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Abstract. A cholera population model with stochastic transmission and with

stochasticity on the environmental reservoir of the cholera bacteria is presented.
It is shown that solutions are well-behaved. In comparison with the underlying

deterministic model, the stochastic perturbation is shown to enhance stability

of the disease-free equilibrium. The main extinction theorem is formulated
in terms of an invariant which is a modification of the basic reproduction

number of the underlying deterministic model. As an application, the model is

calibrated as for a certain province of Nigeria. In particular, a recent outbreak
(2019) in Nigeria is analysed and featured through simulations. Simulations

include making forward projections in the form of confidence intervals. Also,
the extinction theorem is illustrated through simulations.

1. Introduction. Cholera is a diarrheal infection caused by ingestion of food or
water contaminated with the bacterium Vibrio cholerae, which affects both children
and adults. It continues to be a serious burden for countries with limited access
to safe drinking water and an inadequate sanitation system. It can be transmitted
through direct faecal-oral contamination or via ingestion of contaminated water
and/or food [28]. Between 12 hours and 5 days after the initial infection, severe
acute watery diarrhoea sets in. Cholera at its most severe form, can lead to death
by severe dehydration and kidney failure. It can kill within hours if untreated.
The spread of the disease is mainly caused by contaminated water and insufficient
sanitation, in generally poor environmental conditions. In particular, peri-urban
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slums where basic infrastructure is not available, or camps for internally displaced
people or refugees, where minimum requirements of clean water and sanitation are
not met, are some of the highly at-risk areas [28]. It is globally estimated that from
3 to 5 million new cholera cases and about 150,000 cholera related deaths occur
annually. In 2012, sub-Sahara African countries accounted for 71% of the total
reported new cases and 86% of cholera related deaths [4].

The authors in [21] reported Nigeria to be one of the world’s three major current
cholera foci. Nigeria experienced her first series of cholera outbreaks between 1970 to
1990 and subsequent recurrent outbreaks has since then followed [11]. The northern
parts of the country recorded over 40, 000 estimated new cases of cholera in 2010,
which resulted in over 1,500 cholera related deaths and with case fatality rate (CFR)
of 4.1%, which is well over the WHO acceptable rate of 1% [3, 29]. Cholera outbreaks
in Nigeria has remained persistent since the beginning of 2018.

Mathematical modelling of epidemiological diseases is commonly used for making
future projections of the prevalence of a disease in a population and to assess the
effect of public health interventions. Many studies of this type have been carried
out on the epidemiology of cholera disease, for example, [23, 22], and most of these
studies are focussed on the deterministic modelling of cholera dynamics. In this
paper, we will incorporate stochasticity into the cholera model presented in [23], in
order to factor in the possible effects of randomness.

Stochasticity enters into natural systems in many ways. If the stochasticity is
accommodated explicitly in a model, then it supports an analysis of its effects,
whether positive or negative. In this paper we present a model of cholera disease
dynamics in the form of a system of stochastic differential equations (SDEs). The
two main results of this article are as follows. Firstly, we prove a theorem on ex-
tinction of the disease according to the stochastic model. Secondly, the underlying
deterministic model is calibrated for a particular region and then the state of this
population immediately subsequent to a recent cholera outbreak is computed. For
both of these results we provide illustrating computations. SDE models of cholera
dynamics have been studied in [20, 14, 13, 30]. In the SDE model of cholera in
[20] there are computations, but no detail on positivity of solutions, or stability of
the disease-free equilibrium. The model in [14] differs from ours essentially in that
it has only one mode of infection, driven by the cholera reservoir, while excluding
infection of susceptibles through their contact with infected humans. It does probe
an extinction theorem (inter alia) but their theorem does not cover the main ex-
tinction theorem in the current paper. The other papers [13, 30] focus mostly on
persistence, and does not have an extinction theorem similar to ours.

We briefly introduce an existing deterministic model, see [23], in Section 2. In
Section 3 we present the stochastic model and we show that it has well-behaved
solutions. The extinction theorem is proved in Section 4. In Section 5 we study
the 2019 outbreak in Nigeria, focusing on the Adamawa State. We explain in detail
how we estimate some of the population-specific parameters from the literature.
Simulations are shown in Section 6 and concluding remarks appear in Section 7.
The main contributions of this work are firstly the extinction result of Theorem 4.4,
secondly the detailed parameter estimation in Section 5 and thirdly, the simulations
in Section 6.

2. A deterministic cholera model. We briefly present the deterministic model
(1) which is a special case of the model that was introduced and analysed in [23].
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The model (1) will serve as the basis for our stochastic model that will be presented
in Section 3. Our model sub-divides the total human population, denoted by N ,
into sub-populations of susceptible humans (S), infected humans (I) and recovered
humans (R) , so that N = S+ I +R, while the intensity of the bacteria population
(or reservoir) in the environment will be denoted by B.

The recruitment rate is denoted by Λ, while the natural mortality rate is µ.
We shall write Λ as Λ = µP , where P is the size of the total population when
disease-free.

