
Journal of Cosmology and
Astroparticle Physics

     

PAPER

Testing the equivalence principle on cosmological scales using the odd
multipoles of galaxy cross-power spectrum and bispectrum
To cite this article: Obinna Umeh et al JCAP08(2021)049

 

View the article online for updates and enhancements.

This content was downloaded from IP address 196.11.235.232 on 06/09/2021 at 14:13

https://doi.org/10.1088/1475-7516/2021/08/049
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuIw_Fpe7ykron5Q67aWVYBxPqMKex2k-4V0KicF7WzrRZnB3UABSC8Gl8OurGHZ-DaDqkJUxUTlz4C5fEb1f75vUxg_wnpyA-YEgbCLDSLSWOEZJpDZCA_Ot0fbKHgdc6hDfEl1p9fIaShPadygbwujCy_Qtds6cMENpAW_WojKlcyAjYWlcWWFKx7-fvbb8aQFiHIxabeLTDdGweNQHYFuiOKm8yz6XaR1XVLishErDStUNsTIYs23yNBl54lOAPLV1eP4fdTWULdinH3XgwkzmHHcqM8pEA&sig=Cg0ArKJSzH701fihyUMO&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


J
C
A
P
0
8
(
2
0
2
1
)
0
4
9

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Testing the equivalence principle on
cosmological scales using the odd
multipoles of galaxy cross-power
spectrum and bispectrum

Obinna Umeh,∗ Kazuya Koyama and Robert Crittenden
Institute of Cosmology & Gravitation, University of Portsmouth,
Portsmouth PO1 3FX, United Kingdom
E-mail: obinna.umeh@port.ac.uk, kazuya.koyama@port.ac.uk,
robert.crittenden@port.ac.uk

Received December 1, 2020
Revised July 5, 2021
Accepted July 30, 2021
Published August 23, 2021

Abstract. One of the cornerstones of general relativity is the equivalence principle. However,
the validity of the equivalence principle has only been established on solar system scales for
standard matter fields; this result cannot be assumed to hold for the non-standard matter
fields that dominate the gravitational dynamics on cosmological scales. Here we show how
the equivalence principle may be tested on cosmological scales for non-standard matter fields
using the odd multipoles of the galaxy cross-power spectrum and bispectrum. This test makes
use of the imprint on the galaxy cross-power spectrum and bispectrum by the parity-violating
general relativistic deformations of the past-light cone, and assumes that galaxies can be
treated as test particles that are made of baryons and cold dark matter. This assumption
leads to a non-zero galaxy-baryon relative velocity if the equivalence principle does not hold
between baryons and dark matter. We show that the relative velocity can be constrained to
be less than 28% of the galaxy velocity using the cross-power spectrum of the HI intensity
mapping/Hα galaxy survey and the bispectrum of the Hα galaxy survey.
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1 Introduction

One of the foundational pillars of general relativity is Einstein’s equivalence principle. The
equivalence principle says that all bodies fall at the same rate in a local gravitational field
independently of their material make-up. Finding violations of the equivalence principle
could provide clues to the nature of gravitational theories beyond general relativity [1]. In
cosmology, it could unveil the fundamental nature of dark matter and dark energy as well as
the possible gravitational interaction between them [2].

There have been various tests of the equivalence principle, starting with terrestrial stud-
ies of objects with different compositions freely falling in a vacuum [3, 4]. MICROSCOPE [5]
tests the equivalence principle by comparing the acceleration of two masses (one made of
platinum alloy and the other titanium alloy) that follow the same orbit around Earth for
a long period of time.1 The equivalence principle has so far been confirmed by all these
tests; however, these tests have been carried out on the solar system scale with test particles
whose composition we understand.2 Therefore, these results cannot easily be extrapolated
to cosmology [10], where the unknown nature of cold dark matter, dark energy, gravity and
backreaction is crucial to the evolution of the universe on large scales [11, 12]. It is not clear
whether the equivalence principle holds for these types of matter or gravity on large scales.

1There are other tests of the equivalence principle that rely on the extra time delay that the gravitational
field could cause to a propagating photon [6, 7] or gravitational waves [8]. These tests confirm the equivalence
principle on inter-galactic scales but the level of precision of the measurement is still below the requirement
for precision cosmology.

2There are constraints on an exotic coupling between ordinary and dark matter by laboratory tests of the
weak equivalence when analysed as a test of the uniformity of free fall towards the centre of the Galaxy [9].
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Recently a method of testing the equivalence principle on cosmological scales was pro-
posed, based on the understanding that the validity of the consistency relation between the
squeezed limit of correlation functions of large scale structures is a consequence of the equiv-
alence principle [13, 14]. This connection implies that any physical process that violates the
equivalence principle will lead to a breakdown of the consistency relation. Although this
approach depends only on the squeezed configuration of the correlation function of galaxies,
an analysis including all possible shapes of the bispectrum leads to an impressive constraint
on the strength of the coupling of the galaxy velocity to the fifth force. In this paper, we
describe how the number count of sources may be used to test the equivalence principle on
cosmological scales by looking at the odd multipole moments of the correlation functions of
the large scale structures.

The number of galaxies we observe today within a redshift slice and solid angle is
impacted by a number of physical effects due to the inhomogeneities along the line of sight.
At leading order, the galaxy position is displaced by the peculiar velocity of the source. The
effect of the displacement on the number count fluctuations is dominated by the redshift
space distortion known as the Kaiser effect [15]. The Kaiser effect provides an avenue to test
alternative theories of gravity on large scales through the measurement of the growth rate of
structures [16]. The Kaiser effect induces only even multipoles of the galaxy power spectrum
and bispectrum. The next-to-leading order effect on galaxy clustering is the Doppler effect,
which introduces a shift in galaxy redshift whose imprint depends on the relative position
of the galaxy with respect to the line of sight [17–20]. The Doppler effect induces only odd
multipoles of the galaxy cross-power spectrum and bispectrum [21]. We utilise these distinct
imprints of the Doppler effect on the galaxy cross-power spectrum and bispectrum to develop
a consistent framework for testing the equivalence principle on cosmological scales.

The dipole of the galaxy cross-power spectrum has been detected in the CMASS sample
of the BOSS survey [22] and is seen in N-body simulations [23] by considering haloes selected
based on different mass criteria. In [24], Bonvin and Fleury proposed to use the dipole
in the galaxy cross-power spectrum to test the equivalence principle. The approach taken
in [24] differs substantially from the formalism we discuss here. In particular, they proposed
a parametrisation of a large class of modified Euler equation for dark matter and studied
how the galaxy cross-power spectrum could constrain the parameters. They also assumed
that the peculiar velocities of galaxies are determined only by dark matter, and neglected
the effect of baryons.

In this paper, in addition to the dipole of the galaxy cross-power spectrum, we include
the contribution from the dipole and octupole moments of the galaxy bispectrum. We also
parametrise the odd multipoles differently from ref. [24]. We do not neglect the effects
of baryons, rather we assume that galaxies can be treated as test particles that are made
of cold dark matter and baryons, and baryons satisfy the standard Euler equation. This
allows us to directly parametrise the relative velocity between galaxies and baryons rather
than parametrising the modified Euler equation for dark matter. The parametrisation we
propose makes apparent the baryon-dark matter relative velocity that we are interested in.
The parametrisation is independent of theories of gravity but we discuss in detail a limit of
this parametrisation that applies to a class of modified theories of gravity where the scale
dependence of the fifth force is negligible. We show that a Stage IV HI intensity mapping and
the Hα emission line galaxy survey, which overlaps in about 0.38 fraction of the sky, will be
able to constrain the relative velocity of baryons and galaxies to be less than 28% of the galaxy
velocity via the galaxy cross-power spectrum and the bispectrum of the Hα galaxy survey.
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The rest of the paper is structured as follows: in section 2 we introduce the full non-
perturbative expression for the number count of galaxies on arbitrary spacetime: we perturb
it on an FLRW background in subsection 2.1, and discuss the equivalence principle for baryons
in subsection 2.2. We adopt the standard Eulerian bias model for the galaxy density field in
section 3, discussing the decomposition of the galaxy cross-power spectrum and bispectrum
in multipoles in section 3.1. We derive covariance matrix and describe the Fisher forecast
analysis technique in section 4 and conclude in section 5. An example of how baryon-dark
matter relative velocity could be sourced by an interaction in the dark sector is discussed in
appendix A.

