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ABSTRACT
Objectives  This study aimed to develop and validate a 
symptom prediction tool for COVID-19 test positivity in 
Nigeria.
Design  Predictive modelling study.
Setting  All Nigeria States and the Federal Capital Territory.
Participants  A cohort of 43 221 individuals within the 
national COVID-19 surveillance dataset from 27 February 
to 27 August 2020. Complete dataset was randomly split 
into two equal halves: derivation and validation datasets. 
Using the derivation dataset (n=21 477), backward 
multivariable logistic regression approach was used to 
identify symptoms positively associated with COVID-19 
positivity (by real-time PCR) in children (≤17 years), 
adults (18–64 years) and elderly (≥65 years) patients 
separately.
Outcome measures  Weighted statistical and clinical 
scores based on beta regression coefficients and 
clinicians’ judgements, respectively. Using the validation 
dataset (n=21 744), area under the receiver operating 
characteristic curve (AUROC) values were used to 
assess the predictive capacity of individual symptoms, 
unweighted score and the two weighted scores.
Results  Overall, 27.6% of children (4415/15 988), 34.6% 
of adults (9154/26 441) and 40.0% of elderly (317/792) 
that had been tested were positive for COVID-19. Best 
individual symptom predictor of COVID-19 positivity was 
loss of smell in children (AUROC 0.56, 95% CI 0.55 to 
0.56), either fever or cough in adults (AUROC 0.57, 95% 
CI 0.56 to 0.58) and difficulty in breathing in the elderly 
(AUROC 0.53, 95% CI 0.48 to 0.58) patients. In children, 
adults and the elderly patients, all scoring approaches 
showed similar predictive performance.
Conclusions  The predictive capacity of various symptom 
scores for COVID-19 positivity was poor overall. However, 
the findings could serve as an advocacy tool for more 

investments in resources for capacity strengthening of 
molecular testing for COVID-19 in Nigeria.

INTRODUCTION
The index case of COVID-19 in Nigeria was 
recorded on 27 February 2020, in Ogun 
State; one of the contacts of the index case 
was later diagnosed with the disease in the 
same state. As of epidemiological week 44 (26 
October–1 November), Nigeria had recorded 
62 964 confirmed cases, of whom 1146 died 
and 58 790 recovered, resulting in a case 
fatality rate of 1.8%.1 The rapid increase in 

Strengths and limitations of this study

►► This study provides the early evidence on the pre-
dictive capacity of symptom scores for COVID-19 
positivity in a sub-Saharan African country.

►► The study used the train-test split-sample method 
to randomly split the analysed dataset into two (ie, 
training and testing datasets), thereby allowing for 
validation of the generated clinical scores.

►► The study adopted a participatory approach in the 
derivation of clinically weighted score by engaging 
clinicians managing patients with COVID-19, there-
by enhancing the clinical relevance of the findings.

►► Splitting the dataset for both derivation and valida-
tion of symptom scores might have underestimated 
the predictive performance of the models due to loss 
of power.

►► The study lacked sufficient clinical laboratory data 
that have been shown to be significant in designing 
COVID-19 diagnostic models.
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COVID-19 cases in Nigeria caused a strain on the health-
care systems, particularly in the area of molecular testing 
using real-time PCR (RT-PCR). Deficiencies in molecular 
laboratory capacity can hinder the rapid identification 
of persons with COVID-19 infection and initiation of 
appropriate treatment and public health measures.2 For 
example, as of 9 April 2020, only 5000 tests for SARS-CoV-2 
were performed across Nigeria by eight laboratories 
across six states.3 Concerted efforts have since been made 
to expand molecular testing capacity across the country, 
with 673 183 tests for SARS-CoV-2 conducted and the 
Nigeria Centre for Disease Control (NCDC) COVID-19 
laboratory networks expanded to 69 functioning labora-
tories as of 6 November 2020.4 However, with a popula-
tion of over 200 million and community transmission of 
COVID-19, the testing rate for Nigeria to date is still well 
below the Africa Centre for Disease Control-set target of 
1% for population. Generally, laboratory capacity to test 
for SARS-CoV-2 remains a challenge in many sub-Saharan 
African countries, especially in the early phase of the 
COVID-19 pandemic.5

Although PCR testing is considered the gold standard 
for COVID-19 diagnosis, limited access and centralised 
laboratory systems often contribute to delay.6 This has 
contributed to making diagnostic results unavailable 
for urgent decision-making by frontline healthcare 
workers, with consequent effect on healthcare delivery 
and increased risk of nosocomial infection.7 Between 
27 February and 6 June 2020, for example, the median 
turnaround time for laboratory diagnosis of COVID-19 in 
Nigeria was 2 (IQR 1–4) days; 9% of the 12 289 confirmed 
COVID-19 cases during this period was recorded among 
healthcare workers.8 Thus, to mitigate the impact of 
COVID-19 on the healthcare system, while also improving 
community surveillance and care for patients, rapid and 
accurate diagnosis are crucial.9 NCDC and its technical 
partners are currently conducting a study to validate 
rapid diagnostic test kits to determine their accuracy and 
clinical utility in Nigeria.

One approach to supplement laboratory testing is, 
however, the use of diagnostic prediction models that use 
clinical variables (including standard blood counts when 
available) to estimate the likelihood of individuals being 
COVID-19 positive or experiencing poor clinical outcome.9 
A systematic review of developed and/or validated predic-
tion models found the most frequently reported predic-
tors of COVID-19 diagnosis to be influenza-like symptoms 
(eg, chills, fatigue) and neutrophil count, with C-statistic 
estimates ≥0.90 (an excellent discriminative perfor-
mance).9 However, to date, these prediction models have 
been judged to be at a high risk of bias, largely because 
they were fitted on data that were not representative 
of the target population and have suffered from poor 
reporting on intended use of the models or their calibra-
tion performance. While the reported performances of 
models to date are encouraging, their adoption in clinical 
practice has not been recommended.9 In addition, there 
has been a dearth of evidence from sub-Saharan Africa as 

the majority of available models use data from China and 
European countries, thus limiting their generalisability to 
settings such as Nigeria with different COVID-19 epidemi-
ology, healthcare systems, socioeconomic conditions and 
health-seeking behaviours.