It is assumed that there are two possible ways in which a susceptible human can
get infected. This can be either through infection as a result of interaction with an
infectious person, or infection caused by the aquatic population B of V. cholerae.
The parameter βh is the effective contact rate between a given susceptible human
and an infective human. Similarly, βc is the (average) level of effective contact
rate between a given susceptibe and the cholera reservoir. The parameter K is a
constant which is the value of B at which the reservoir produce one new infection
per week. The force of infection arising directly from interaction of a susceptible
human with infected humans is βhI. The parameter σ denotes the average rate of
the contribution of each cholera infected individual to the aquatic population B of
V. cholerae. The parameter α is the recovery rate, while ε is the cholera induced
mortality rate. It is assumed that recovered humans have permanent immunity
or at least, have immunity for a very long time. Here, ω is the rate at which V.
cholerae leaves the environment. The model is described by the following system of
ordinary differential equations.

dS =
[
Λ− βcS

B

K +B
− βhSI − µS

]
dt,

dI =
[
βcS

B

K +B
+ βhSI − (α+ µ+ ε)I

]
dt,

dR =
[
αI − µR

]
dt,

dB =
[
σI − ωB

]
dt. (1)

An extensive analysis of this model can be found in the paper [23]. For our purposes,
which focus on eradication of cholera in a given population, it is important to note
that the basic reproduction number of this model is

R0 =
Λ[βcσ +Kωβh]

µKω(α+ µ+ ε)
.

3. A stochastic cholera model. Randomness is present in a variety of real life
situations and phenomena. It is therefore helpful when building models, such as
disease models, to allow for the effect of stochasticity, [9]. When parametrizing a
model, it is possible that there could be errors, even if very small. The inclusion
of stochastic perturbations on an ODE model, informs the users of the model of
how the dynamics of the system in point can possibly deviate from the expected
outcome, as also mentioned in [6]. In this model we apply stochastic perturbations
on the rate of transmission of cholera from infected humans to susceptible humans,
in a complementary couple, and also we perturb the rate of removal of cholera from
the reservoir.
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We assume a pair of mutually independent standard Brownian motions {W (t)}t>0

and {Y (t)}t>0, defined on a complete filtered probability space, satisfying the usual
conditions. The model is described by the following system of SDEs. This system
can be seen to be a modification of the model (1), by introduction of stochastic
perturbations. The constant, ξ, is the intensity of the perturbation on βh, and ζ is
the intensity of the pertubation on ω.

dS =

[
Λ− βcS

B

K +B
− βhSI − µS

]
dt− ξSIdW,

dI =

[
βcS

B

K +B
+ βhSI − (α+ µ+ ε)I

]
dt+ ξSIdW,

dR =

[
αI − µR

]
dt,

dB =

[
σI − ωB

]
dt+ ζBdY. (2)

Note, we shall often use the notation:

µ1 = µ+ α+ ε. (3)

We prove below, that this system has solutions that exist globally and are positive
almost surely (a.s.). The method that we use is commonly applied for such purposes,
see for instance [6, 10, 25].
Let

∆ = {x ∈ R4 : xi > 0 ∀ i, and x1 + x2 + x3 <
Λ
µ }.

Similarly as for instance in [24], we prove the following proposition.

Proposition 3.1. Suppose that for some T , there is a local solution

X(t, ω) = (S(t, ω), I(t, ω), R(t, ω), B(t, ω)) on t ∈ [0, T )

for the system, with X(t, ω) ∈ R4
+ for each t ∈ [0, T ), ω ∈ Ω. If N(0, ω) ≤ Λ/µ,

then N(t, ω) ≤ Λ/µ for each t ∈ [0, T ).

Proof. Given any such local solution X(t, ω), then

d(N(t, ω)− Λ/µ)

dt
= Λ− µS(t, ω)− (µ+ ε)I(t, ω) = −µ(N(t, ω)− Λ/µ)− εI(t, ω).

Consequently,

d(N(t, ω)− Λ
µ )

dt
+ µ(N(t, ω)− Λ

µ
) = −εI(t, ω) ≤ 0.

Thus we have an ordinary differential equation which is linear and of first order.
For this equation we have that if N(0, ω) < K, then N(t, ω) < K for all t ∈ [0, T ). �

Theorem 3.2. Given any point x0 ∈ ∆, then there is a solution X(t) of the system
(2) with X(0) = x0 such that X(t) is global (a.s.) and X(t) ∈ ∆ for all t > 0
(a.s.).

Proof. The so-called Lyapunov method of proof by contradiction is popularly used
for results such as the current theorem, see for instance [25]. We follow the same
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methodology, without giving the complete argument. The coefficients of the sys-
tem (2) are locally Lipschitz continuous. Consequently there exists a unique local
solution X(t), with X(0) = x0. Since x0 ∈ ∆, at least for some t1 > 0, we have
{X(t)| 0 ≤ t < t1} ⊂ ∆. Let τ1 be the explosion time of the local solution X(t).
For such a solution X(t) that starts in ∆, we define the function

J(t) = ln
Λ

µS(t)
+ ln

Λ

µI(t)
+ ln

Λ

µR(t)
+

[
B(t)− lnB(t)

]
.

We note that as a consequence of Proposition 3.1, if each of the first three terms
on the right hand side are positive while X(t) ∈ ∆. Also,

lim
x→0+

Λ

µx
=∞.

We furthermore note that x− lnx > 0 for x > 0 and that

lim
x→0+

(x− lnx) =∞ and lim
x→∞

(x− lnx) =∞ .

Therefore the function J(t) is a good candidate to furnish a proof using the Lya-
punov method. Let τ1 be the explosion time of J(t). Then

0 < τ1 ≤ τ0.