Notations. We neglect the effect of radiation and the anisotropic stress tensor, which
is sufficiently accurate at z ≤ 20. We adopt the standard normalisation for the Taylor
series expansion of any quantity X: X = X̄ + X(1) + X(2)/2 where X̄ denotes the FLRW
background component, X(1) and X(2) are first and second order perturbations, respectively.
We decompose each perturbed quantity at order n into two parts X(n) = X

(n)
N + X

(n)
GR,

where X(n)
N denotes the Newtonian approximation of X(n), while X(n)

GR denotes the general
relativistic corrections. We consider the limit where only the Doppler effect dominates in
X

(n)
GR and therefore set X(n)

GR = X
(n)
D . For the fiducial cosmological parameters we adopt the

Planck 2018 best-fit values [10]: Hubble parameter, h = 0.674, baryon density parameter,
Ωb = 0.0493, dark matter density parameter, Ωcdm = 0.264, spectral index, ns = 0.9608, and
the amplitude of the primordial perturbation, As = 2.198× 109.

2 Galaxy number counts

The number of galaxies seen by an observer at o with a flux greater than F per redshift bin
and per solid angle is given by [25–27]:

dNobs(z, n̂, F )
dz dΩo

= Ng(z, n̂, F ) d2
A(z, n̂) [kµuµ]o

∣∣∣∣dλdz
∣∣∣∣ , (2.1)

where z is the observed redshift of the source, λ is the affine parameter (comoving distance)
to the source, n̂ is the line of sight direction to the source, uµ is the 4-velocity of the source
galaxy, kµ is the photon tangent vector, dA is the angular diameter distance to the source
and Ng is the flux-limited proper number density of galaxy

Ng(z, n̂, F ) =
∫ ∞

lnL(F )
d lnL ng(z, n̂, ] lnL) . (2.2)

Here ng is the proper number density of sources. The luminosity of the source is related to
its flux by L = 4πFd2

L = 4πF (1 + z)4d2
A.

The expansion of equation (2.1) up to second order in perturbation theory has been
done by several authors [28–30]. However, they all assumed that the motion of galaxies
traces that of dark matter and that dark matter obeys the equivalence principle. This is the
key assumption we relax here.

We consider metric perturbations in Poisson gauge on a background FLRW spacetime:

ds2 = a2
(
− (1 + 2Φ) dη2 + (1− 2Ψ) δijdxidxj

)
, (2.3)

where Φ and Ψ are the metric perturbations, “a” is the scale factor of the background FLRW
spacetime, η is the conformal time. We neglect the vector and tensor perturbation at first and
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second order, because they are sub-dominant in this gauge [31]. For a given fluid component
I, the perturbation of the temporal and spatial components of its 4-velocity is given by

u0
I = 1− Φ(1) + 1

2
[
3[Φ(1)]2 − Φ(2) + ∂iv

(1)
I ∂iv(1)

I

]
, (2.4)

uiI = ∂iv(1)
I + 1

2∂
iv(2)
I , (2.5)

where vI is the I-th peculiar velocity potential. We shall see later how the peculiar velocity
potential of each of the fluid components is related to Φ via the generalised Euler equation.

2.1 Gravity theory independent number count in the weak-field limit

In the weak-field limit, we neglect integrated terms such as weak gravitational lensing, the
integrated Sachs-Wolfe effect, the time-delay effect, etc. The contributions from such terms
are expected to be sub-dominant for thin redshift bins, although they could be important
when cross-correlations between widely separated redshift bins are considered [32, 33]. We
shall introduce the basic notations here and refer the reader to [28, 34] for details on the
derivation. Expanding equation (2.2) in perturbation theory leads to

Ng(z, n̂, L̄) = N̄g(z, L̄)
[
1 + δg + be∆z +Q∆dL

+ ∂δg

∂ ln L̄
∆dL

]
, (2.6)

where we have introduced the following short-hand notations for simplicity: the perturbation
in the galaxy number density δg ≡ δg(z, n̂, L̄), the magnification bias parameter Q ≡ Q(z, L̄),
which is related to the slope of the luminosity function s according to Q = 5s/2, the evolution
bias parameter be ≡ be(z, L̄), the redshift perturbation ∆z ≡ ∆z(z, n̂) and the perturbation of
the luminosity distance ∆dL

≡ ∆dL
(z, n̂). Putting all these in equation (2.1) and expanding

everything up to second order leads to

dNobs(z, n̂, F )
dz dΩo

= dN̄(z, F )
dz dΩo

[
1 + ∆(1)

Nobs(z, n̂, F ) + 1
2∆(2)

Nobs(z, n̂, F )
]
, (2.7)

where dN̄(z, F )/dz dΩo is the mean number count per redshift bin per solid angle and ∆Nobs

is fluctuation. We can write ∆Nobs = ∆N + ∆D, where at linear order

∆(1)
N = δ(1)

g −
1
H
∂2
‖vg

(1) , (2.8)

∆(1)
D = ∂‖vg

(1) + 1
H

(
∂‖vg

(1)′ + ∂‖Φ(1)
)

+
[
be − 2Q− 2 (1−Q)

χH
− H

′

H2

]
∂‖vg

(1) , (2.9)

where ∂2
‖vg

(1) = ninj∂i∂jvg
(1). The equation (2.8) is the well-known Kaiser limit [15] of the

number count fluctuations, which constitutes what we call the Newtonian approximation ∆(1)
N .

Equation (2.9) contains the leading order contribution to the large-scale general relativistic
effects; ∆(1)

D is dominated by the Doppler effects [35]. Equation (2.9) is independent of any

– 4 –
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δm v

(Φ + Ψ) Φ

Poisson equation

Continuity equation

Anisotropic constraint

Euler equation

Figure 1. Scalar perturbations in Poisson-gauge have four independent degrees of freedom: two
from the matter sector, δm(matter density), v (peculiar velocity) and two from the metric sector, Φ
(gravitational potential), and Ψ (curvature perturbation). Large scale structure survey measures δm

via clustering of biased tracers, v via the redshift space distribution, Φ via the Doppler effect and
Φ + Ψ via weak gravitational lensing.

theory of gravity. At second order, we find

∆(2)
N = δ(2)

g −
1
H
∂2
‖vg

(2) − 2
H

[
δ(1)
g ∂2
‖vg

(1) + ∂‖vg
(1)∂‖δ

(1)
g

]
+ 2
H2

[ (
∂2
‖vg

(1)
)2

+ ∂‖vg
(1)∂3
‖v

(1)
g

]
, (2.10)

∆(2)
D =

[
1 + be − 2Q− 2 (1−Q)

χH
− H

′

H2

]
∂‖vg

(2) + 1
H

(
∂‖vg

(2)′ + ∂‖Φ(2)
)

+ 2
H

[
δ(1)
g −

2
H
∂2
‖vg

(1)
] [
∂‖vg

(1)′ + ∂‖Φ(1)
]

+ 2
H

Φ(1)
[
∂‖δ

(1)
g −

1
H
∂3
‖vg

(1)
]

+ 4∂‖vg(1)
(

1− 1
χH

)
∂δ(1)

g

∂ lnL + 2∂‖vg(1)δ(1)
g

[
1 + be − 2Q− 2 (1−Q)

χH
− H

′

H2

]
+ 2
H
∂‖vg

(1)
[
δ(1)
g
′ − 2
H
∂2
‖vg

(1)′ − 1
H
∂2
‖Φ(1)

]
− 2
H
∇⊥ivg(1)∇i⊥∂‖vg(1)

+ 2
H
∂‖vg

(1)∂2
‖vg

(1)
[
−2− 2be + 4Q+ 4 (1−Q)

χH
+ 3H

′

H2

]
. (2.11)

Furthermore, equation (2.9) contains the gradient of the gravitational potential, while equa-
tion (2.11) contains both the gravitational potential and the gradient of the gravitational
potential. In order to express them in terms of the Doppler peculiar velocity, the Euler
equation is required. See figure 1 for the relationships between scalar perturbation variables.

The classification of the second order terms into Newtonian and Doppler terms is a
little more complicated. However, we found that the most consistent way to classify all the
terms is to think of the density term and the velocity term as a function of the gravitational
potential through the Poisson equation (in sub-horizon limit) and the baryon Euler equa-
tion, respectively. Within this scheme, the quadratic second-order Newtonian terms will be
proportional to four spatial derivatives of two gravitational potentials. How the derivatives
act on the gravitational potentials does not matter. Similarly, the quadratic second-order
Doppler terms in equation (2.11) contain only terms with three spatial derivatives of the two
gravitational potentials. Again, how the derivatives act on the gravitational potentials does
not matter, what is important is the number of spatial derivatives.

