energy storage systems developed under supervision of IPCP and HySA Systems.

Features, main components Number/developer

1/1PCP [27] 2/HySA Systems (Fig. 5)
Primary energy source Grid, solar panels, wind turbine (25 kW) Grid, solar panels (4.5 kW)
Electrolyser Type Alkaline PEM
Power [kW] 23 4.3
H, output pressure [atm] 4 <20
H, output flow rate [Nm?/h] 15 2
H, storage Type Gas cylinders® + MH Gas cylinders®

H, charge pressure [atm] Gas cylinders: 150
MH units: 30—100
Gas cylinders: up to 150

MH units: 2—5

Gas cylinders: 200

MH unit: 15—-20

10 (FC stacks test stations)

80 (other H, consuming facilities)
30—200 (FCV refuelling)

Gas cylinders: 180

MH tank: 20

Gas cylinders: unlimited

MH unit: up to 170

H, supply pressure [atm]

Capacity [Nm?] Gas cylinders: 72
MH tanks: 3.5-6
Gas cylinders: unlimited
MH units: 20—40
Pressure range [atm] 3.5—150 3-200
Temperature range [°C] 15—-160 20—130
Productivity [Nm>/h] 15 5
Various PEM FC stacks (1-10 kW) PEM FC stacks test stations (up to 30 kW)

FCV refuelling

H, supply flow rate [NL/min]

MH H, compressor

Hydrogen consumer

@ The gas cylinders of standard size (50 dm? in the volume) connected in parallel (up to 18 per a pack).

SAIAMC H, &
consuming |}
facilities

Primary energy PEM MH H2

source electrolyser - compressor
Jin 7

:> Electricity (230 VAC, 4.5 kW) Medium-pressure Hy (30-80 bar)

Low-pressure Hj (<20 bar) q} High-pressure H, (200 bar)

Fig. 5 — Schematic representation of hydrogen production, storage and distribution system at HySA Systems/South African
Institute for Advanced Materials Chemistry (SAIAMC) research facility. Additional details about the system components are
presented in Table 4 (number 2).

HYSTORE compressor is in the narrow range of the operating
temperatures (10—80 °C) that allows to use simple and inex-
pensive source of heat (e.g. solar collectors) to drive H,
compression. This advantage, however, has been achieved at
the expense of the increase of number of stages (up to six) that
is known to be detrimental from thermodynamic efficiency
and reliability points of view [26]. Conversely, the MH com-
pressors integrated in the operating energy storage systems
presented in this study use two- (IPCP) and three-stage (HySA
Systems) layouts. The problem of availability of heat with

rather high temperature potential (130—160 °C) necessary for
these developments can be solved by appropriate heat man-
agement solutions, that is a subject for future studies.

Conclusions

Metal hydride hydrogen storage and compression technolo-
gies have been shown to be efficient in small-to-medium scale
energy storage systems. The approach for selection of ABs-
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and AB,-type metal hydride materials for MH based hydrogen
storage and compression systems developed in this work has
been outlined. The approach is based on the analysis of PCT
properties of the materials and takes into account useable H,
capacity for hydrogen storage or cycle productivity for H,
compression depending on temperatures and pressures of H,
absorption and desorption.

Two medium-scale energy storage systems developed under
supervision of IPCP and HySA Systems have been demon-
strated. The systems can use various primary sources of elec-
tricity (grid, solar panels, wind turbine) for hydrogen production
by water electrolysis. The produced low-pressure hydrogen is
compressed by metal hydride hydrogen compressor and sup-
plied to gas cylinder packs (150—200 atm) as main hydrogen
storage facilities. Additionally, hydrogen is collected and stored
at the pressure below 100 atm in metal hydride hydrogen stor-
age units. Both hydrogen storage facilities supply hydrogen to
PEM fuel cell stacks, up to 30 kW in the electric power; the high
pressure cylinder packs can also supply hydrogen for the refu-
elling of fuel cell vehicles and for other needs.
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