In order to complete this proof it suffices to prove that τ1 = ∞, and this is what
we shall prove.

We calculate the differential of J(t).

dJ(t) = LJ(t)dt+
[
− 1

S(t)

(
− ξS(t)I(t)dW

)]
− 1

I(t)

[
ξS(t)I(t)dW

]
+
(

1− 1

B(t)

)[
ζBdY

]
.

By the martingale property it follows that

E
[ ∫ t

0

( 1

S(z)
− 1

I(z)

)
ξS(z)I(t)dW (z)

]
= 0 (a.s.),

and

E
[ ∫ t

0

(
1− 1

B(z)

)
ζB(z)dY (z)

]
= 0 (a.s.).

Therefore

E
[
J(t)

]
= E

[ ∫ t

0

LJ(z)dz
]

(a.s.).

Now

LJ(t) = − 1

S(t)

[
Λ− βcS(t)

B

K +B
− βhS(t)I(t)− µS(t) + ηR(t)

]
− 1

I(t)

[
(βcS(t)

B

K +B
+ βhS(t)I(t)− (α+ µ+ ε)I(t)

]
− 1

R(t)

[
αI(t)− (η + µ)R(t)

]
+
(

1− 1

B(t)

)[
σI(t)− ωB(t)

]
+

1

2S2(t)

[
(ξS(t)I(t))2

]
+

1

2I2(t)

[
(ξS(t)I(t))2

]
+

1

2B2(t)

[
(ζB(t))2

]
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and so,

LJ ≤ 1

S

[ βcBS
K +B

+ βhSI
]

+
1

I
(µ1I) +

1

R

[
(η + µ)R

]
+ σI +

1

B

[
ωB
]

+
ξ2

2
(I2 + S2) +

ζ2

2

≤ βc + βhI − µ1 + (η + µ) + σI + ω +
ξ2

2

(
I2 + S2

)
+ ζ2/2

≤ M,

where M = βc + βh
Λ
µ + µ1 + (η + µ) + σΛ

µ + ω + ξ2
(

Λ2

µ2

)
+ ζ2/2. Therefore the

Lyapunov argument will produce a proof of Theorem 3.2. �

Remark 3.3. In the analysis we shall encounter the following function (given
constants g > 0 and non-negative ζ, ξ) for a variable x.

h(S, x) = ξ2S2x+
ζ2

g2

(1− x)2

x
, 0 < x ≤ 1.

Then we take the partial derivative of h with respect to x and note that it vanishes
when

x =
ζ

g

[(ζ
g

)2

+ S2ξ2
]− 1

2

=: x∗.

Hence we conclude that h(S, x) ≥ h(S, x∗) for all 0 < x ≤ 1. From this we can
derive the inequality:

h(S, x) ≥ S2k with k = ξ2 ζ

g

[(ζ
g

)2

+

(
Λξ

µ

)2]− 1
2

. (4)

4. Stability of the disease-free equilibrium. 4.1 Notation. For a stochastic
process {x(t)} we write

〈x〉t =
1

t

∫ t

0

x(z)dz.

For a positive number g, we define the stochastic processes {u(t)} and {v(t)} as
follows:

u(t) = I(t) + gB(t),

and when u(t) > 0, we let v(t) = lnu(t). (5)

In particular, we are interested in the Lyapunov exponent Γ of u, assuming u(t) > 0
for all t > 0, which is defined as

Γ = lim sup
t→∞

1

t
lnu(t). (6)

We calculate Lv(t).

Lv =
1

u

[
βcS

B

K +B
+ βhSI − (α+µ+ ε)I + g(σI −ωB)

]
− 1

2u2

[
(ξSI)2 + g2ζ2B2

]
Then we can write

Lv = A1
I

u
+A2

B

u
− E, (7)

where
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A1 = βhS − µ1 + gσ [with µ1 = µ+ α+ ε, recall equation (3)],
A2 = βc

S
K+B − gω,

and
E = 1

2u2 [(ξSI)2 + g2ζ2B2].

Proposition 4.2. For u and v as above,

lim sup
t→∞

(1

t
v(t)

)
= lim sup

t→∞
〈Lv〉t (a.s.).

Proof. By Itô’s lemma

v(t) = v(0) +

∫ t

0

Lv(z)dz +

∫ t

0

1

u(z)
ξS(z)I(z)dW (z) +

∫ t

0

g

u(z)
ζB(z)dY (z).

Now we note that(ξSI
u

)2

≤
(ξSI
I

)2

= (ξS)2 ≤ ξΛ2

µ2
and

(ζgB
u

)2

≤ ζ2.

Thus by the strong law of large numbers, see [5] for instance, it follows that

lim sup
t→∞

1

t

∫ t

0

1

u(z)
ξS(z)I(z)dW (z) = 0 (a.s.).

and

lim sup
t→∞

1

t

∫ t

0

g

u(z)
ζB(z)dY (z) = 0 (a.s.).

Also

lim
t→∞

v(0)

t
= 0.

This concludes the proof. �

4.3 Notation. Similarly as in [24] for instance, we can find a special sequence (tn)
which is an increasing unbounded sequence of positive numbers such that

Γ = lim
tn→∞

1

tn
lnu(tn),

and the following limits exist:

i := lim
n→∞

〈 I
u

〉
tn

; b := lim
n→∞

〈B
u

〉
tn
.