– 5 –
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Galaxies are made of baryons and dark matter. In the standard case, both baryons and
dark matter are assumed to follow the same geodesic equation

∂ivm
(1)′ +H∂ivm(1) + ∂iΦ(1) = 0 . (2.12)

If the galaxy velocity exactly coincides with the matter velocity vg = vm, we can use equa-
tion (2.12) and its second order equivalent to relate Φ to vg, and the result is the well-known
expression for the general relativistic number count fluctuation given in [26, 36, 37] at linear
order and in [28–30, 38] at second order.

2.2 Beyond the standard case: equivalence principle for baryons only

We assume that only the baryon motion is geodesic, hence they satisfy the standard Euler
equation. At the linear order, the Euler equation for baryons is given by

∂ivb
(1)′ +H∂ivb(1) + ∂iΦ(1) = 0 , (2.13)

where v(1)
b is the linear baryon peculiar velocity potential. Using equation (2.13) in equa-

tion (2.9) to relate the gravitational potential to the baryon velocity. we find

∆(1)
D = ∂‖vg

(1) − ∂‖vb
(1) (2.14)

+ 1
H

(
∂‖vg

(1)′ − ∂‖vb(1)′
)

+
[
be − 2Q− 2 (1−Q)

χH
− H

′

H2

]
∂‖vg

(1) .

Similarly, the Euler equation for baryons at second order in the weak field limit is given by

∂iv
(2)
b
′ +H∂iv(2)

b + ∂iΦ(2) + 2∂i∂jv(1)
b ∂jv(1)

b +O(Φ(1)∂Φ) = 0 . (2.15)

Using equations (2.13) and (2.15), we can relate Φ(1) to v(1)
b and Φ(2) to v(2)

b in equation (2.11).
After straight-forward but lengthy algebra we find

∆(2)
D =

[
be − 2Q− 2 (1−Q)

χH
− H

′

H2

]
∂‖vg

(2) + (∂‖vg(2) − ∂iv(2)
b ) + 1

H

(
∂‖vg

(2)′ − ∂iv(2)
b
′)

− 2
H
∂‖∂jv

(1)
b ∂jv(1)

b + 2
H

[
δ(1)
g −

2
H
∂2
‖vg

(1)
] [
∂‖vg

(1)′ − ∂‖v
(1)
b
′ −H∂‖v

(1)
b

]
− 2
H

[
v(1)
b
′ +Hv(1)

b

] [
∂‖δ

(1)
g −

1
H
∂3
‖vg

(1)
]

+ 4∂‖vg(1)
(

1− 1
χH

)
∂δ(1)

g

∂ lnL + 2∂‖vg(1)δ(1)
g

[
1 + be − 2Q− 2 (1−Q)

χH
− H

′

H2

]
+ 2
H
∂‖vg

(1)
[
δ(1)
g
′ − 2
H
∂2
‖vg

(1)′ + 1
H
∂2
‖
v(1)
b
′ + ∂2

‖
v(1)
b

]
− 2
H
∇⊥ivg(1)∇i⊥∂‖vg(1)

+ 2
H
∂‖vg

(1)∂2
‖vg

(1)
[
−2− 2be + 4Q+ 4 (1−Q)

χH
+ 3H

′

H2

]
. (2.16)

We parametrise the relative velocity between galaxy peculiar velocity vg and baryon peculiar
velocity vb as

v(1)
g − v

(1)
b = v(1)

gb ≡ Υ1v
(1)
g , v(2)

g − v
(2)
b = v(2)

gb ≡ Υ2v
(2)
g . (2.17)

We have introduced two spacetime dependent parameters Υ1 = Υ1(η,x) and Υ2 = Υ2(η,x)
which modulate the linear order galaxy-baryon relative velocity, v(1)

gb , and the second order

– 6 –
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galaxy-baryon relative velocity, v(2)
gb , respectively. This might appear to be introducing too

many parameters to describe the same physical effect; however, this is not the case especially
for modified gravity theories where the second order dark matter density field and peculiar
velocity satisfy non-linear second order differential equations, thus its evolution could be sig-
nificantly different from the linear order expression as shown in appendix A. We parametrise
the derivative with respect to conformal time as

vg
(1)′ − vb(1)′ = v(1)

gb
′ = β1v

(1)
g
′
, vg

(2)′ − vb(2)′ = v(2)
gb
′ = β2v

(2)
g
′
. (2.18)

For simplicity, we assume that Υ1 and Υ2 are a smooth and well-behaved functions of the
conformal time only. In this limit, {β1, β2} may be expressed in terms of {Υ1,Υ2};

β1 = Υ′1
X̄g1

+ Υ1 , β2 = Υ′2
X̄g2

+ Υ2 , (2.19)

where X̄g1 ≡ vg
(1)′/vg

(1) and X̄g2 ≡ vg
(2)′/vg

(2). With these, we can express the galaxy
number count in terms of δg and vg only. The only assumptions we have made so far is that
baryons obey the standard Euler equation (the equivalence principle) and that the galaxy-
baryon relative velocity is a function of the observed galaxy velocity with a time-dependent
amplitude only. We note that scale dependence may arise from the mass of the scalar field
that mediates the fifth force. Scale-dependent growth will be better constrained by the even
multipole moments of the power spectrum and bispectrum. In the rest of the paper, we
assume that scale dependence can be ignored on scales relevant to our analysis.

3 Model independent constraint on the relative velocity

We assume that the galaxy density is well described in terms of the total matter density δm
and the scalar invariant of the tidal field tensor S2 according to

δg = b1δ
(1)
m + 1

2

[
b1δ

(2)
m + b2(δ(1)

m )2 + bs2S2
]
, (3.1)

where b1, b2 and bS2 are linear, non-linear and tidal bias, respectively. In principle, the
existence of a non-vanishing vgb could contribute extra terms to the galaxy bias formula
given in equation (3.1). (For the case of vgb sourced during the photon-Baryon decoupling,
preliminary studies have indicated that the effect of such terms is negligible for a Stage IV
large scale structure survey [39, 40].) For our purposes, we can ignore such terms because the
galaxy density will be directly constrained by the even multipoles of the N-point correlation
function [40, 41]. Similarly, we neglect the general relativistic corrections to equation (3.1)
since they become important near Hubble horizon scales [42], whose consideration is beyond
the scope of this work.

The matter density at first order is given by δ(1)
m (k, η) = Dm(η)δ(1)

O (k), where Dm is
the growth of the matter density field (for simplicity, we assume that it is a function of the
conformal time only.), δO(k) is related to the initial density field via the transfer function
T (k): δO(k) = δini(k)T (k). At second order the matter density and tidal tensor invariant
are given by

δ(2)
m (k, η) =

∫
d3k1
(2π)3

d3k2
(2π)3F2(k1,k2)δm(k1, η)δm(k2, η)(2π)3δ(3) (k − k1 − k2) , (3.2)

S2(k, η) =
∫

d3k1
(2π)3

d3k2
(2π)3S2(k1,k2)δm(k1, η)δm(k2, η)(2π)3δ(3) (k − k1 − k2) , (3.3)

– 7 –
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where F2 and S2 are the Fourier space kernels of the matter density field and the scalar
invariant of the tidal field tensor, respectively. Similarly, we model the galaxy velocity in
terms of the matter density field as follows

v(1)
g (k, η) = H

k2 fgδ
(1)
m (k, η) , (3.4)

v(2)
g (k, η) = Hfg

k2

∫
d3k1
(2π)3

d3k2
(2π)3G2(k1,k2)δm(k1, η)δm(k2, η)δ(3) (k − k1 − k2) , (3.5)

where fg is the growth rate of structure (again fg is a function of the conformal time only),
and G2 and S2 is the kernel of the velocity potential. We assume that these kernels are well
described by

F2(k1,k2) = 10
7 + k1 · k2

k1k2

(
k1
k2

+ k2
k1

)
+ 4

7

(
k1 · k2
k1k2

)2
, (3.6)

G2(k1,k2) = 6
7 + k1 · k2

k1k2

(
k1
k2

+ k2
k1

)
+ 8

7

(
k1 · k2
k1k2

)2
, (3.7)

S2(k1,k2) = (k1 · k2)2

(k1k2)2 −
1
3 . (3.8)