The majority of confirmed COVID-19 cases in Nigeria 
are asymptomatic at the point of diagnosis8; for the 
confirmed cases who present with symptoms, the most 
common symptoms tend to be non-specific (eg, fever, 
cough and difficulty in breathing).8 10 11 Using data from 
27 February to 6 June 2020, presentation with cough, 
fever, loss of smell and loss of taste was found to be 
positively and independently associated with COVID-19 
positivity in Nigeria.12 But the dearth of evidence on 
the predictive capacity of clinical symptoms to predict 
COVID-19 in Nigeria (and indeed in sub-Saharan Africa) 
is the rationale for this study. Thus, we aimed to develop 
and validate the predictive capacity of clinical signs and 
symptoms with regard to testing positive for COVID-19 
and to investigate whether there are any gains in the 
predictive capacity of statistically and clinically derived 
weighted combined symptom scores, as compared with 
an unweighted combined score in Nigeria.

METHODS
Study design and data source
This is a predictive modelling study using a retrospective 
cohort of persons enrolled in the Surveillance, Outbreak 
Response Management and Analysis System (SORMAS) 
database from 27 February to 27 August 2020. A detailed 
description of SORMAS in the COVID-19 context in 
Nigeria is available elsewhere.8 Briefly, SORMAS is an 
open-source real-time electronic health surveillance and 
laboratory database, which has been in use in Nigeria 
since 2017. SORMAS is hosted and coordinated at the 
NCDC’s headquarter in Abuja.

Study participants
The study population comprised children (≤17 years), 
adults (18–64 years) and the elderly (≥65 years) who were 
tested for SARS-CoV-2 infection. Eligibility for RT-PCR 
test during the study period was based on the NCDC 
COVID-19 standard case definition for suspected cases 
(online supplemental table 1).13 However, provisions 
were made to test persons concerned about COVID-19 
infection on presentation to designated testing centres 
regardless of whether they met the NCDC case definitions 
or not.

Data collection and management
Sociodemographic (eg, age, sex, occupation, education 
and geopolitical zone of residence) and clinical presenta-
tion (signs and symptoms in the 14 days prior to testing) 
were collected from all persons tested. The collection and 
transportation of respiratory samples (oropharyngeal 
and nasopharyngeal swabs) for laboratory analysis were 
facilitated by trained healthcare workers according to the 
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NCDC guidelines.14 Testing for SARS-CoV-2 by RT-PCR 
was performed according with the WHO guidelines.15 
All the collected data across the country, including labo-
ratory diagnostic outcomes, were submitted by trained 
healthcare workers to NCDC via the SORMAS applica-
tion installed on tablets or laptops. Patients who tested 
positive for COVID-19 were managed either in a govern-
ment health facility or at home, depending on the illness 
severity or availability of bed space at health facilities, while 
observing the NCDC case management guidelines.14

Since this was an analysis of a secondary dataset, there 
was no formal sample size calculation for this study; 
however, the study met the standard sample size require-
ment of 10 outcome events per degree of freedom 
in prediction models (eg, 10 binary variables in the 
model require 100 COVID-19 positive cases). We used 
the train-test split-sample method to randomly split the 
complete dataset into two (ie, training and testing data-
sets), assigning half of the records to either the training 
(derivation) or testing (validation) datasets based on a 
random number generated within the statistical software. 
However, we made four major assumptions to define 
the study eligibility criteria. First, we assumed that a 
missing variable was indicative of absence (ie, record not 
present), supported by findings (p<0.001) from a χ2 test 
of association between two ad hoc variables ‘any-missing’ 
and ‘any-absent’. Second, we decided that eligible study 

participants needed to have complete records for both 
age and sex since these are crucial demographic vari-
ables. Third, given the high proportion of asymptomatic 
COVID-19 cases in Nigeria,8 the study participants needed 
to have had at least one symptom positively recorded (ie, 
symptomatic). Lastly, analyses were performed separately 
for children, adults and the elderly, given the evidence 
supporting the age dependence of COVID-19 symptom 
presentation, with children more likely to be asymptom-
atic than adults.16 17 Figure 1 shows a flowchart showing 
the processes for selecting the study population as stated 
in the eligibility criteria (definitions of suspected and 
probable cases are available in the NCDC case defini-
tion13). All symptoms were coded as ‘1’ if present and ‘0’ 
if not. Sex was classified as a binary variable, with ‘1’ and 
‘0’ indicative of male and female gender, respectively.

Outcome and predictor variables
The outcome was COVID-19 positivity, defined as either 
presence or absence of SARS-CoV-2 by RT-PCR confir-
mation (yes/no). Clinical prediction variables were 
informed by evidence from our previous study using 
the same dataset, although it covered a shorter period 
(27 February to 5 June 2020).12 The clinical variables 
were collected using a combination of self-reports by 
COVID-19 suspected cases and/or their caretakers as well 
as by objective assessment by a healthcare worker. The 

Figure 1  Flowchart showing the processes for selecting records from the Surveillance, Outbreak Response Management and 
Analysis System.
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three categories of clinical signs and symptoms (each 
coded yes/no) with their respective examples include (1) 
‘obvious or as observed by a healthcare worker’ (chills/
sweat, cough, breathing difficulty, rapid breathing and 
runny nose); (2) ‘elicitable or information volunteered or 
given on inquiry by patients/relatives’ (abdominal pain/
diarrhoea, gastrointestinal tract symptoms, chest pain, 
fatigue/weakness, headache, musculoskeletal pain, sore 
throat, loss of taste and loss of smell); (3) and ‘measur-
able as assessed by a healthcare worker’ (fever, defined as 
an axillary temperature ≥37.5°C).

Statistical analyses
The data were set up and analysed using Stata V.13.0 
(Stata Corporation, College Station, Texas, USA).