The identity below, follows immediately:

i+ gb = 1. (8)

We introduce the following invariant of the model (2), related to the basic repro-
duction number of the underlying deterministic model:

R∗ = R0 ×
µ1

µ1 + kΛ2

2µ2

=
Λ[βcσ + ωβhK]

µωK
(
µ1 + kΛ2

2µ2

) . (9)

We note that R∗ ≤ R0. Stochastic stability analysis described in terms of an
invariant which is smaller than the basic reproduction number of the disease-free
equilibrium can be observed in, for instance, [6, 10, 24, 8]. In our stability theorem
we utilize R∗.
Theorem 4.4. If R∗ < 1 and Λ/µ ≤ βh/k, then:
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(a) (I,B) converges exponentially to 0 almost surely,
(b) lim

t→∞
S(t) = Λ/µ almost surely.

Proof. (a) The inequality R∗ < 1 implies that

Λ[βcσ + βhωK]− µωK
(
µ1 +

kΛ2

2µ2

)
< 0. (10)

We can find z such that 0 < z < 1 and

Λ[βcσ + ωβhK]− (1− z)µωK
(
µ1 +

kΛ2

2µ2

)
< 0. (11)

Let us fix the following constant, g:

g =
βcΛ

(1− z)µωK
.

Now we introduce u = I + gB and v = lnu as from Notation 4.1. By Proposition
4.2 it suffices to prove that

lim sup
t→∞

[1

t

∫ t

0

Lv(τ)dτ
]
< 0 (a.s.), i.e., Γ < 0 (a.s.).

We turn to equation (7). Note that u = I + gB, and in particular, Bu = 1
g

(
1− I

u

)
.

So if we write y = I
u , then E becomes:

E =
1

2

[
ξ2S2y2 +

ζ2

g2
(1− y)2

]
=

1

2
h(S, y)y ≥ k

2
S2 I

u
.

Thus we have

Lv = A1
I

u
+A2

B

u
− E (a.s.)

=
[
βhS + gσ − µ1

] I
u

+
[
βc

S

K +B
− gω

]B
u
− E

≤
[
βhS −

1

2
kS2 + gσ − µ1

] I
u

+
[
βc

S

K +B
− gω

]B
u
.

Note that the quadratic expression βhx− 1
2kx

2 represents an increasing function on
the interval 0 ≤ x ≤ β/k. Since 0 ≤ S ≤ Λ/µ, and (by assumption) Λ/µ ≤ β/k,
the following inequality holds,

βhS −
1

2
kS2 ≤ βh

Λ

µ
− 1

2
k

Λ2

µ2
.

Now we find that Lv satisfies the inequality

Lv ≤ D1
I

u
+D2

B

u
(a.s.),

with

D1 = βh
Λ

µ
+

βcΛσ

(1− z)µωK
− µ1 −

kΛ2

2µ2
.

and

D2 = βc
S

K +B
− gω.

Note that
D1 ≤ G0G1,

where
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G0 =
1

(1− z)µωK
and G1 = Λ[βcσ + ωβhK]− (1− z)µωK

(
µ1 +

kΛ2

2µ2

)
.

In view of equation (11) we have G1 < 0 and hence D1 < 0 . We further note that,

D2 ≤ βc
Λ

µK
− gω = −βcΛ

µK

z

1− z
< 0.

Therefore,

Γ ≤ D1i+D2b.

From equation (8) we know that i+ gb = 1, and therefore we cannot have both of i
and b to be zero. Thus we can conclude that Γ < 0 (a.s.). This concludes the proof
of Theorem 4.4(a).
(b) Let us write S(t) + I(t) = Z(t). Then the stochastic process Z(t, ω) happens
to be differentiable and we have:

dZ(t)

dt
= Λ− µZ(t)− (α+ ε)I(t). (12)

We consider two cases, Case (i) and its complement, Case (ii). Case (i) covers
the sample paths for which Z(t) is eventually a monotone function, i.e., eventually
either non-decreasing or eventually non-increasing.
Case (i): Let us assume that there exists a finite stopping time τ > 0 such that on
the interval [τ,∞), Z(t) is monotone. Then since Z(t) is bounded above (by Λ/µ)
(a.s.) and below by 0 (a.s.), the function Z(t) has a limit Z∗, and lim

t→∞
Z ′(t) = 0

(a.s.). Since by Theorem 4.4(a) we have lim
t→∞

I(t) = 0 (a.s.), from equation (12) it

follows that lim
t→∞

S(t) = Λ/µ (a.s.).

Case (ii): This time we consider the complementary case to Case (i). Let m0 =
lim inf
t→∞

Z(t) and let m1 = 1
2

(
m0 + Λ

µ

)
. We note that m0 is stochastic, and therefore

so is m1. Firstly, (a.s.) there exists an unbounded sequence (τn)∞n=1 of positive
numbers τn which are such that I(t) < 1

n whenever t ≥ τn. Secondly, there exists a
sequence (tn)∞n=1 of positive numbers such that for every n ∈ N:
Z ′(tn) < 0, tn ≥ τn and Z(tn) ≤ m1 (a.s.).

Now since dZ
dt

∣∣
tn
< 0 and dZ(t)

dt is continuous, there exist a number qn > 0 such

that dZ(t)
dt is negative over the interval En = [tn, tn + qn], (a.s.). Next, there exists

t∗n ∈ En, such that ∫
En

(Λ− µZ)dt = [Λ− µZ(t∗n)]qn (a.s.).

