
1.  Introduction
Study of the Epoch of Reionization (EoR) through detection and observation of the 21-cm emission line from 
neutral hydrogen will provide critical insights into the formation of the earliest structures of the universe and help 
inform understanding of the underlying physics behind galaxy formation and the intergalactic medium (Furlan-
etto et al., 2006; Morales & Wyithe, 2010; Pritchard & Loeb, 2012). There are currently several interferometric 
arrays working to detect the 21 cm signal, including the Precision Array for Probing the Epoch of Reionization 

Abstract  We present a framework for identifying and flagging malfunctioning antennas in large radio 
interferometers. We outline two distinct categories of metrics designed to detect outliers along known failure 
modes of large arrays: cross-correlation metrics, based on all antenna pairs, and auto-correlation metrics, based 
solely on individual antennas. We define and motivate the statistical framework for all metrics used, and present 
tailored visualizations that aid us in clearly identifying new and existing systematics. We implement these 
techniques using data from 105 antennas in the Hydrogen Epoch of Reionization Array (HERA) as a case study. 
Finally, we provide a detailed algorithm for implementing these metrics as flagging tools on real data sets.
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(PAPER; Parsons et al., 2010), the Giant Metrewave Radio Telescope (GMRT; Paciga et al., 2011), the Murchison 
Widefield Array (MWA; Tingay et al., 2013), the LOw Frequency ARray (LOFAR; van Haarlem et al., 2013), 
and the Canadian Hydrogen Intensity Mapping Experiment (CHIME; Newburgh et  al.,  2014), the Hydrogen 
Epoch of Reionization Array (HERA; DeBoer et al., 2017), and the Large-Aperture Experiment to Detect the 
Dark Age (LEDA; Price et al., 2018). In addition, there are exciting new experiments on the horizon, including 
the upcoming Square Kilometer Array (SKA; Mellema et al., 2013) and the upcoming Hydrogen Intensity and 
Real-time Analysis eXperiment (HIRAX; Saliwanchik et al., 2021).

The 21 cm fluctuation signal is very faint; typical models forecast signal amplitudes in the tens of millikelvin, 
making the signal four to five orders of magnitude fainter than the bright radio foregrounds (Bernardi et al., 2010; 
Santos et al., 2005). Attempts to measure the power spectrum using radio interferometers must therefore be ex-
ecuted with high sensitivity and precision analysis techniques in order to realistically achieve a detection (Liu & 
Shaw, 2020). Achieving sufficient sensitivity requires an interferometer with a large number of antennas observ-
ing for months, which introduces a high level of complexity to the system. Therefore, the need for high sensitivity 
and precision results in thousands of interconnected subsystems that must be commissioned by a relatively small 
number of people, which poses a significant challenge. Additionally, due to the faintness of the signal, low level 
systematics that might be deemed negligible in other astronomical applications can have the potential to leak into 
the power spectrum and obscure the 21 cm signal. Therefore, systematics must either be resolved, methodically 
avoided, or directly removed in order to achieve sufficiently clean data. Some examples of contaminants com-
mon in these types of interferometers include adverse primary beam effects (Beardsley et al., 2016a; Chokshi 
et al., 2021; Ewall-Wice, Bradley, et al., 2016; Fagnoni et al., 2020; Joseph et al., 2019), internal reflections (Ew-
all-Wice, Bradley, et al., 2016; Beardsley et al., 2016b; Kern et al., 2019; Kern, Parsons, et al., 2020; Kern, Dillon, 
et al., 2020), radio frequency interference (RFI; Whitler et al., 2019; Wilensky et al., 2020), and any analog or 
digital systematics resulting from the specific design and configuration of the array and its component electronics 
(Benkevitch et al., 2016; de Gasperin et al., 2019; Star, 2020).

In this work we focus on any systematics arising from a malfunction in an individual antenna, component, or sub-
system, using data from HERA as a case study to implement and test our methods. While there are some system-
atics we can avoid using clever analysis techniques (see Kern, Parsons, et al., 2020 for example), we manage most 
systematics by directly removing the affected antennas from the raw data. This requires us to identify and flag 
any data exhibiting a known malfunction and develop methodologies for catching new or previously unidentified 
systematic effects. While the primary goal of flagging data is to produce the cleanest possible data for analysis, it 
has the added benefit of providing information regarding the scope and character of prevalent issues to the com-
missioning team, which is essential to our ultimate goal of finding and resolving the source of the problem. The 
purpose of this work is to outline a framework for identifying and flagging malfunctioning antennas.