Model development
Using the derivation dataset, the association between 
individual symptoms and COVID-19 positivity was investi-
gated, in turn, using univariable logistic regression. Anal-
yses were stratified by children, adults and the elderly. The 
results are presented as unadjusted ORs and 95% CIs. To 
determine which of the symptoms were independently 
associated with COVID-19 positivity, we first conducted a 
test for multicollinearity by the various age groups (chil-
dren, adults and the elderly) using the variance inflation 
factor (VIF) and tolerance values of each statistically 
significant symptom identified from the univariable 
logistic regression model (see online supplemental table 
2a, b and c for results). This was to ensure that symptoms 
were independent of each other or not collinear and 
therefore suitable for combining into a single score. Both 
VIF and tolerance values measure how much the regres-
sion coefficient for a symptom is determined by the other 
symptoms in the model; low VIF and high tolerance values 
suggest the absence of multicollinearity and vice versa.18 
Thereafter, we used the backward multivariable logistic 
regression approach to select all the statistically signifi-
cant symptoms for the model. As before, analyses were 
conducted for children, adults and the elderly separately.

We then created three different symptom scores. First, 
an unweighted combined score was calculated for each 
person (separately for children, adults and the elderly) 
by allocating ‘1’ point for each symptom before summa-
tion. The unweighted combined scores were included 
in the model as a continuous variable. The combined 
scores were further recoded as binary categorical vari-
ables to represent clinical scores ≥1 (yes/no), ≥2 (yes/
no), ≥3 (yes/no) and ≥4 (yes/no). Additionally, weighted 
combined scores were developed using two approaches. 
First, we used the beta regression coefficients obtained 
from the multivariable logistic regression model that 
was run previously. Each symptom was given the value 
of ‘1’ if present and ‘0’ if otherwise. Each symptom was 
then multiplied by its weight, obtained by multiplying 
the respective beta regression coefficients (or log of the 
ORs) by 10. Essentially, the beta regression coefficients 
measure the relative prognostic strength of each symptom 

when they are included simultaneously in a multivari-
able regression model so that the bigger the value of a 
symptom, the more its weight. Second, we engaged six 
clinicians (including infectious disease consultants) who 
have been managing patients with COVID-19 in treat-
ment centres and at home in the Federal Capital Terri-
tory, Gombe, Delta and Kaduna. Here, the clinicians were 
provided with a list of symptoms identified to be statisti-
cally significant from the univariable logistic models, with 
the freedom to add any missing sign or symptom in the 
model as needed. Each clinician was then asked to inde-
pendently assign a weight of 1–5 for each symptom based 
on experiences from managing patients with COVID-19 
(see online supplemental table 3 for detail of weighted 
scores assigned by each clinician for the identified symp-
toms). Similar to the statistical weighting approach, each 
symptom was multiplied by the average of the combined 
weights assigned by all the clinicians. Predictive capacity 
of the various score thresholds was also compared to see 
which combination of symptoms was more predictive of 
COVID-19 positivity.

Model validation
The different models were then applied to the validation 
dataset. Separately for children, adults and the elderly, 
predictive capacity was assessed in terms of sensitivity, 
specificity, area under the receiver operating character-
istic (ROC) curve (AUROC) value, positive predictive 
value (PPV) and negative predictive value (NPV)19; and 
ROC curves were plotted for the comparison of clinical 
prediction scores.

Where applicable, this study is reported according to 
the TRIPOD (Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or Diagnosis) 
statement.20

External calibration belt and test for model goodness of fit
Using the validation dataset, external calibration test 
and belt were used to evaluate the goodness of fit of our 
models, an approach that examines the relationship 
between estimated probabilities and observed outcome 
rates.21 Tests and belts often return concordant outputs: 
non-significant tests are often associated with the belt 
encompassing the 45 degree lines (good fit) and signifi-
cant tests with the belt deviating from the bisector (poor 
fit).

Patient and public involvement
Being an analysis of deidentified secondary dataset, 
it was not possible to involve patients or the public in 
the design, or conduct, or reporting or dissemination 
plans of this study. However, clinicians who have been 
managing patients with COVID-19 both in health facili-
ties and at home in Nigeria were actively engaged both 
in planning the study and in developing the clinical 
scores.

https://dx.doi.org/10.1136/bmjopen-2021-049699
https://dx.doi.org/10.1136/bmjopen-2021-049699
https://dx.doi.org/10.1136/bmjopen-2021-049699


5Elimian KO, et al. BMJ Open 2021;11:e049699. doi:10.1136/bmjopen-2021-049699

Open access

RESULTS
Description of study population
The baseline sociodemographic and clinical character-
istics of the study participants in the combined datasets 
are presented in table 1. Overall, 15 988 children met the 
study eligibility criteria, 4415 (27.6%) of whom tested 
positive for COVID-19 and 62.2% were male. A total 
of 26 441 adults met the study eligibility criteria, 9154 
(34.6%) of whom tested positive for COVID-19, 64.0% 
(16 819/26 441) were male, and 11.3% (2977/26 441) 
were healthcare workers. Seven hundred and ninety-two 
elderly patients met the study eligibility criteria, 317 
(40.0%) of whom tested positive for COVID-19 and 62.3% 
were male. Similar characteristics were observed in the 
derivation (online supplemental table 4) and validation 
(online supplemental table 5) cohorts for all age groups.

Performance of individual symptoms for predicting COVID-19 
positivity
In the unadjusted model, presentation with cough, runny 
nose, fatigue, loss of taste, loss of smell and fever was 
significantly associated with higher odds of COVID-19 
positivity in children (left panel of table 2). In the adjusted 
model, however, presentation with the following symp-
toms remained significantly (p<0.001) associated with 
higher odds of COVID-19 positivity: cough (adjusted OR 
(aOR) 1.32, 95% CI 1.19 to 1.47), runny nose (aOR 1.48, 
95% CI 1.32 to 1.66), fatigue (aOR 1.53, 95% CI 1.21 to 
1.93), loss of taste (aOR 2.26, 95% CI 1.63 to 3.12), loss of 
smell (aOR 4.87, 95% CI 3.66 to 6.49) or fever (aOR 1.47, 
95% CI 1.33 to 1.63). Regarding predictive performance, 
loss of smell recorded the highest AUROC value (0.56, 
95% CI 0.55 to 0.56). Specifically, cough recorded the 
highest sensitivity (47.7%, 95% CI 45.6% to 49.7%) and 
NPV (74.7%, 95% CI 73.4% to 75.9%), while loss of smell 
recorded the highest specificity (98.1%, 95% CI 97.7% to 
98.4%) and PPV (72.9%, 95% CI 68.3% to 77.2%) (see 
details in online supplemental table 6).