In particular then, Z(t∗n) ≤ m1 and consequently∫
En

(Λ− µZ(t))dt ≥ (Λ− µm1)qn (a.s.).

Now for every n ∈ N we have:
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0 > Z(tn + qn)− Z(tn)

=

∫
En

Z(t)dt

=

∫
En

(Λ− µZ(t))dt−
∫
En

(α+ ε)I(t)dt

≥ (Λ− µm1)qn − (α+ ε)
1

n
qn (a.s.).

Therefore, (a.s.) Λ− µm1 ≤ α+ε
n for all n ∈ N. Consequently Λ− µm1 ≤ 0, i.e.,

m1 ≥ Λ
µ (a.s.). Since lim

n→∞
I(t) = 0 (a.s.), again it follows that lim

n→∞
S(t) =

Λ

µ
(a.s.). �

The theorem shows that the stochastic perturbation allows for improved stability
of the disease-free equilibrium, beyond the range R0 < 1. In particular, the disease-
free equilibrium is stable (a.s.) when R0 = 1.

5. Calibration of the deterministic model. As an application in this paper,
we consider the state of Adamawa in Nigeria, and we focus on the 2019 cholera
outbreak. However, where information on Adamawa itself is not readily available,
we shall approximate by using the relevant Nigeria information.

Life expectancy in Nigeria during 2015 was 54.49, see Nigeria Life Expectancy
1950-2020 [17]. Then we take µ to be the reciprocal of the life expectancy, and so we
have µ = 0.0003548 per week. From [2] we have the population size for Adamawa
State in 2019 to be 4 890 000, and this we take as the value of P . We assign to Λ
the value Λ = µ× P.

We obtain a value ε = 0.0149 per day from the case fatality rate, CFR=836/43996,
in the Adamawa cholera outbreak of 2019 [16], while we note that the duration of
the infection is taken as 1 week. Duration 1 week implies α = 1. From [22] we
obtain ω = 1.06− 0.73 = 0.33 per day. The parameter ω can be taken as ω = 0.33
per day, following [7] (see also [12], [15]).
Remark 5.1. The units in which we measure B, determines the units of K. When
the value of K is known, then the units in which B (and consequently also K) is
measured, can be changed so as to have the numerical value of K being unity. Thus
in our application, with the detail of the units of B not being known and not quite
directly relevant, we find it appropriate to omit units and choose K = 1. A similar
approach has been followed in [27].

We use data on Nigeria cholera statistics to calculate equilibrium values for the
human compartments. From [1], we can calculate the average number C of cases
per week. On the graph of annual cases, for years 1990 up to 2013 we regard the
counts higher than 15000 as major outbreaks, and we do not include them towards
calculating the equilibrium number of cases. For the remaining 19 years it gives
an annual average of 4395 cases, and thus an average of 84 cases per week over
the period 1990 -2013 for Nigeria. We downscale this to Adamawa, and adjust to
allow for population growth to get an average number C of weekly infections for
Adamawa, at C = 2 (per week). Let D be the average number of cholera fatalities
per week. At this point we can calculate numerical endemic equilibrium values for
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the classes S, I and R by using the equations:

D = εC/α, I∗ = D/ε, µR∗ = αI∗ and S∗ + I∗ +R∗ = P − εI∗/µ.
In our simulations we do not specify the exact units in which B is measured. The
understanding is that a change of units amounts to a (constant) proportionality.
The exact value of such a constant is, for our purposes, immaterial. Thus we
assume B to be measured in an undisclosed unit. We need to make an assumption
about how the reservoir contributes to new infections. Let us assume that when at
endemic equilibrium state, then the reservoir produces 50% of the new infections.
That is,

βcS
∗B∗

1

K +B∗
= C/2.

In terms of the units of B, we can obtain a good estimate of βc as: βc = 2K/KP =

2/P . Then B∗ can be calculated from the identity βcS
∗ B∗

K+B∗ = C/2. We obtain

βc = 4.095 × 10−7 per unit of B per week. Since, quite coincidentally, C/2 = 1,
it follows that B∗ = 1. Now we can calculate numerical values for the endemic
equilibrium state.

S∗ = 4884200, I∗ = 2, R∗ = 5735, B∗ = 1.

Finally we can calculate the remaining parameters. From the equation βhS
∗I∗ =

C/2 we obtain βh = 1.024× 10−7 per week. Also, σ = ωB∗/I∗ = 1.155. The basic
reproduction number is R0 = 1.479.

Table 1. Numerical values of model parameters for Adamawa State, Nigeria, 2019.

Param. Description Numerical Reference/

value comment

P Population size when disease-
free

4 890 000 [18],[19]

µ mortality rate, excluding
death directly due to cholera

0.0003548 per week [2]

Λ rate of inflow 1.735 per week Λ = µP
ε rate of human deaths due to

cholera
0.0149 per week [16]

α Transfer rate from I-class to
R-class (recovery rate)

1 per week [22]

ω Removal rate of pathogen
from the environment

0.33× 7 per week [7] [12] [15]

βc a contact rate 4.095× 10−7 per week Fitted
βh a contact rate 1.024× 10−7 per week Fitted

per unit of B
K A threshold value of B 1 Remark 5.1
σ rate of increase of the levels

of the pathogen
1.155 per week Fitted.