Given equations (3.4) and (3.5), the conformal time derivative of vg becomes

v(1)′
g(k,η) = H

2fg
k2 Xg1δm(k,η) , (3.9)

v(2)
g
′(k,η) = H

2fgXg2
k2

∫
d3k1
(2π)3

d3k2
(2π)3G2(k1,k2)δm(k1,η)δm(k2,η)δ(3) (k−k1−k2) . (3.10)

Note that X̄g1 = HXg1 and X̄g2 = HXg2, where

Xg1 = fg
′

Hfg
+ fg + H

′

H2 , Xg2 = fg
′

Hfg
+ 2fg + H

′

H2 . (3.11)

We will assume that δg and vg are precisely determined by the even multipoles. With these
tools we expand equations (2.8) and (2.10) in Fourier space. In the Newtonian limit, the
Fourier space kernel becomes [43]

K(1)
N (k1) = b1+fgµ2

1 , (3.12)
K(2)

N (k1,k2,k3) = b2+b1F2(k1,k2)+bs2S2(k1,k2)+fgG2(k1,k2)µ2
3 (3.13)

+b1fg
[(
µ2

1+µ2
2

)
+µ1µ2

(
k1
k2

+ k2
k1

)]
+f2

g

[
2µ2

1µ
2
2+µ1µ2

(
µ2

1
k1
k2

+µ2
2
k2
k1

)]
,

where µm = k̂m · n̂ = km · n̂/km with m ∈ {1, 2, 3}. The Fourier space kernels for the Doppler
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part (i.e. equations (2.14) and (2.16)) become

K(1)
D (k1) = HfgB1

k
µ1 , (3.14)

K(2)
D (k1,k2,k3) = H

{
fgµ3
k3

A0G2(k1,k2)− b1fgA1

(
µ1k

3
2 + µ1k

3
1

k2
1k

2
2

)
+ fgA2

(
µ1
k1

+ µ2
k2

)

+ f2
g

[
A4 (k1 · k2)

(
µ1k1 + µ2k2

k2
1k

2
2

)
− (1 +A3)

(
µ1µ

2
2k1k

2
2 + µ2µ

2
1k2k

2
1

k2
1k

2
2

)

−A1

(
µ3

2k
3
2 + µ3

1k
3
1

k2
1k

2
2

)]}
, (3.15)

where B1, A0, A1, A2, A3 and A4 are redshift dependent terms

B1 = Υ1 + β1Xg1 + be − 2Q− 2 (1−Q)
χH

− H
′

H2 , (3.16)

A0 = Υ2 + β2Xg2 + be − 2Q− 2 (1−Q)
χH

− H
′

H2 , (3.17)

A1 = (1− β1)Xg1 + (1−Υ1) , (3.18)

A2 = 2
(

1− 1
χH

)
∂b1
∂ lnL + b1f [β1Xg1 − (1−Υ1)]

+
(
b1fg + b′1

H

)
+ b1

[
1 + be − 2Q− 2 (1−Q)

χH
− H

′

H2

]
, (3.19)

A3 = −2(1 + β1)Xg1 + (1 + Υ1)− 2 [β1Xg1 − (1−Υ1)]

− 2− 2be + 4Q+ 4 (1−Q)
χH

+ 3H
′

H2 (3.20)

A4 = 1 + (1−Υ1)2 . (3.21)

For the standard treatment at second order, we set Υ1,2, = 0 and β1,2 = 0. In this limit,
we can make use of the Poisson equation to relate the gravitational potential to the matter
density

Xg1 =
f ′g
fgH

+ fg + H
′

H2 = 3
2

Ωm

fg
− 1 , (3.22)

where Ωm is the matter density parameter, then we recover exactly the result first derived
in [35] and discussed in more detail in [21].

3.1 Odd multipoles of the galaxy power spectrum

We obtain the galaxy power spectrum, PABg (k), as the expectation value of a two-point corre-
lation function of the galaxy number count of two dissimilar tracers A and B in Fourier space:

PAB
g (k, µ) =

[
KA

N(k, µ) + iKA
D(k, µ)

] [
KB

N(k,−µ) + iKB
D(k,−µ)

]
Pm(z, k) . (3.23)

Here PAB
g is a complex function and Pm is the matter power spectrum, which is real. In

the weak field limit, the real part of PAB
g corresponds to the standard Newtonian approx-

imation or the Kaiser limit, while the imaginary part corresponds to the Doppler part:
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PABg = PABgN + iPABgD We can isolate the Newtonian and the Doppler parts using

PABgN (k, µ) = 1
2
[
PABg (k, µ) + PABg (k, µ)∗

]
, (3.24)

PABgD (k, µ) = 1
2i
[
PABg (k, µ)− PABg (k, µ)∗

]
. (3.25)

The real part is symmetric with respect to the exchange of the line of sight direction:
PABgN (k, µ) = PABgN (k,−µ), while the imaginary part is anti-symmetric with respect to the
exchange of the line of sight direction: PABgD (k, µ) = −PABgD (k,−µ). Similarly, the real part is
symmetric with the exchange of tracer positions: PABgN = PBAgN , while the imaginary part is
anti-symmetric with the exchange of tracers PABgD = −PBAgD . Thus, a simultaneous exchange
of tracers and the line of sight direction leaves the imaginary part unchanged.

Tracers with dissimilar astrophysical bias parameters lead to a complex cross-power
spectrum and it is possible to expand it using Legendre polynomials, L`(µ):

PABg (z, k, µ) =
∑
`=0

PAB` (z, k)L`(µ) . (3.26)

The imaginary part of PABg induces only the odd multipole moments, which are obtained by
using the orthogonality property of the Legendre polynomial

PAB` (k) = (2`+ 1)
2

∫ 1

−1
dµPAB(k, µ)L`(µ) , (3.27)

where the multipole moments are given in terms of the matter power spectrum as

PAB0 (k) =
[
bA1 b

B
1 + 1

3(bA1 fBg +bB1 f
B
g )+

fAg f
B
g

5

]
Pm(k) , (3.28)

PAB1 (k) = (−i)
[(
bA1 b

B
e f

B
g −bB1 bAe fAg

)
+(bB1 fAg −bA1 fBg )

[ 2
χH

+ H
′

H2 −Υ1−β1Xg1

]
(3.29)

+fAg f
B
g

[3
5
(
bBe −bAe

)
+3

(
1− 1

χH

)
(sA−sB)

]
+5

(
1− 1

χH

)(
bB1 s

AfAg −bA1 sBfBg
)]H

k
Pm(k) , (3.30)

PAB2 (k) =
[

2
3(bA1 fBg +bB1 f

A
g )+

4fAg fBg
7

]
Pm(k) , (3.31)

PAB3 (k) = 2i
[1

5(bAe −bBe )−
(

1− 1
χH

)
(sA−sB)

]
fAg f

B
g

H
k
Pm(k) , (3.32)

PAB4 (k) = 8
35f

A
g f

B
g Pm(k), (3.33)

where we have assigned each tracer with a corresponding growth rate for completeness. We
note that the baryon-to-dark matter ratio is very similar in different galaxies, therefore we
assume it is determined by the cosmological background value as is done in [44], hence, we
set fAg = fBg = fg in the subsequent quantitive analysis. The odd multipoles vanish in the
limit where A = B [45].
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3.2 Odd multipoles of the galaxy bispectrum
Contrary to the galaxy power spectrum case, the galaxy bispectrum for a single tracer in the
weak-field limit is a complex function

Bg(z,k1,k2,k3) ≡ BN
g (z,k1,k2,k3) + iBD

g (z,k1,k2,k3) , (3.34)

where we have identified the real part with the Newtonian limit of the galaxy bispectrum,
BN; it is given by [46]

BN
g (k1,k2,k3) = K(1)

N (k1)K(1)
N (k2)K(2)

N (k1,k2,k3)Pm(k1)Pm(k2) + 2 cy. p. (3.35)

The imaginary part corresponds to the galaxy bispectrum induced by the Doppler effects,
and its leading contribution is given by [35, 47]

BD
g (k1,k2,k3) =

{
K(1)

N (k1)K(1)
N (k2)K(2)

D (k1,k2,k3)

+
[
K(1)

N (k1)K(1)
D (k2) +K(1)

D (k1)K(1)
N (k2)

]
K(2)

N (k1,k2,k3)
}

× Pm(k1)Pm(k2) + 2 cy. p. (3.36)

Without loss of generality, we work in the plane-parallel limit and express all the three angles
in terms of µ1 = k̂1 · n̂. Requiring that k1,k2 and k3 form a closed triangle, we find