The presentation of symptoms significantly associated 
with increased COVID-19 positivity was higher in adults 
than in children (middle panel of table 2). In the adjusted 
model, however, it was only the presentation with cough 
(aOR 1.77, 95% CI 1.64 to 1.91), runny nose (aOR 1.18, 
95% CI 1.08 to 1.30), chest pain (aOR 1.50, 95% CI 1.21 
to 1.85), fatigue (aOR 1.39, 95% CI 1.17 to 1.64), head-
ache (aOR 1.24, 95% CI 1.11 to 1.39), loss of taste (aOR 
2.33, 95% CI 1.83 to 2.96), loss of smell (aOR 4.18, 95% 
CI 3.30 to 5.28) or fever (aOR 1.58, 95% CI 1.47 to 1.71) 
that remained independently associated with COVID-19 
positivity. Regarding predictive performance, presenta-
tion with either fever or cough appeared to be the best 
predictor of COVID-19 positivity (AUROC 0.57, 95% CI 
0.56 to 0.58). Additionally, presenting with cough or fever 
recorded the highest sensitivity at 54.3% (52.9% to 55.8%) 
and NPV at 70.8% (69.7% to 71.8%); however, presenting 
with loss of smell recorded the highest specificity (98.5%; 
95% CI 98.2% to 98.8%) and PPV (79.4%, 95% CI 76.0% 
to 82.5%) (see details in online supplemental table 7).

Only three symptoms in the elderly patients were 
significantly associated with COVID-19 positivity both in 
the unadjusted and adjusted models, with cough (aOR 
1.59, 95% CI 1.04 to 2.43; p=0.033), difficulty in breathing 
(aOR 1.74, 95% CI 1.12 to 2.72; p=0.015) or loss of smell 
(aOR 7.15, 95% CI 1.44 to 35.44; p=0.016) being inde-
pendently associated with COVID-19 positivity in the 
latter model (right panel of table 2). Regarding predic-
tive performance, presenting with difficulty in breathing 
appeared to be the best predictor of COVID-19 posi-
tivity (AUROC 0.53, 0.48 to 0.58). However, presenting 
with cough recorded the highest sensitivity (61.4%, 95% 
CI 53.3% to 69.0%) and NPV (62.1%, 95% CI 54.1% to 
69.6%), while loss of smell recorded the highest speci-
ficity (99.1%, 95% CI 97.0% to 99.9%) and PPV (60.0%, 
95% CI 14.7% to 94.7%) (see details in online supple-
mental table 8).

Performance of unweighted, statistically and clinically 
weighted scores for predicting COVID-19 positivity
In adults, the statistically derived weighted combined score 
appeared to be slightly better in predicting COVID-19 
positivity (AUROC 0.65), when compared with both the 
clinically derived weighted combined and unweighted 
scores with AUROC 0.63 each (table 3). A similar pattern 
was recorded in children and elderly populations. For 
individual symptom thresholds, presenting with ≥2 symp-
toms on the unweighted score appeared to be a better 
predictor of COVID-19 positivity (AUROC 0.61, 95% 
CI 0.60 to 0.61) than the other symptom thresholds in 
adults. For the statistically weighted score, presenting 
with ≥4 symptoms appeared to be a better predictor of 
COVID-19 positivity (AUROC 0.59, 95% CI 0.58 to 0.59) 
than the other symptom thresholds in adults. For the clin-
ically derived weighted score, presenting with either ≥3 
or ≥4 symptoms was a better predictor of COVID-19 posi-
tivity (AUROC 0.58, 95% CI 0.58 to 0.59) in adults. The 
detailed results including sensitivity, specificity, PPV and 
NPV values for each age group are available in online 
supplemental tables 9-11. Figure 2 shows the ROC curves 
comparing the predictive performance of unweighted, 
statistically and clinically derived weighted combined 
scores in children (A), adult (B) and the elderly (C) 
populations.

External calibration belt and test for model goodness-of-fit
The calibration belt in the produced plots and tests 
for children (p=0.086), adults (p=0.915) and elderly 
(p=0.091) is presented in figure 3 and suggests that the 
hypothesis of good calibration is not rejected. The cali-
bration belt and tests for the unweighted, statistically and 
clinically weighted scores in children, adults and elderly 
are presented in a supplemental figure. With the excep-
tion of unweighted and clinically weighted scores in chil-
dren, all other scores showed good calibration.

https://dx.doi.org/10.1136/bmjopen-2021-049699
https://dx.doi.org/10.1136/bmjopen-2021-049699
https://dx.doi.org/10.1136/bmjopen-2021-049699
https://dx.doi.org/10.1136/bmjopen-2021-049699
https://dx.doi.org/10.1136/bmjopen-2021-049699
https://dx.doi.org/10.1136/bmjopen-2021-049699
https://dx.doi.org/10.1136/bmjopen-2021-049699
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Table 1  Baseline sociodemographic and clinical characteristics of all the study participants in relation to COVID-19 infection 
(combined dataset)

Variable

Children (≤17 years) Adults (18–64 years) Elderly (≥65 years)

PCR-confirmed 
cases
(n=4415 (%))

PCR positive and 
negative cases 
(n=15 988 (%))

PCR-confirmed 
cases
(n=9154 (%))

PCR positive and 
negative cases 
(n=26 441 (%))

PCR-confirmed 
cases
(n=317 (%))

PCR positive and 
negative cases
(n=792 (%))

Sociodemographic features

Sex

 � Female 1773 (40.16) 6051 (37.85) 3080 (33.65) 9622 (36.39) 110 (34.70) 299 (37.75)