6. Simulations. We show the results of three sets of simulations on the model
as calibrated for Adamawa Province of Nigeria. Time on the horizontal axis is in
weeks. The symbol t0 will denote the time beginning of the 2019 cholera outbreak,
which is the start of the 19th week of the calender year 2019. Note that when
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simulating the stochastic model, the intensities of the perturbations will always be
taken as

ξ = 1/4890000 and ζ = 1/10 .

6.1. For the outbreak which is documented in the Situation Report prepared by
the Nigeria Centre for Disease Control (NCDC) [16], one can determine the epi-
demiological state of the population at the end of the outbreak period, by utilising
the model in an indirect way. A similar computation was done for a listeriosis out-
break [27]. At the beginning of the outbreak we assume the population to be at the
endemic equilibrium state.

We assume that X(t0) = X∗. Let t2 be a date which is 26 weeks after t0, So that
[t0, t2] represents the outbreak interval over Adamawa under consideration. Then
we compute the evolution of the system over the time interval [t0, t2] by inputting
the case data into the model. The relevant parameter values are as in Table 1. The
results are shown in Figure 1. The terminal values of the state variables, X(t2) are
as follows

S(t2) = 4889200, I(t2) = 4.8, R(t2) = 6481, B(t2) = 2.9186.

From the graph we observe that I reaches a maximal value at time t1 = 13. The
state of the system at time t1 is computed as

S(t1) = 4889500, I(t1) = 69.7, R(t1) = 6168, B(t1) = 3.306.

6.2. We show how the system evolves back in the direction of equilibrium. For the
stochastic model we ran 999 sample paths. For each t in the interval [t1, t2], we
calculate the mean value Imn(t) of the 999 I(t)-values and the mean Bmn(t) of the
999 B(t)-values. We also determine the 10’th and 90’th percentiles, respectively
Iten(t) and Inty(t). In this case the Imn(t) values are very close to the deterministic
model’s I(t) values and we omit the deterministic graphs. Figure 2 shows Imn(t)
and Bmn(t) over the interval [13, 43]. For this simulation the system is assumed
to evolve on its own, without external interference. Simulations similar to Figure
2 and Figure 3 appear in the paper [26]. In Figure 3 we have Imn(t), Iten(t) and
Inty(t) over an interval of length 20 weeks, starting at the date t2.
6.3. We illustrate that for the stochastic model, the disease-free equilibrium can
be (almost surely exponentially) stable even in cases when the basic reproduction
number of the underlying deterministic model exceeds unity. Consider the param-
eterization as in Table 1 except that we reduce the values of βc and βh by a factor
1.45 . This yields R0 = 1.020. Now taking

ξ = 1.25/4890000 and ζ = 0.125

we obtain

R∗ = 0.905.

This means that for the deterministic model, the disease-free equilibrium will be
unstable, but by Theorem 4.4, for the stochastic model the disease-free equilibrium
will be almost surely exponentially stable. This is indeed a welcome observation,
the fact that the stochasticity enhances extinction of cholera. In order to make this
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phenomenon more visible, we run a simulation in which we use parameter values as
in Table 1 except that we reduce the values of each of βc and βh by a factor 1.45,
see Figure 4. Here, we notice that for the deterministic model, the I-values seem
to converge to a positive endemic value, while even the 90th percentile (as well as
the mean) of the stochastic I(t) over 1000 runs, seem to converge to zero.

7. Conclusion. A fairly simple, yet versatile deterministic model of cholera pop-
ulation dynamics was modified by imposing stochastic perturbation on it. The
solutions were shown to be positive and suitably bounded. An extinction theorem
for the pathogen in the population was proved in terms of an analogue of the basic
reproduction number. We presented the 2019 cholera outbreak in the Adamawa
Province of Nigeria as a case study. We showed that extinction was easier to obtain
in the presence of the stochastic perturbations in comparison with the underlying
deterministic model. The model was calibrated through methods that are rather
novel (as was also done in [27]). The extinction results and the demonstrated phe-
nomena and processes, such as working through the outbreak period like we did
in the computation 6.1, can readily be applied in real life situations. Future in-
vestigations in this regard may be devoted to the study of interventions such as
vaccination, and optimal control of a stochastic model.
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that was used are freely accessible and clearly indicated in the references.
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Figure 1. The classes I(t) and B(t) in the deterministic model
as calculated from the data over the outbreak period [t0, t2].
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Figure 2. Evolution of the I(t) as calculated the stochastic
model from the data over the post-outbreak period [t1, t2]. The
date t1 which is 13 weeks later than t0, corresponds to t = 0.
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Figure 3. Evolution of the I(t) as calculated for the stochastic
model from the data over the post-outbreak period [t2, t2 + 30].

REFERENCES

[1] CHOLERA EPIDEMIOLOGY AND RESPONSE FACTSHEET NIGERIA at https://

www.unicef.org/cholera/files/UNICEF-Factsheet-Nigeria-EN-FINAL.pdf (Accessed April

2020).

[2] City Population, 2020. Accessed from:https://citypopulation.de/php/nigeria-admin.php?
adm1id=NGA002.

[3] M. M. Dalhat, N. A. Isa, P. Nguku, S. G. Nasir, K. Urban, M. Abdulaziz, R. S. Dankoli,

P. Nsubuga and G. Poggensee, Descriptive characterization of the 2010 cholera outbreak in
Nigeria, BMC Public Health, 14 (2014).