µ2 = µ1µ12 ±
√

1− µ2
1

√
1− µ2

12 cosφn , (3.37)

µ3 = −k1
k3
µ1 −

k2
k3
µ2 , (3.38)

where µ12 = k̂1 · k̂2. In this limit, the number of parameters reduces to five, i.e. equa-
tions (3.35) and (3.36) depend only on five parameters Bg(k1, k2, µ12, µ1, φn). The angular
dependence of the galaxy bispectrum relative to the line of sight, i.e µ1 and φn may be
expanded in spherical harmonics YLM [46, 48],

Bg(k1, k2, µ12, µ1, φn) =
∞∑
L=0

L∑
M=−L

BgLM (k1, k2, µ12)YM
L (µ1, φn), (3.39)

where BgLM is the multipole moments of the galaxy bispectrum

BgLM (k1, k2, µ12) =
∫ 1

−1
dµ1

∫ 2π

0
dφnBg(k1, k2, µ12, µ1, φn)YM

L
∗(µ1, φn) . (3.40)

For simplicity, we shall consider only theM = 0 moments which reduce to an azimuthal angle
averaged galaxy bispectrum or the φn-average multipole moments of the galaxy bispectrum

Bφn
g (k1, k2, µ12, µ1) ≡

∫ 2π

0
Bg(k1, k2, µ12, µ1, φn)dφn2π . (3.41)

Averaging over the azimuthal angles helps to improve the signal to noise ratio [49]. Also,
it was shown in [50] that the information loss associated with averaging over the azimuthal
angle (or setting M = 0) is negligible. We are interested in the multipoles of azimuthal angle
averaged galaxy bispectrum, which we compute as

BgL(k1, k2, µ12) = (2L+ 1)
2

∫ 1

−1
dµ1

∫
dφn
2π Bg(k1, k2, µ12, µ1)LL(µ1). (3.42)
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The even multipoles are sourced by the Newtonian galaxy bispectrum (equation (3.34)) while
the odd multipoles are sourced by the Doppler galaxy bispectrum (equation (3.36)). The full
multipole decomposition of the relativistic galaxy bispectrum is given in [51].

Finally, we made a plane-parallel approximation to show only the odd multipoles of
the cross-power spectrum and the bispectrum that are induced by the general relativistic
effects. At the power spectrum level, the wide-angle corrections from the standard density and
redshift-space distortion term generate odd multipoles with the sameH/k scale dependence as
well. This additional contribution is further suppressed by the ratio of the separation between
the sources to the distance to the source. This contribution is obviously sub-dominant in
plane-parallel approximation but would become important for a survey that covers the full
sky [52]. For the bispectrum, there has not yet been a study of this in detail; however,
we expect that the wide-angle corrections from the second-order density and redshift-space
distortion terms will lead to a similar conclusion as in the cross-power spectrum case.

4 Fisher forecast analysis of stage IV spectroscopic survey

Our plan is to ascertain how well odd multipole moments of the galaxy cross-power spectrum
and bispectrum could constrain the equivalence principle violation through the measurement
of these parameters given a stage IV spectroscopic galaxy survey; {Υ1,Υ2, β1, β2}. These pa-
rameters are zero if the galaxy motion obeys the equivalence principle, hence any non-zero de-
tection will be an indicator of the violation of the equivalence principle on cosmological scales.

We focus on the late-time violation of the equivalence principle and parametrise Υ1,2 as

Υ1,2(z) = 1− Ωm(z)
1− Ωm

γ1,2 , (4.1)

where we have assumed a redshift dependence suggested by [24]. This fixes β1,2 using equa-
tion (2.19), which implies that we are left with only two redshift-independent parameters to
describe the violation of the equivalence violation:

Equivalence principle violation parameters = {γ1, γ2} . (4.2)

In order to optimise constraints on these parameters, we fix the following cosmological pa-
rameters [10]:

Cosmological parameters = {Dm, fg, Xg1, Xg2, PO(k)} . (4.3)
These parameters will be well constrained by the combination of the Cosmic Microwave
Background (CMB) anisotropies and even multipole moments of the power spectrum and
bispectrum as well as weak gravitational lensing. Similarly, we assume that the parame-
ters that characterise the Alcock Paczynski effect [53] can be fully determined by the even
multipoles of the N-point correlation function [54, 55], hence we neglect these effects in the
subsequent analysis. In addition to the cosmological parameters, we have to determine the
following astrophysical parameters:

Astrophysical parameters =
{
b1, b2, bs2 , be,Q,

∂b1

∂ ln L̄

}
. (4.4)

For these parameters we consider a Stage IV Hα emission line galaxy survey and HI intensity
mapping survey. We focus on this combination of tracers because an earlier study [45]
has shown that the two-point correlation function of the HI intensity mapping and Hα-
emission line galaxy spectroscopic galaxy survey leads to a high signal-to-noise ratio (SNR)
for detecting the dipole moment.
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• Hα emission line galaxies
We consider a distribution of the Hα emission line galaxies with a luminosity func-
tion [56]

ΦL(z, L) = Φ̄?(z)
L̄?(z)

(
L

L̄?(z)

)α
exp

(
− L

L̄?(z)

)
, (4.5)

where L̄?(z) is the critical luminosity at a given redshift and is assumed to evolve as
L̄?(z) = L̄?,0 (1 + z)2. Here L?,0 is the critical luminosity today with the best-fit value
logL?,0 = 41.50 erg s−1, α is the faint-end slope with the best fit value α = −1.35, and
Φ̄?(z) is the characteristic number density at z

Φ̄?(z) =

Φ̄?,0 (1 + z) for z < zbreak ,

Φ̄?,0 (1 + zbreak)2 / (1 + z) for z > zbreak .
(4.6)

Φ?,0 is the characteristic number density today with the best fit value log Φ̄?,0 = −2.8
Mpc−3 and zbreak = 1.3. The evolution and magnification bias parameters are obtained
from equation (4.5) [21]. The number density of the Hα emission line galaxy is obtained
from the luminosity function

nHα
g (z) =

∫
lnL

ΦL(z, L)d lnL . (4.7)

For the clustering bias parameters we use the values given in [57]

bHα
1 (z) = 0.9 + 0.4z , (4.8)
bHα
2 (z) = −0.704172− 0.207993z + 0.183023z2 − 0.00771288z3 , (4.9)
bHα
s2 (z) = 0.0321163− 0.123159z + 0.00694159z2 − 0.00171397z3 . (4.10)

Finally, we set
∂bHα

1 (z, L)
∂ lnL = 0 (4.11)

since bHα
1 (z, L) is nearly constant in L [21].

• HI intensity mapping survey
For the HI intensity mapping survey, we follow the prescription given in [58–60] on how
to estimate the HI bias parameters from the halo bias parameter. Under this framework,
the local HI bias parameters are obtained by assuming that the HI sources are found
in galaxies which are resident in halos within a given range of circular velocities. The
modelling of this leads to the following HI bias parameters [60];

bHI
1 (z) = 0.750 + 0.087z + 0.019z2 , (4.12)
bHI
2 (z) = −0.257− 0.063z − 0.007z2 + 0.006z3 , (4.13)

bHI
s2(z) = −4

7 (bHI
1 (z)− 1) . (4.14)

The mean HI brightness temperature T̄ on the FLRW background is given by [58]

T̄HI(z) = 3π2

4
~3A10
kBE21

n̄HI(z)a(z)3

H(z) ≈ 566hΩHI(z)
0.003 (1 + z)2 H0

H(z) [µK], (4.15)
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Figure 2. Redshift evolutions of the bias parameters. The left panel shows bias parameters for
the H-alpha survey while the right panel shows them for the HI survey. The feature in the H-alpha
evolution bias corresponds to the peak of the luminosity function at zbreak = 1.3.

where ΩHI is the comoving HI mass density. The evolution bias is given by [60]

bHI
e (z) = −1.248− 0.147z + 0.145z2 − 0.012z3 . (4.16)

HI has a constant magnification bias parameter QHI = 1 or s = 2/5 [61], therefore, bHI
1

is constant in luminosity
∂bHI

1 (z, L)
∂ lnL = 0 . (4.17)

Figure 2 shows the redshift evolution of the bias parameters that will be used in the
Fisher forecast.