 � Male 2642 (59.84) 9937 (62.15)* 6074 (66.35) 16 819 (63.61)* 207 (65.30) 493 (62.25)NS†

Geopolitical zone‡

 � South-west 1302 (29.49) 3539 (22.14) 2592 (28.32) 6245 (23.62) 86 (27.13) 185 (23.36)

 � South-south 1435 (32.50) 5689 (35.58) 3228 (35.26) 10 911 (41.27) 108 (34.07) 340 (42.93)

 � South-east 90 (2.04) 278 (1.74) 273 (2.98) 609 (2.30) 25 (7.89) 37 (4.67)

 � North-central 816 (18.48) 3056 (19.11) 1526 (16.67) 4061 (15.36) 30 (9.46) 76 (9.60)

 � North-west 658 (14.90) 3118 (19.50) 1258 (13.72) 4005 (15.15) 45 (14.20) 116 (14.65)

 � North-east 114 (2.58) 308 (1.93)* 277 (3.03) 610 (2.31)* 23 (7.26) 38 (4.80)*

Setting

 � Rural 230 (5.21) 887 (5.55) 511 (5.58) 1562 (5.91) 35 (11.04) 74 (9.34)

 � Urban 2048 (46.39) 6943 (43.43) 4487 (49.02) 13 088 (49.50) 183 (57.73) 423 (53.41)

 � Missing 2137 (48.40) 8158 (51.03)* 4156 (45.40) 11 791 (44.59)NS† 99 (31.23) 295 (37.25)§

Education

 � None 58 (1.31) 217 (1.36) 128 (1.40) 368 (1.39) 25 (7.89) 48 (6.06)

 � Nursery 30 (0.68) 143 (0.89) 3 (0.03) 7 (0.03) 0 (0.00) 0 (0.00)

 � Primary 130 (2.94) 520 (3.25) 102 (1.11) 322 (1.22) 8 (2.52) 18 (2.27)

 � Secondary 385 (8.72) 1379 (8.63) 792 (8.65) 2262 (8.55) 23 (7.26) 58 (7.32)

 � Tertiary 1410 (31.94) 4066 (25.43) 3141 (34.31) 8145 (30.80) 87 (27.44) 168 (21.21)

 � Other 179 (4.05) 1065 (6.66) 261 (2.85) 688 (2.60) 20 (6.31) 45 (5.68)

 � Missing 2223 (50.35) 8598 (53.78)* 4727 (51.64) 14 649 (55.40)* 154 (48.58) 455 (57.45)§

Occupation

 � Student/pupil 599 (13.57) 2809 (17.57) 434 (4.74) 1516 (5.73) 1 (0.32) 2 (0.25)

 � Child/housewife 133 (3.01) 489 (3.06) 178 (1.94) 500 (1.89) 13 (4.10) 42 (5.30)

 � Business/trading 217 (4.92) 765 (4.78) 757 (8.27) 2043 (7.73) 19 (5.99) 47 (5.93)

 � Transporter 11 (0.25) 80 (0.50) 45 (0.49) 174 (0.66) 0 (0.00) 3 (0.38)

 � Healthcare 
worker

601 (13.61) 1953 (12.22) 973 (10.63) 2977 (11.26) 7 (2.21) 20 (2.53)

 � Laboratorian 15 (0.34) 40 (0.25) 26 (0.28) 63 (0.24) 0 (0.00) 0 (0.00)

 � Farmer 36 (0.82) 192 (1.20) 173 (1.89) 589 (2.23) 24 (7.57) 47 (5.93)

 � Animal-related 
worker

8 (0.18) 28 (0.18) 25 (0.27) 80 (0.30) 1 (0.32) 9 (1.14)

 � Religious/
traditional leader

5 (0.11) 24 (0.15) 53 (0.58) 129 (0.49) 6 (1.89) 9 (1.14)

 � Other 1633 (36.99) 5126 (32.06) 4072 (44.48) 11 408 (43.15) 164 (51.74) 375 (47.35)

 � Missing 1157 (26.21) 4482 (28.03)* 2418 (26.41) 6962 (26.33)* 82 (25.87) 238 (30.05)NS†

Clinical signs and symptoms

Clinical outcome

 � Recovered 2847 (64.48) 4443 (27.79) 5694 (62.20) 7313 (27.66) 150 (47.32) 184 (23.23)

 � Dead 36 (0.82) 51 (0.32) 485 (5.30) 549 (2.08) 83 (26.18) 84 (10.61)

 � No outcome yet 1532 (34.70) 11 494 (71.89)* 2975 (32.50) 18 579 (70.27)* 84 (26.50) 524 (66.16)*

Obvious (visible to healthcare workers on sight)

Chills/sweat

Continued
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Variable

Children (≤17 years) Adults (18–64 years) Elderly (≥65 years)

PCR-confirmed 
cases
(n=4415 (%))

PCR positive and 
negative cases 
(n=15 988 (%))

PCR-confirmed 
cases
(n=9154 (%))

PCR positive and 
negative cases 
(n=26 441 (%))

PCR-confirmed 
cases
(n=317 (%))

PCR positive and 
negative cases
(n=792 (%))

 � No 4355 (98.64) 15 764 (98.60) 9009 (98.42) 26 029 (98.44) 315 (99.37) 783 (98.86)

 � Yes 60 (1.36) 224 (1.40)NS† 145 (1.58) 412 (1.56)NS† 2 (0.63) 9 (1.14)NS†

Cough

 � No 2345 (53.11) 9393 (58.75) 4130 (45.12) 14 391 (54.43) 114 (35.96) 321 (40.53)

 � Yes 2070 (46.89) 6595 (41.25)* 5024 (54.88) 12 050 (45.57)* 203 (64.04) 471 (59.47)§

Breathing difficulty

 � No 3936 (89.15) 14 283 (89.34) 7549 (82.47) 22 425 (84.81) 200 (63.09) 541 (68.31)

 � Yes 479 (10.85) 1705 (10.66)NS† 1605 (17.53) 4016 (15.19)* 117 (36.91) 251 (31.69)§