[4] C. C. Dan-Nwafor, U. Ogbonna and P. Onyiah et al, A cholera outbreak in a rural north

central Nigerian community: An unmatched case-control study, BMC Public Health, 19
(2019).

[5] W. Feller, An Introduction to Probability Theory and its Applications, Volume II. John Wiley

and Sons, Inc. New York, 1966.
[6] A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS

epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902.

https://www.unicef.org/cholera/files/UNICEF-Factsheet-Nigeria-EN-FINAL.pdf
https://www.unicef.org/cholera/files/UNICEF-Factsheet-Nigeria-EN-FINAL.pdf
https://citypopulation.de/php/nigeria-admin.php?adm1id=NGA002
https://citypopulation.de/php/nigeria-admin.php?adm1id=NGA002
http://dx.doi.org/10.1186/1471-2458-14-1167
http://dx.doi.org/10.1186/1471-2458-14-1167
http://dx.doi.org/10.1186/s12889-018-6299-3
http://dx.doi.org/10.1186/s12889-018-6299-3
http://www.ams.org/mathscinet-getitem?mr=MR0210154&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2821582&return=pdf
http://dx.doi.org/10.1137/10081856X
http://dx.doi.org/10.1137/10081856X


CHOLERA STOCHASTIC MODEL 455

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Time in weeks

Co
mp

art
me

nt 
siz

e

 

 

Idet

Imn

Inty

Figure 4. Evolution of the model over the post-outbreak period
[t2, t2 + 78]. We show the deterministic I(t), and for the

stochastic model the mean, tenth and ninetieth percentiles.

[7] D. M. Hartley, J. G. Morris Jr and D. L. Smith, Hyperinfectivity: A critical element in the

ability of V. cholerae to cause epidemics?, PLOS Medicine, 3 (2005).
[8] K. Hattaf, M. Mahrouf, J. Adnani and N. Yousfi, Qualitative analysis of a stochastic epidemic

model with specific functional response and temporary immunity, Physica A: Statistical Me-

chanics and its Applications, 490 (2018), 591–600.
[9] D. J. Higham, Stochastic ordinary differential equations in applied and computational math-

ematics, IMA J. Appl. Math., 76 (2011), 449–474.
[10] A. Lahrouz, L. Omari and D. Kiouach, Global analysis of a deterministic and stochastic

nonlinear SIRS epidemic model, Nonlinear Anal. Model. Control , 16 (2011), 59–76.

[11] T. O. Lawoyin, N. A. Ogunbodede, E. A. A. Olumide and M. O. Onadeko, Outbreak of
cholera in Ibadan, Nigeria, European J. Epidemiology, 15 (1999).

[12] G. Kolaye et al. Mathematical assessment of the role of environmental factors on the dynamical

transmission of cholera, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 203–222.
[13] Q. Liu, D. Jiang, T. Hayat and A. Alsaedi, Dynamical behavior of a stochastic epidemic

model for cholera, J. Franklin Inst., 356 (2019), 7486–7514.

[14] Y. M. Marwa, I. S. Mbalawata, S. Mwalili and W. M. Charles, Stochastic dynamics of cholera
epidemic model: Formulation, analysis and numerical simulation, J. Appl. Math. Physics, 7
(2019), 1097–1125.

[15] V. A. Meszaros, M. Miller-Dickson, F. Baffour-Awuah Jr, S. Almagro-Moreno and C.B. Og-
bunugafor, Direct transmission via households informs models of disease and intervention

dynamics in cholera, PLoS ONE , 15 (2020).

[16] National Monthly Update for Cholera in Nigeria: NCDC Situation, Report
(October, 2019), 01 November 2019, https://reliefweb.int/report/nigeria/

national-monthly-update-cholera-nigeria-ncdc-situation-report-october-2019,
(Accessed January 2020).

[17] Nigeria life expectancy (2020), 1950-2020, Accessed from: https://www.macrotrends.net/

countries/NGA/nigeria/life-expectancy.
[18] Nigeria - Regional Cholera Platform. https://plateformecholera.info/index.php/

country-monitoring/nigeria (Accessed January 2020).
[19] Nigeria Demographics. https://www.worldometers.info/demographics/

nigeria-demographics/#life-exp (Accessed January 2020).
[20] M. Pascual, M. Bouma, A. King and E. L. Ionides, Inapparent infections and cholera dynam-

ics, Nature, 454 (2008).
[21] R. Piarroux and B. Faucher, Cholera epidemics in 2010: Respective roles of environment,

strain changes, and human-driven dissemination, Clin Microbiol Infect , 18 (2012), 231–238.