While manual inspection of all data would likely be an effective approach to antenna flagging, for large-N inter-
ferometers the data volume poses a problem to this approach. For example, when completed HERA will have 350 
individual dishes each with a dual-polarization signal chain including several analog and digital subcomponents. 
Even just for the 105 elements included in the data used here, manual flagging would involve assessing 22,155 
baselines, each of which has 1024 frequency bins and thousands of time integrations. Therefore, the hands-on 
time involved is neither practical nor reproducible, and so an automated approach is preferred.

In this paper, we present an automated approach to antenna quality assessment and flagging. Our approach is to 
design a set of statistical metrics based on common failure modes of the interferometric instruments. We also 
optimize the metrics to use a limited fraction of the data so they are usable in a real time pipeline. We break 
these metrics into two categories: cross-correlation metrics (per-antenna values calculated using all baselines) 
and auto-correlation metrics (per-antenna values calculated using only the autocorrelations). For the duration of 
this paper we define cross-correlations as correlations between two different antennas and autocorrelations as the 
correlation of an antenna with itself. These two methods have complementary advantages. The cross-correlation 
metrics require a larger data volume, but give us insight into the performance of the whole array and all com-
ponent subsystems, whereas the auto-correlation metrics are optimized to use a small amount of data, and help 
assess functionality of individual array components. We outline how each of our metrics is designed to catch one 
or more known failure modes in the smallest amount of data possible and validate that the automation procedure 
flags these failures effectively. We also use tools such as simulated noise and comparisons with manual flags to 
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aid in validating our procedure. While these metrics were designed based on HERA data, it is important to note 
that both the approach and the metrics themselves are applicable to any large interferometric array.

The HERA data used in this paper were collected on 29 September 2020 (JD 2459 122) when there were 105 
antennas online, shown graphically in Figure 1. Note that this data is from the second phase of the HERA array, 
which uses Vivaldi feeds rather than dipoles, along with other changes, and differs significantly from the phase 
one data analyzed in HERA Collaboration et al. (2021). The HERA receivers are distributed throughout the array 
in nodes which contain modules for post-amplification, filtering, analog to digital conversion, and a frequency 
Fourier transform. Each node serves up to 12 antennas. Node clocks are synchronized by a White Rabbit timing 
network (Moreira et al., 2009). Figure 1 illustrates the node architecture overlain with antenna cataloging devel-
oped in this paper. These flags were produced using almost 10 hours of data from this night. The high fraction 
of malfunctioning antennas was partly attributable to limited site access due to the COVID-19 pandemic. HERA 
has no moving parts and performs a drift scan observation of ∼10° patch around zenith. The portion of the sky 
observed on JD 2459 122 is shown overlaid on the radio sky in Figure 2.

This paper is organized as follows. In Section 2, we outline the two cross-correlation metrics, providing details of 
their calculation and a demonstration of their utility. We also examine the distribution of the primary cross-cor-
relation metric across the array and investigate whether systematics are affecting its statistics. In Section 3, we 
introduce four auto-correlation metrics, explaining their necessity, describing their precise statistical formulation, 
and giving examples of typical and atypical antennas. Finally, in Section 4 we summarize our methods and results.

Figure 1.  Array layout and antenna quality statuses on 29 September, 2020 (JD 2459122) as determined by the algorithms laid out in Sections 2 and 3. In HERA, each 
antenna is connected to a node, which contains amplifiers, digitizers, and the F-engine. Node connections are denoted here by solid black lines. Most of the elements 
are in the Southwest sector of the split-hexagonal array configuration, with a few in the Northwest and East sectors (DeBoer et al., 2017; Dillon & Parsons, 2016). Only 
actively instrumented antennas are drawn; many more dishes had been built by this point.
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2.  Cross-Correlation Metrics
Flagging of misbehaving antennas is necessary in preventing them from impacting calibration, imaging, or power 
spectrum calculation steps. Here, we define a misbehavior to be any feature which makes an antenna unusual 
when compared to others. In practical terms, the pathologies of antenna malfunction are not limited to the signal 
chain at the antenna, but could manifest anywhere in the system up to the output of the correlator. Depending on 
where along the signal chain the pathology lies, we might see evidence of it in either the autocorrelations, or the 
cross-correlations, or both. For example, if an antenna's timing was out of sync with another's, its autocorrelations 
might look fine, but its cross-correlations would highlight this systematic. In particular, as an interferometric 
array grows in size, it is vital to track the health of the entire array, not just the autocorrelations or the cross-cor-
relations in isolation.