Rapid breathing

 � No 4345 (98.41) 15 783 (98.72) 9002 (98.34) 26 112 (98.76) 307 (96.85) 771 (97.35)

 � Yes 70 (1.59) 205 (1.28)§ 152 (1.66) 329 (1.24)* 10 (3.15) 21 (2.65)NS†

Runny nose

 � No 3057 (69.24) 11 835 (74.02) 6792 (74.20) 20 496 (77.52) 259 (81.70) 658 (83.08)

 � Yes 1358 (30.76) 4153 (25.98)* 2362 (25.80) 5945 (22.48)* 58 (18.30) 134 (16.92)NS†

Elicitable (can be found out by asking questions of patients/relatives)

Abdominal pain/
diarrhoea

 � No 4142 (93.82) 14 939 (93.44) 8464 (92.46) 24 580 (92.96) 297 (93.69) 728 (91.92)

 � Yes 273 (6.18) 1049 (6.56)NS† 690 (7.54) 1861 (7.04)NS† 20 (6.31) 64 (8.08)NS†

GIT symptoms

 � No 3972 (89.97) 14 375 (89.91) 8100 (88.49) 23 766 (89.88) 282 (88.96) 705 (89.02)

 � Yes 443 (10.03) 1613 (10.09)NS† 1054 (11.51) 2675 (10.12)* 35 (11.04) 87 (10.98)NS†

Chest pain

 � No 4286 (97.08) 15 577 (97.43) 8782 (95.94) 25 621 (96.90) 303 (95.58) 766 (96.72)

 � Yes 129 (2.92) 411 (2.57)NS† 372 (4.06) 820 (3.10)* 14 (4.42) 26 (3.28)NS†

Fatigue

 � No 4143 (93.84) 15 229 (95.25) 8583 (93.76) 25 014 (94.60) 292 (92.11) 750 (94.70)

 � Yes 272 (6.16) 759 (4.75)* 571 (6.24) 1427 (5.40)* 25 (7.89) 42 (5.30)§

Headache

 � No 3753 (85.01) 13 712 (85.76) 7849 (85.74) 23 283 (88.06) 287 (90.54) 738 (93.18)

 � Yes 662 (14.99) 2276 (14.24)NS† 1305 (14.26) 3158 (11.94)* 30 (9.46) 54 (6.82)§

Musculoskeletal 
pain

 � No 4299 (97.37) 15 595 (97.54) 8901 (97.24) 25 783 (97.51) 306 (96.53) 771 (97.35)

 � Yes 116 (2.63) 393 (2.46)NS 253 (2.76) 658 (2.49)§ 11 (3.47) 21 (2.65)NS†

Sore throat

 � No 3306 (74.88) 11 968 (74.86) 6968 (76.12) 19 583 (74.06) 259 (81.70) 649 (81.94)

 � Yes 1109 (25.12) 4020 (25.14)NS† 2186 (23.88) 6858 (25.94)* 58 (18.30) 143 (18.06)NS†

Loss of taste

 � No 3925 (88.90) 15 283 (95.59) 8301 (90.68) 25 268 (95.56) 303 (95.58) 770 (97.22)

 � Yes 490 (11.10) 705 (4.41)* 853 (9.32) 1173 (4.44)* 14 (4.42) 22 (2.78)§

Loss of smell

 � No 3815 (86.41) 15 160 (94.82) 8186 (89.43) 25 198 (95.30) 307 (96.85) 778 (98.23)

 � Yes 600 (13.59) 828 (5.18)* 968 (10.57) 1243 (4.70)* 10 (3.15) 14 (1.77)§

Measurable

Table 1  Continued

Continued
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DISCUSSION
Principal findings
In this study, we developed and validated symptom’s 
prediction scores for COVID-19 positivity, independently 
in children, adults and the elderly patients in the Nige-
rian context. The best individual symptom predictors of 
COVID-19 positivity in children, adult and the elderly 
patients were loss of smell (AUROC 0.56, 95% CI 0.55 
to 0.56), either fever or cough (AUROC 0.57, 95% CI 
0.56 to 0.58) and difficulty in breathing (AUROC 0.53, 
0.48 to 0.58), respectively. In adults, all the symptom 
scores showed similar performance, with the statistically 
weighted score (AUROC 0.65) slightly showing better 
performance than the unweighted (AUROC 0.63) and 
clinically derived weighted (AUROC 0.64) scores. Similar 
results were found in children and elderly patients. 
Overall, none of the symptom scores had good enough 
discrimination to use in practice.

Strengths and limitations of this study
To the best of our knowledge, this is the first study to 
have developed and validated symptom prediction scores 
with a view to aiding prompt recognition of COVID-19 by 
frontline healthcare workers in the Nigerian context and 
possibly in sub-Saharan Africa at large. Despite the limited 
accuracy of the developed prediction tool, the findings 
are very important for a country with limited capacity 
for molecular diagnosis of COVID-19, as it provides the 
evidential basis for advocacy for more investments in 
molecular diagnostics by policy makers in Nigeria. We 
also adopted a transparent methodology and adhered to 
the TRIPOD reporting statement, hence minimising the 
vagueness often associated with the reporting of studies 
on the predictive performance of diagnostic models for 
COVID-19.9 The methodology taken to the derivation of 
weighted scores is also a strength of this study. In accor-
dance with the preferred approach for building prediction 
models,9 the participatory approach taken to deriving the 
clinically weighted score can enhance the study relevance 
in the medical community.22 The use of beta regression 

coefficients as opposed to ORs in deriving the statistical 
weighted scores has the advantage of being less prone to 
bias by small to moderate sample size.23 A common limita-
tion of many COVID-19 diagnostic models is bias due to 
overfitting of the models on data that are not representa-
tive of the target population.9 By using SORMAS database 
(hosts data from all over the country) for both deriva-
tion and validation in the present study, our findings are 
considerably generalisable to the COVID-19 situation in 
Nigeria and less prone to overestimation of COVID-19 
risk among individuals tested.