4.1 Estimators of the dipole moment of the galaxy cross-power spectrum

We define the estimator of the dipole moment of the galaxy cross-power spectrum for the
dissimilar tracers as the band-power average of the two-point correlation function in Fourier
space averaged over all lines of sight and weighted by the angle between k and n̂

P
AB
g1 (ki) ≡

3
2
Vs
V12

∫ 1

−1
dµµ

∫
Ki

d3k, ∆A
g (k) ∆B

g (−k) , (4.18)

where Vs is the volume of the survey and the estimator is normalised by corresponding volume
of the k-bin Ki, V12 ' 4πk2

i ∆k. The estimator defined in equation (4.18) for discrete tracers
is related to the theory (continuous) galaxy cross-power spectrum according to [62]

〈∆A
g (k1)∆B

g (k2)〉Vs = P̂ABg (k1)δKk1,−k2 = PABg (k1)δKk1,−k2 + δKAB
n̄Ag

δKk1,−k2 , (4.19)

where δk1,k2 is the Kronecker delta and PABg is the theory (continuous) cross-power spectrum
shown in figure 3.
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Figure 3. Left panel: the thick line ({γ1, γ2} = {0, 0}) indicates the dipole of the galaxy cross-power
spectrum of the Hα emission line galaxy and the HI intensity mapping for a stage IV experiment in the
limit of vanishing relative velocity between galaxies and baryons. The dashed ({γ1, γ2} = {2.5, 2.5})
and dashed-dot ({γ1, γ2} = {5.0, 5.0}) lines indicate different amplitude of the relative galaxy-baryon
velocity with respect to the galaxy velocity. Right panel: the thick line indicates the bispectrum of
the Hα emission line galaxy in the limit of vanishing galaxy-baryon relative velocity. Similarly, the
dashed and dashed-dot lines indicate different amplitude of the galaxy-baryon relative velocity with
respect to the galaxy velocity just as in the left panel.

In the continuum limit, it becomes

δKk1,k′1
→ 1

Vs
δD (k1 − k2) (2π)3 = 1

Vs

1
k2 δ

(
k − k′

)
δ
(
k⊥ − k′⊥

)
(2π)3 . (4.20)

To obtain the covariance of the dipole of the cross-power spectrum, we average over the an-
gular k-directions (d3k = k2dkd2k̂) to obtain an estimator that depends on the wavenumber

Cov
[
P
AB
g1 (ki)P

AB
g1 (kj)

]
= 9

4
1
V12

1
V ′12

∫
dkk2

∫
dk′k2

∫
d2k

∫
d2k′ (4.21)

×
∫
dµ

∫
dµ′µµ′Cov

[
P̂ABg (k)P̂ABg (k′)

]
.

The covariant matrix for the galaxy cross-power spectrum is given by [62]

Cov
[
P̂ABg (k)P̂ABg (k′)

]
≡ (2π)3

Vs

[
P̂AAg (k, µ)P̂BBg (k′,−µ′)δD

(
k + k′

)
(4.22)

+ P̂ABg (k, µ)P̂BAg (k′,−µ′)δD
(
k − k′

) ]
.

Note that P̂BAg (k,−µ) = P̂ABg (k, µ) and PBB(k,−µ) = PBB(k, µ). We expand the an-
gular dependence of the galaxy power spectrum in Legendre polynomials: P̂ABg (k, µ) =∑4
L=0 P̂

AB
gL (k)LL(µ). We find that the multipole moment is given by

P̂ABgL (k) = (2L+ 1)
2

∫ 1

−1
dµ P̂ABg (k, µ)LL(µ) = PABgL (k) + δKABδL0P

AA
noise , (4.23)
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where PAAnoise is the noise power spectrum. Expanding P̂BAg (k,−µ) in terms of the Legendre
polynomial gives

P̂BAg (k,−µ) =
4∑

L=0
P̂BAgL (k)LL(−k · n̂) =

4∑
L=0

(−1)LP̂BAgL (k)LL(k · n̂) ,

where we made use of the parity transformation property of the Legendre polynomial LL(−k ·
n̂) = (−1)LLL(k · n̂). Note also that P̂BAgL (k) = (−1)LP̂ABgL (k). Putting all these together
leads to

Cov
[
P
AB
g1 (ki)P

AB
g1 (kj)

]
=
δKki,−k′j
Nk

∑
L1L2

[
P̂AAgL1(ki)P̂BBgL2 (k′j)− P̂ABgL1 (ki)P̂ABgL2 (k′j)

]

×
∫
dµµ2LL1(µ) LL2(µ) , (4.24)

where we defined Nk ≡ 4πk2∆kVs/(2π)3 and made use of the relationship between a 1D
Dirac delta function and the Kronecker delta δD (k + k′) → δKk1,−k′1

/∆k. The minus sign in
the second equality comes from performing the angular integral over the delta function. We
perform the integral over µ in equation (4.24) analytically and summed {L1, L2} up to {4, 4}
to find

Cov
[
P
AB
g1 (ki)P

AB
g1 (kj)

]
=
δKki,−k′j
Nk

{3
2

[
PAAg0 (ki)PBBnoise + PBBg0 (kj)PAAnoise + PAAnoiseP

BB
noise

]
+ 3

5

[
PAAnoiseP

BB
g2 (kj) + PAAg2 (ki)PBBnoise

]
− 9

10P
AB
g1 (ki)PABg1 (ki)

− 23
70P

AB
g3 (ki)PABg3 (ki)−

18
35P

AB
g3 (ki)PABg1 (ki)

}
. (4.25)

Equation (4.25) agrees with [23].

4.2 Estimators of the odd multipoles of the galaxy bispectrum
We define the estimator for the azimuthal angle averaged multipole moments of the galaxy
bispectrum following [63] as

Bg`(ki, kj , kk) ≡
2`+ 1

2
Vkf

V123

∫
Ti,j

d3k1 d3k2d3k3

∫
d2n̂
4π

∫ 2π

0

dφ

2π (4.26)

×∆A
g (k1) ∆A

g (k2) ∆A
g (k3)δD (k1 + k2 + k3)L`(k1 · n̂) ,

where Vk = k3
f is the fundamental k-space cell-volume, kf is the fundamental wavenumber,

which is related to the volume of the survey according to kf = 2π/L = 2π/V 1/3
s , and V123 is

the effective k-space volume of the k-bin decomposed into spherical shells

V123 =
∫
Ti

δD(p + q + k) d3pd3q d3k ' 8π2k1k2k3(∆k)3β(µ12) . (4.27)

Here β(µ12) is a normalisation factor that depends on the shape of the triangular configura-
tion [64]

β(µ12) =


1
2 if µ12 = ±1
1 if 0 < µ12 < 1
0 otherwise

(4.28)
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In the Gaussian limit, the covariance of the galaxy bispectrum becomes [50]

Cov
[
B
A
g`B

B
g`′

]
' (2`+1)

2
(2`′+1)

2 δKAB
sBVs
NB

∫
dµ1

∫ dφ
2π P̂

AA
g (k1,µ1) P̂AAg (k2,µ2) P̂AAg (k3,µ3)

×L`(µ1)L`′(µ1) , (4.29)
where sB = 6, 2, 1 for equilateral, isosceles and general triangles, respectively and

NB '
1
π

V 2

(2π)3k1 k2 k3 (∆k)3β(µ12) . (4.30)

Each of the power spectrum is decomposed with respect to n̂: P̂AAg (ki, µi) = PAAg (ki, µi) +
1/n̄Hα

g . We use equation (3.37) to relate {µ3, µ2} to µ1 and the azimuthal angle φn. We
performed the integrals over µ1 and φn analytically using MATHEMATICA.

4.3 Fisher forecasts for the equivalence principle violation constraint
Firstly, we compute the signal to noise ratio (SNR) for the overlapping HI and Hα spectro-
scopic surveys using(

S

N

)2
=

zmax∑
zmin

∑
TX

X`(ki)Cov−1 [X`(ki), X`(kj)]XH
` (kj), (4.31)

where XH
` is the Hermitian conjugate of X` = {PAB1 (ki), B1(ki, kj , kk), B3(ki, kj , kk)}, and

the summation sign is defined as∑
TB

≡
kmax∑

k1=kmin

k11∑
k2=k1

k2∑
k3=k?

and
∑
TP

=
∑

k,k′≤kmax

(4.32)

for the galaxy bispectrum and cross-power spectrum, respectively. We take the cross-
covariances (power spectrum-bispectra and dipole-octupole bispectra covariances) to be zero
and set kmax at the maximum scale below which the perturbation theory can be trusted:
kmax = 0.1(1 + z)(2/(2+ns))[hMpc−1] [65], kmin is determined by the volume of the survey
kmin ∼ 1/V 1/3

s and to ensure that the closure property of the triangle is satisfied we have
k? = max(kmin, k1 − k2). Also, we set the width of the k-bins to ∆k = 3kmin. We neglect
the covariance between the power spectrum and the bispectrum since we only consider the
Gaussian covariance. Also we consider only a single tracer at the bispectrum level. For a
single tracer, the odd multipole moment in the power spectrum vanishes. The covariance
between the dipole and the octupole of the bispectrum is neglected for simplicity, which is
not expected to bias the result since the majority of the signal is contained in the dipole.