http://dx.doi.org/10.1371/journal.pmed.0030007
http://dx.doi.org/10.1371/journal.pmed.0030007
http://www.ams.org/mathscinet-getitem?mr=MR3716389&return=pdf
http://dx.doi.org/10.1016/j.physa.2017.08.043
http://dx.doi.org/10.1016/j.physa.2017.08.043
http://www.ams.org/mathscinet-getitem?mr=MR2806005&return=pdf
http://dx.doi.org/10.1093/imamat/hxr016
http://dx.doi.org/10.1093/imamat/hxr016
http://www.ams.org/mathscinet-getitem?mr=MR2885695&return=pdf
http://dx.doi.org/10.15388/NA.16.1.14115
http://dx.doi.org/10.15388/NA.16.1.14115
http://www.ams.org/mathscinet-getitem?mr=MR3854258&return=pdf
http://dx.doi.org/10.1016/j.cnsns.2018.06.023
http://dx.doi.org/10.1016/j.cnsns.2018.06.023
http://www.ams.org/mathscinet-getitem?mr=MR3991521&return=pdf
http://dx.doi.org/10.1016/j.jfranklin.2018.11.056
http://dx.doi.org/10.1016/j.jfranklin.2018.11.056
http://dx.doi.org/10.4236/jamp.2019.75074
http://dx.doi.org/10.4236/jamp.2019.75074
http://dx.doi.org/10.1371/journal.pone.0229837
http://dx.doi.org/10.1371/journal.pone.0229837
https://reliefweb.int/report/nigeria/national-monthly-update-cholera-nigeria-ncdc-situation-report-october-2019
https://reliefweb.int/report/nigeria/national-monthly-update-cholera-nigeria-ncdc-situation-report-october-2019
https://www.macrotrends.net/countries/NGA/nigeria/life-expectancy
https://www.macrotrends.net/countries/NGA/nigeria/life-expectancy
https://plateformecholera.info/index.php/country-monitoring/nigeria
https://plateformecholera.info/index.php/country-monitoring/nigeria
https://www.worldometers.info/demographics/nigeria-demographics/#life-exp
https://www.worldometers.info/demographics/nigeria-demographics/#life-exp
http://dx.doi.org/10.1111/j.1469-0691.2012.03763.x
http://dx.doi.org/10.1111/j.1469-0691.2012.03763.x


456 WITBOOI, MULLER, ONGANSIE, AHMED AND OKOSUN

[22] T. Shelton, E. K. Groves and S. Adrian, A Model of the transmission of cholera in a population
with contaminated water, CODEE Journal , 12 (2019), Available at: https://scholarship.

claremont.edu/codee/vol12/iss1/5.

[23] J. Wang and C. Modnak, Modeling cholera dynamics with controls, Can. Appl. Math. Q., 19
(2011), 255–273.

[24] P. J. Witbooi, An SEIRS epidemic model with stochastic transmission, Adv. Difference Equ.,
2017 (2017), 16pp.

[25] P. J. Witbooi, Stability of a stochastic model of an SIR epidemic with vaccination, Acta

Biotheoretica, 65 (2017), 151–165.
[26] P. J. Witbooi, G. J. Abiodun, G. J. van Schalkwyk and I. H. I. Ahmed, Stochastic modeling

of a mosquito-borne disease, Adv. Difference Equ., 2020 (2020), 15pp.

[27] P. J. Witbooi, C. Africa, A. Christoffels and I. H. I. Ahmed, (2020). A population model for
the 2017/18 listeriosis outbreak in South Africa, PLoS ONE , 15 (2020).

[28] World Health Organization Cholera, WHO Fact sheet No 107, 2008, Available: http://www.

who.int/mediacentre/factsheets/fs107/en/index.html. (Accessed January 2020).
[29] World Health Organization, Global task force on cholera control, Weekly Epidemiological

Record. Cholera Articles: WHO, 85 (2010), 293–308.

[30] X. Zhang and H. Peng, Stationary distribution of a stochastic cholera epidemic model with
vaccination under regime switching, Appl. Math. Lett., 102 (2020), 7pp.

Received October 2020; 1st revision August 2021; final revision September 2021;
early access November 2021.

E-mail address: pwitbooi@uwc.ac.za

E-mail address: gemuller@uwc.ac.za

E-mail address: mongansie@uwc.ac.za

E-mail address: iahmed@uwc.ac.za

E-mail address: kazeemo@ku.edu

http://dx.doi.org/10.5642/codee.201912.01.05
http://dx.doi.org/10.5642/codee.201912.01.05
https://scholarship.claremont.edu/codee/vol12/iss1/5
https://scholarship.claremont.edu/codee/vol12/iss1/5
http://www.ams.org/mathscinet-getitem?mr=MR2952101&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3634070&return=pdf
http://dx.doi.org/10.1186/s13662-017-1166-6
http://www.ams.org/mathscinet-getitem?mr=MR4122147&return=pdf
http://dx.doi.org/10.1186/s13662-020-02803-w
http://dx.doi.org/10.1186/s13662-020-02803-w
http://dx.doi.org/10.1371/journal.pone.0229901
http://dx.doi.org/10.1371/journal.pone.0229901
http://www.who.int/mediacentre/factsheets/fs107/en/index.html
http://www.who.int/mediacentre/factsheets/fs107/en/index.html
http://www.ams.org/mathscinet-getitem?mr=MR4028711&return=pdf
http://dx.doi.org/10.1016/j.aml.2019.106095
http://dx.doi.org/10.1016/j.aml.2019.106095
mailto:pwitbooi@uwc.ac.za
mailto:gemuller@uwc.ac.za
mailto:mongansie@uwc.ac.za
mailto:iahmed@uwc.ac.za
mailto:kazeemo@ku.edu

	1. Introduction
	2. A deterministic cholera model
	3. A stochastic cholera model
	4. Stability of the disease-free equilibrium
	5. Calibration of the deterministic model
	6. Simulations
	7. Conclusion
	Acknowledgments
	REFERENCES