This study, however, has some limitations that warrant 
discussion. First, being an analysis of secondary data based 
on practical recording of routine clinical assessments, the 
fundamental assumption is that the data recorded on 
clinical symptoms are reasonably complete; for instance, 
we assumed that where a symptom was not recorded as 
being absent rather than missing. Without any objective 
means of verifying this assumption, any bias caused by 
misclassification of the individual symptoms could poten-
tially minimise differences in comparisons, in which case 
observed differences are likely to be in the direction of 
the null hypothesis. Second, the approach of splitting the 
dataset for both derivation and validation of symptom 
scores may have lowered the precision of estimated 
effect (wider 95% CIs)24 and potentially underestimated 
prediction performance due to loss of power.25 Moreover, 
evidence supporting the 10 events per outcome rule of 
thumb has been found by van Smeden et al26 to be weak. 
Third, the study lacked detailed clinical laboratory data, 
such as record for albumin or albumin/globin, direct bili-
rubin values and red cell distribution width, which have 
been found to be significant variables in COVID-19 diag-
nostic models.9 Practically, however, the time and tech-
nical requirements for testing these laboratory data could 
limit their clinical utility.

Interpretation and implications of findings
Based on the systematic and critical review of diagnostic 
scores by Wynants et al, the performance of a diagnostic 

Variable

Children (≤17 years) Adults (18–64 years) Elderly (≥65 years)

PCR-confirmed 
cases
(n=4415 (%))

PCR positive and 
negative cases 
(n=15 988 (%))

PCR-confirmed 
cases
(n=9154 (%))

PCR positive and 
negative cases 
(n=26 441 (%))

PCR-confirmed 
cases
(n=317 (%))

PCR positive and 
negative cases
(n=792 (%))

Fever

 � No 2350 (53.23) 9430 (58.98) 4555 (49.76) 15 434 (58.37) 163 (51.42) 453 (57.20)

 � Yes 2065 (46.77) 6558 (41.02)* 4599 (50.24) 11 007 (41.63)* 154 (48.58) 339 (42.80)§

Musculoskeletal pain=muscle/joint pain.
*p<0.001
†p>0.05 or not significant (NS).
‡State composition of geopolitical zones in Nigeria: south-west (Ekiti, Lagos, Ogun, Ondo, Osun and Oyo); south-south (Akwa-Ibom, Bayelsa, Cross-
River, Rivers, Delta and Edo); south-east (Abia, Anambra, Ebonyi, Enugu and Imo); north-central (Benue, Kogi, Kwara, Nasarawa, Niger and Plateau 
States, as well as the Federal Capital Territory); north-west (Jigawa, Kaduna, Kano, Katsina, Kebbi, Sokoto and Zamfara); and north-east (Adamawa, 
Bauchi, Borno, Gombe, Taraba and Yobe).
§p<0.05.
GIT, gastrointestinal (nausea+vomiting).

Table 1  Continued
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model is influenced by its composition, with higher 
number of clinical and laboratory parameters in a model 
indicating better predictive performance.9 For instance, 
studies in China,27 28 Brazil,29 Italy,30 The Netherlands31 
and France32 with several clinical and laboratory param-
eters recorded excellent discriminatory performance, 
although with substantial evidence of bias9 and limited 
clinical utility. Conversely, a prediction model (containing 
fewer number of symptoms, heart rate, systolic and 
diastolic blood pressure) developed by Sun et al33 in 
Singapore had a poor discriminatory capacity (C statistic: 
0.65; 0.57–0.73). There is evidence to further suggest 
that the discriminatory accuracy of a prediction model, 
particularly its sensitivity, can be enhanced by including 
certain variables including a combination of loss of smell 
or taste and fever.34 In the absence of comparison study 
from a sub-Saharan African country, it is difficult to fully 
explain the variation in the findings from the present 
study and elsewhere. Thus, a follow-up study using both 
clinical and laboratory parameters in a Nigerian setting 

or in sub-Saharan Africa (with similar healthcare system 
and demographic structure) is recommended.

Prediction performance of the unweighted score 
with regard to COVID-19 positivity was better in adults 
than in children and the elderly patients in our study, 
although the predictive capacity of all the scores was 
poor overall. This finding has an important implication 
on NCDC’s current definition of COVID-19 suspected 
cases, which emphasises acute respiratory symptoms and 
either travel history within 14 days prior to symptom 
onset or self-reported contact with a confirmed case.13 
Given our findings are indicative of age dependency of 
symptom, it may be useful to review the current case defi-
nitions of COVID-19 in Nigeria. For example, we found 
loss of smell and either fever or cough to be better in 
predicting COVID-19 positivity in children and adults, 
respectively, while breathing difficulty was more predic-
tive of the disease in the elderly patients. Furthermore, 
this finding potentially has implications on the clinical 
utility of existing suspected case definition in Nigeria13 

Table 3  Predictive performance of unweighted, statistically and clinically weighted score thresholds for predicting COVID-19 
positivity in children, adults and elderly

Outcome Score

Unweighted score Statically weighted score Clinically weighted score

AUROC value (95% CI)

Children (<17 years), n=8077

Combined score 0.6064 0.6177 0.5915

Symptom threshold ≥1 0.55
(0.54 to 0.56)

0.55
(0.54 to 0.56)

0.55
(0.54 to 0.56)

≥2 0.58
(0.57 to 0.59)

0.55
(0.54 to 0.56)

0.54
(0.53 to 0.55)

≥3 0.55
(0.54 to 0.56)

0.55
(0.54 to 0.57)

0.56
(0.55 to 0.57)

≥4 0.52
(0.52 to 0.53)

0.59
(0.58 to 0.60)

0.57
(0.56 to 0.58)

Adults (17–64 years), n=13 274

Combined score 0.6333 0.6475 0.6389

Symptom threshold ≥1 0.56
(0.55 to 0.56)

0.56
(0.55 to 0.56)

0.56
(0.55 to 0.56)

≥2 0.61
(0.60 to 0.61)

0.58
(0.57 to 0.58)

0.56
(0.55 to 0.56)

≥3 0.56
(0.55 to 0.57)

0.58
(0.57 to 0.59)

0.58
(0.58 to 0.59)