The surveys have the following noise attributes; for the Hα emission line galaxy survey,
the noise budget is dominated by the shot noise while the HI intensity mapping survey, the
noise budget is dominated by the system and sky temperatures

PHαHα
noise = 1

nHα
g

, PHIHI
noise = 4πfsky

χ(z)2(1 + z)2Tsys(z)2

NpolNdH(z)ν21ttotT 2
HI(z)

, (4.33)

where Npol = 2 in equation (4.33) is the polarisation, ttot is the total observing time, Nd is
number of dishes and Tsys is the sky temperature

Tsys(z) = 2.7 + 25
[400[MHz](1 + z)

ν21

]2.75
K , (4.34)

where ν21 = 1420MHz is the frequency of the 21 cm lime. Table 1 shows the parameters and
the redshift range of these surveys.
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Survey Redshift range fsky ttot[hrs] Nd

SKA1-MID Band 1 0.35–3.05 0.48 10000 197
Hα emission line 0.7–2.0 0.35 — —

Table 1. Survey parameters for the HI intensity mapping survey [66] and Hα emission line survey [16].

Figure 4. Left panel: this is the SNR for detecting the dipole of the galaxy cross-power spectrum
between the Hα line emission galaxy and the HI intensity mapping survey in the single dish mode.
Right panel: this is the SNR for detecting the dipole and octupole moments of the Hα bispectrum.
We take the fiducial values to be {γ1, γ2} → {0, 0}.

We neglect the shot noise component of the total noise budget of the HI intensity map-
ping, as it is usually sub-dominant [58]. Also, we assume that foregrounds have been removed
from the HI intensity mapping signal. For recent developments of several foreground removal
techniques, see [67]. We show in figure 4 the SNR for detecting the dipole moment of the
galaxy cross-power spectrum for the Hα emission line galaxy survey and the HI intensity
mapping survey, and the SNR for detecting the dipole and octupole of the Hα galaxy bis-
pectrum. Furthermore, we forecast how well these surveys could constrain the parameters
{γ1, γ2} using the Fisher information matrix

Fαβ =
zmax∑
zmin

∑
TX

∂X`(ki)
∂θα

Cov−1 [X`(ki), X`(kj)]
∂XH

` (kj)
∂θα

. (4.35)

It measures how steeply the likelihood falls as we move away from the best-fit model. The
inverse of the Fisher information matrix approximates the best possible covariance for mea-
surement errors on each parameter θα. We calculate parameter constraint (marginal error)
using σ2

α =
(
F−1)

αα. The dipole moment of PABg is only sensitive to γ1 at tree-level, hence
we constrain θα = {γ1} only. For PABg , we assume that the two surveys overlap in about 0.38
fraction of the sky [68], hence our Fisher matrix includes only the overlapping region [69]
Fαβ = FABαβ (overlap). In principle, this is feasible since the aim of the HI intensity mapping
survey is to cover all sky by measuring the intensity of the redshifted 21cm line over the sky
without the requirement to resolve individual galaxies [58]. The left panel of figure 5 shows
the constraint on γ1 from PAB as a function of zmax.

For the galaxy bispectrum we focus only on the Hα emission line galaxy survey to
constrain θα = {γ1, γ2}. We do not use the bispectrum from HI intensity mapping because
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Figure 5. Left panel: 68% confidence ellipse showing the constraint on {γ1, γ2} using the dipole of
the Hα galaxy bispectrum with various priors on bias parameters. Right panel: just as it is in the
left panel but for the octupole moment of the Hα galaxy bispectrum.

of concerns regarding the removal of the very dominant foregrounds; to date, HI intensity
mapping has primarily been detected through cross-correlation with the galaxy count [70].
Attempts at finding reliable measurements of the auto-bispectrum of the HI intensity mapping
is still in its infancy [71].

Initially we assumed that the bias parameters would be determined precisely by the even
multipole moments; however, they will not be determined with perfect accuracy. Therefore,
we consider how uncertainties in these parameters will affect the Fisher forecast analysis
of the dipole and octupole moment of the Hα galaxy bispectrum. To accomplish this, we
parameterise the Hα bias parameters given in equations (4.8) and (4.9) as

bHα
1 (zi) = A1 + B1zi , (4.36)
bHα
2 (zi) = A2 + B2zi + C2z

2
i +D2z

3
i , (4.37)

where we have introduced the following nuisance parameters

θnuisance = {A1,B1,A2,B2, C2,D2} . (4.38)

We assume a local evolution for the tidal field, hence tidal bias parameter becomes bHα
s2 (zi) =

−4
(
bHα
1 (zi)− 1

)
/7 [72]. We adopt the following fiducial values for the nuisance parameters

θnuisance:

θfid
nuisance = {0.9, 0.4,−0.704172,−0.207992, 0.183023,−0.0007712} . (4.39)

These are values are predicted by the halo model given in equations (4.8) and (4.9).
We show in the right panel of figure 5 the 1σ confidence ellipse for {γ1, γ2}. We consid-

ered different Gaussian priors on the nuisance parameters and then marginalised over these;
the results are shown in figure 5. We recover the original constraint on {γ1, γ2} as long as
the nuisance parameters are determined to better than one percent accuracy. This seems
achievable from measurements of the even moments [73]. Finally, we show in figure 6 a
joint constraint on γ1 from the combination of the dipole moment of PABg1 and Bg1. where
we have marginalised over γ2. Note that with the bispectrum of a single tracer alone we can
constrain γ1 < 0.28.
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Figure 6. Left panel: 68% confidence ellipse showing the constraint on {γ1, γ2} using both dipole
and octupole multipole moments of the Hα galaxy bispectrum. Right panel: the joint constraint on γ1
from the combination of the dipole moment of the galaxy cross-power spectrum and dipole + octupole
moments of the Hα galaxy bispectrum, after marginalising over γ2. We also show the constraint on
γ1 from combined dipole and octupole moments of the bispectrum, after marginalising over γ2 and
the nuisance parameters.

Figure 7. Left panel: 68% confidence ellipse showing the dependence of the constraint on {γ1, γ2}
using a combination of dipole and octupole for the Hα galaxy bispectrum on kmax. Right panel: the
joint constraint on γ1 from the combination of the dipole moment of the galaxy cross-power spectrum
and dipole + octupole moments of the Hα galaxy bispectrum with kmax = 0.2α. We marginalised
over γ2 and fixed nuisance parameters to their predicted values. Here, α = (1 + z)(2/(2+ns))[h/Mpc].

The constraint on the galaxy-baryon relative velocity we reported depends sensitively
on the choice of kmax. We have chosen a very conservative kmax motivated by the range of
validity of the cosmological perturbation theory [74]. If, in the future, we are able to improve
on the range of modelling accuracy of the fluctuation of the number count of sources to say
kmax = 0.2(1 + z)(2/(2+ns))[hMpc−1], the constraint on the galaxy-baryon relative velocity
could improve significantly. See figure 7. This motivates for further improvement in the
modelling of the Doppler contribution to the galaxy cross-power spectrum and bispectrum
at higher k including 1-loop corrections [38].
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5 Conclusion

We have explored in detail how the odd multipoles of the galaxy cross-power spectrum and
bispectrum of the number count fluctuations could be used to test the equivalence principle
on cosmological scales. We developed this test by relaxing the assumption that the galaxy
motion is geodesic (equivalence principle) on all scales in the derivation of the number count
fluctuations beyond the Newtonian (Kaiser) approximation. Although the equivalence prin-
ciple is one of the key principles of general relativity, there is no evidence that it applies to
dark matter.

The test we propose assumes that only the types of matter that have been confirmed to
obey the equivalence principle at least on solar system scales (e.g. baryons) are geodesic [5].
Our parametrisation assumes the velocity difference between galaxy and baryon is a scale-
independent function of the galaxy velocity (equation (2.17)); however, no further assumption
was made about the motion of dark matter and the form of interaction in the dark sector. This
allowed us to express the violation of the equivalence principle in terms of the galaxy-baryon
relative velocity. We parametrise the galaxy-baryon relative velocity in terms of the galaxy
velocity, which is measurable. Furthermore, we assume that the joint analysis of the even
multipole moments of the galaxy power spectrum and bispectrum will be able to constrain
the galaxy velocity, biases and other cosmological parameters to a much higher accuracy, for
example see [73]3, leaving the odd multipoles to constrain the equivalence principle.

There are many mechanisms that can generate the relative velocity between baryons
and cold dark matter in the Universe. We enumerate a few: (1) Even for purely adiabatic
initial perturbations, vbc is induced during baryon-photon decoupling; the tight coupling of
baryons to photon forces them to move in a trajectory different from that of the cold dark
matter [75]. In this case, it is usually assumed that given sufficient time after decoupling,
the baryons will move to trace cold-dark matter but could leave a non-zero vbc at non-linear
order [40]. (2) Isocurvature perturbations, potentially generated during inflation in a multi-
field scenario, can set an initial condition for vbc [76, 77]. (3) An interaction in the dark
sector, such as where cold dark matter is coupled conformally and/or disformally to dark
energy; such an interaction will boost vbc at late times. We explore this possibility in greater
detail in appendix A.

We have shown that the Stage IV survey could constrain the galaxy-baryon relative
velocity to less than 28% of the galaxy velocity using the cross-power spectrum and the bis-
pectrum independently. Our analysis has aimed to be agnostic as to the origin of the galaxy-
baryon relative velocity; however our choice of parameterisaton, given by equation (4.1), has
implicitly assumed a late time violation of the equivalence principle. To compare to a theory,
one would also need to relate the observed galaxy velocities to the velocities of their compo-
nent parts; in the absence of velocity bias, the galaxy velocity is equal to the matter peculiar
velocity vm, the mass-weighted average of the cold dark matter and baryon velocities [44]:
vg = vm = xcvc + xbvb, where xc = Mc/Mg and xb = Mb/Mg. Here, Mc and Mb are the
masses of dark matter and baryon in the galaxy, respectively, and their sum Mg = Mb +Mc
is the total mass of the galaxy. Therefore, vgb becomes vgb = xcvcb = −xcvbc.

3The authors show that a cross-correlation analysis of the weak gravitational lensing information and the
Hα emission line galaxy clustering information from a Stage IV survey will be able to constrain the linear
bias parameter to better than one percent accuracy.
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A The source of baryon-cold dark matter relative velocity

A.1 Interacting dark sector in scalar tensor theory

We discuss how a possible interaction in the dark sector could provide a source for the baryon-
dark matter relative velocity and investigate the number of parameters that are required to
characterise its evolution. We study a general action for a Scalar-Tensor theory, where the
gravitational action is a sum of the action for the quintessence scalar field, Sφ, minimally
coupled to the Einstein-Hilbert action, SEH, in the presence of standard matter, SM, and the
dark matter field, Sc,

S =
∑
I

SI

= SEH[gµν ] + SM[std matter, gµν ] + Sφ[φ, gµν ] + Sc[dark matter, g̃µν ] , (A.1)

where Sc and Sg = SEH + SM + Sφ are given by [80]

Sc[g̃] =
∫

d4x
√
−g̃Lc (g̃µν , ϕ) , (A.2)

Sg[g] =
∫

d4x
√
−g

[ 1
2κ2R−

1
2g

µν∂µφ∂νφ− V (φ) + LM

]
. (A.3)

Here ϕ is a dark matter field, which sees the metric g̃µν , and Lc is its Lagrangian while LM is
the Lagrangian for the standard matter fields, which instead see the metric gµν . The scalar
field φ, has a canonical kinetic term with a potential V (φ) and κ−1 ≡ [8πG] is related to the
Planck mass.

We consider a scenario where g̃µν is related to gµν as

g̃µν = C(φ)gµν +D(φ)∂µφ∂νφ , (A.4)

where C(φ) and D(φ) are conformal and disformal coupling functions respectively. These
functions can also depend on the kinetic term X = −∂µφ∂νφ/2, however, we neglect this
dependence going forward for simplicity. In the fluid limit, we can define the energy momen-
tum tensors, TµνI , associated with each of the fields in equation (A.1) and parameterise each
one in terms of the energy density and pressure in its frame of reference according to

TµνI = (ρI + PI )uµI u
ν
I + PIg

µν . (A.5)

Here I indicates the type of matter; I = c for the dark matter, I = φ for the quintessence
scalar field and I = M standard matter.
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Each field obeys the following energy-momentum conservation equations

∇µTM
µν = 0 , (A.6)

∇µT c
µν = Q (φ, uµ∇µφ, ρc)∇νφ . (A.7)

The function Q is given by [81]

Q (φ, uµ∇µφ, ρc) = 1
2

{
d lnC
dφ

Tc + D

C

d lnD
dφ

Tµνc ∇µφ∇νφ− 2∇µ
[
D

C
Tµνc ∇νφ

]}
, (A.8)

where Tc is the trace of the dark matter energy-momentum tensor.

A.2 Interacting dark sector in cosmological perturbation theory

At linear order in cosmological perturbation theory and in the weak field limit, the continuity
equations for baryons and dark matter from equations (A.6) and (A.7) are

δ(1)
b
′ = −∂i∂iv(1)

b , (A.9)
δ(1)

c
′ = −∂i∂iv(1)

c −HΘ1 (1−Θ3) δ(1)
c , (A.10)

and the Euler equations are

∂iv(1)
b

′ +H∂iv(1)
b + ∂iΦ(1) = 0 , (A.11)

∂iv(1)
c
′ +H [1 + Θ1] ∂iv(1)

c + [1 + Θ2] ∂iΦ(1) = 0 . (A.12)

In [24], the authors assumed that v(1)
g = v(1)

c , then made use of equation (A.12) to relate the
gravitational potential to v(1)

c . Here we have introduced the parameterizations following [24]

Θ1 = − φ̄
′

H
Q̄

ρ̄c
, Θ2 = − Q̄

2

κρ̄c
Θ3 = ∂ ln Q̄

∂ ln ρc
. (A.13)

These parameters parametrise the violation of the equivalence principle due to the fact that
dark matter moves in a geodesic that is different from that of the standard matter because
of the interaction with the quintessence scalar field through the conformal or the disformal
coupling. This shows that we need three free parameters to describe the evolution of the
dark matter density and velocity at linear order.

Similarly at the second order, the continuity equations for baryons and dark matter are
given by

δ(2)
b
′ = −∂i∂iv(2)

b + 2δ(1)
b ∂i∂

iv(1)
b + 2∂iv(1)

b ∂iδ(1)
b +O

(
(∂Φ(1))2

)
, (A.14)

δ(2)
c
′ = −∂i∂iv(2)

c −H
[
Θ1 (1−Θ3) δ(2)

c

]
+ 2δ(1)

c ∂i∂
iv(1)

c + 2∂iv(1)
c ∂iδ(1)

c (A.15)

+ Θ1Θ4(δ(1)
c )2 +O

(
(∂Φ(1))2

)
.

The corresponding Euler equation become

∂iv
(2)
b
′ +H∂iv(2)

b + ∂iΦ(2) + 2∂i∂jv(1)
b ∂jv(1)

b +O(Φ(1)∂Φ) = 0 , (A.16)
∂iv

(2)
c
′ +H [1 + Θ1] ∂iv(2)

c + [1 + Θ2] ∂iΦ(2) + 2∂i∂jv(1)∂jv(1) (A.17)
+ 2HΘ1 (Θ3 − 1) δ(1)

c ∂iv
(1)
c − 2Θ2 (1−Θ3) δ(1)

c ∂iΦ(1) +O(Φ(1)∂Φ) = 0 ,
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where we have introduced yet another parameter to describe the self-coupling strength of the
dark matter density field

Θ4 = 1
Q

∂2Q

(∂ ln ρc)2 . (A.18)

The second order dark matter density and velocity can be obtained by solving these equations.
Note that, since the gravitational potential is sourced by the dark matter and baryon density,
the equations for baryons and cold dark matter are coupled.

We have shown that we need four free parameters
{
Θ1,Θ2,Θ3,Θ4

}
in order to charac-

terise the interaction between dark matter and baryons in this model. By specifying these
parameters, we can compute the relative velocity between baryons and dark matter, and
predict the equivalence principle violation parameters Υ1,2 and β1,2.
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