≥4 0.53
(0.53 to 0.54)

0.59
(0.58 to 0.59)

0.58
(0.58 to 0.59)

Elderly (≥65 years), n=393

Combined score 0.5413 0.5453 0.5426

Symptom threshold ≥1 0.52
(0.48 to 0.57)

0.52
(0.48 to 0.57)

0.52
(0.48 to 0.57)

≥2 0.53
(0.49 to 0.57)

0.52
(0.48 to 0.57)

0.52
(0.48 to 0.57)

The best predictive AUROC values for each age group are highlighted in bold.
AUROC, area under the receiver operating characteristic curve.
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with a high proportion of asymptomatic COVID-19 cases8 
and testing system that allows persons who are concerned 
about their COVID-19 risk to be tested. Thus, to minimise 
missed diagnoses and overburdening of the healthcare 
system, with attendant psychological effects on health 
personnel,35 there is a need for more economic invest-
ments on molecular testing across Nigeria.

Loss of smell recorded the highest specificity with regard 
to COVID-19 positivity for the three age groups: 98.1% 

in children, 98.5% in adults and 99.1% in the elderly. 
However, unlike the present study which explored the 
predictive capacity of loss of smell and taste separately, 
a combination of both symptoms has been shown to be 
more predictive.36 Thus, the potential use of both loss of 
smell and taste to differentiate COVID-19 from endemic 
febrile and respiratory illnesses in Nigeria, such as malaria 
and pneumonia, with overlapping symptoms warrant 
further study. Additionally, possibility of using both loss of 
smell and taste as early indicators of emerging COVID-19 
wave or a surge in Nigeria would be useful in improving 
COVID-19 response, such as allocation of already limited 

Figure 2  Comparison of unweighted, statistically weighted 
and clinically weighted scores for predicting COVID-19 
positivity in children (A), adults (B) and elderly (C).

Figure 3  Calibration belts and tests for children (A), adults 
(B) and elderly (C).
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testing resources, risk communication and aid decision-
making concerning lockdowns and quarantines.37 The 
poor predictive capacity of cough or fever alone in the 
present study is congruent with that in a meta-analysis.38

Clinical validity (characterised by sensitivity, specificity 
and AUROC values) is an important criterion for assessing 
a clinical prediction tool39 as it is—the ability of the predic-
tion tool to distinguish between who has an outcome (in 
this case SARS-CoV-2 infection) and who does not.40 The 
clinical validity of all our prediction scores was generally 
poor but appeared to be dependent on the number of 
symptoms. For instance, in our study, the unweighted and 
weighted (both statistical and clinical) predictive scores 
presenting with fewer number of symptoms were more 
sensitive compared with many symptoms in children and 
adults; it was, however, the opposite relative to specificity 
given  ≥4 symptoms recorded higher specificity values 
than lower symptom thresholds. The poor sensitivity of 
many symptoms could potentially be attributable to a high 
proportion of false negatives, suggesting that some symp-
toms have limited validity for COVID-19 in children and 
adults. However, similarity in the predictive performance 
of various symptom thresholds on the two weighted scores 
in elderly suggests that weighting has less predictive value 
for this group of population. The high specificity of 
more symptoms could be indicative of low proportion of 
false positives, underlining the need to accurately assess 
symptoms. In practice, there is a trade-off between sensi-
tivity and specificity such that when the consequences 
of having a false positive test is very serious, specificity is 
prioritised over sensitivity and vice versa.41 This is the case 
for the various symptom thresholds on the unweighted 
scale where specificity is higher than sensitivity. A higher 
specificity over sensitivity is of practical relevance when 
the political implication of refusing to test someone with 
suspected COVID-19 is considered, although higher 
sensitivity over specificity might be given preference in 
the early phases of a pandemic before surge capacity is 
reached.

Given the rapid increase in community transmission 
of COVID-19 cases and deleterious impacts of instituting 
another lockdown (partial or complete), large-scale 
surveillance for capturing the epidemiological trend of 
COVID-19 in Nigeria is crucial. However, Nigeria has 
limited SARS-CoV-2 testing capacity with an average turn-
around of 2 days, making syndromic surveillance (symp-
tomatic monitoring) a viable complementary surveillance 
system. As such, our findings would be relevant in 
informing the design of such a surveillance system, which 
has been demonstrated in Japan42 43 and in the USA,44 to 
be useful in improving the understanding of COVID-19 
epidemiology (often in real time), assessing the effec-
tiveness of public health interventions and enhancing 
preparedness for the emergence of COVID-19 wave 
or a surge. For instance, an evaluation of a syndromic 
surveillance system in the USA found new taste/smell 
loss to be highly correlated with a range of COVID-19 
outcomes, highlighting their usefulness in supporting 

the surveillance system as an early warning system for 
COVID-19 prevention and control. However, the feasi-
bility (eg, considering selection bias and recall bias) and 
acceptability of a syndromic surveillance system first need 
to be ascertained given the large proportion of asymp-
tomatic COVID-19 cases at diagnosis in Nigeria.8 PPVs 
across the various prediction thresholds, especially for 
the weighted scales, were generally low despite increasing 
proportionately with the thresholds. This could be attrib-
utable, in part, to the general mildness of the pandemic 
with resultant low incidence of mortality in Nigeria. For 
instance, 66% of the 12 289 confirmed COVID-19 cases 
in Nigeria between 27 February and 6 June 2020 were 
asymptomatic at diagnosis, with an overall cumulative 
incidence and case fatality rate of 5.6 per 100 000 popula-
tion and 2.8%, respectively8—these figures were substan-
tially lower than those from European countries during 
the same period.45 As such, our predictive tools could 
perform differently during a more severe COVID-19 
outbreak in Nigeria.

CONCLUSION
This study has investigated the possibility of using symp-
toms to predict COVID-19 positivity in Nigeria and found 
the predictive capacity of various symptom scores to be 
poor overall. However, the findings have the potential 
to serve as an advocacy tool for more investments in 
resources for capacity strengthening of molecular testing 
for COVID-19 in Nigeria, which is crucial for improving 
both clinical case management and surveillance.
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