In Section 2.1, we define a new cross-correlation metric that is aimed at quantifying how well each antenna is cor-
relating with the rest of the array, and we validate this metric with a simulation. Next, in Section 2.2 we utilize this 
correlation metric to identify cross-polarized antennas. Finally, in Section 2.3 we outline our specific algorithm 
for identifying and removing problematic antennas using the cross-correlation metric framework.

2.1.  Identifying Antennas That Do Not Properly Correlate

Our most generalized metric for assessing antenna function tests how well antennas correlate with each other. 
There are many reasons antennas might not correlate: one of the gain stages might be broken, cables might be 
hooked up incorrectly, or not phase-aligned with other functional antennas. Assessment of cross-correlations in 
uncalibrated data is challenging because the correlations can vary widely depending on the baseline length and 
sky configuration. In particular, one must be able to tell the difference between baselines that include both the 
expected sky signal and noise versus baselines that include only noise. A metric which is robust against these and 
other challenges is the normalized and averaged correlation matrix Cij:

Figure 2.  Map of the radio sky (Remazeilles et al., 2015), with the HERA observation band for JD 2459122 shaded, based on a Full Width Half Max of 12°. Individual 
sources shown are those included in the GLEAM 4Jy catalog (White et al., 2020) with a flux greater than 10.9Jy.
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where 〈〉t,ν represents an average over time and frequency, and 𝐴𝐴 𝐴𝐴 even
𝑖𝑖𝑖𝑖  and 𝐴𝐴 𝐴𝐴 odd

𝑖𝑖𝑖𝑖  are pairs of measurements of the 
same sky with independent noise, and i and j are antenna indicies, such that ij represents an individual baseline. 
This holds for any correlator outputs separated by timescales short enough that the sky will not rotate apprecia-
bly, so that we can assume that time adjacent visibilities are observing the same sky signal but with independent 
noise realizations (In HERA's case we are able to utilize our specific correlator output to construct even and odd 
visibilities that are interleaved on a 100 ms timescale. To explain this, we digress briefly into the output of the 
HERA correlator. In its last stage of operation, antenna voltage spectra are cross-multiplied and accumulated over 
100 ms intervals. These visibilities can be averaged over the full 9.6 s integration before being written to disk. 
However, in order to improve our estimate of noise and to aid in the estimation of power spectra without a thermal 
noise bias, we split these 96 spectra into two interleaved groups, even and odd, and sum them independently be-
fore writing them to disk. Thus, each is essentially 4.8 s of integrated sensitivity, spread over 9.6 s of observation).

Division by the visibility amplitude in Equation 1 minimizes the impact of very bright RFI that might differ 
between even and odd visibilities and dominate the statistics. We experimented with alternative statistics like a 
maximum and a median to compress across time and frequency but found that with the normalized correlation a 
simple average was sufficiently robust.

Due to our chosen normalization, the correlation metric measures the phase correlation between visibilities and 
is unaffected by overall amplitudes. If the phases are noise-like, the antennas will be uncorrelated and this value 
will average down to zero. If 𝐴𝐴 𝐴𝐴 even

𝑖𝑖𝑖𝑖  and 𝐴𝐴 𝐴𝐴 odd
𝑖𝑖𝑖𝑖  are strongly correlated, we expect this statistic to be near one. The 

normalization in Equation 1 is particularly useful in mitigating the effects of RFI and imperfect power equaliza-
tion between antennas.

We can visualize the correlation matrix Cij with each baseline pair ij as an individual pixel, such that the auto-
correlations fall along the diagonal. A schematic of this visualization is shown in Figure 3. To emphasize any 
patterns related to electronic connectivity, antennas are organized by their node connection, and within that by 
their sub-node level electronic connections. Node boundaries are denoted by light blue lines. While the nodal 
structure used here is specific to HERA, the principal of organizing by electronic connectivity is a generalizable 
technique for highlighting patterns that may be due to systematics in particular parts of the system. Additionally, 
plotting the matrices in this way allows us to assess the system health on an array-wide level and on an individual 
antenna level all in one plot, which is increasingly useful as the size of an array grows.

To study the performance of any single antenna it is useful to form a per-antenna cross-correlation metric Ci by 
averaging over all baselines that include a given antenna:

𝐶𝐶𝑖𝑖 ≡
1

𝑁𝑁ants − 1
∑

𝑗𝑗≠𝑖𝑖
𝐶𝐶𝑖𝑖𝑖𝑖 .� (2)

where Nants is the number of antennas. We calculate this metric separately for all four instrumental visibility po-
larizations: NN, EE, EN, NE. The panels below each matrix in Figure 3 show this per-antenna average correlation 
metric Cij.

Next, Figure 4 shows a visualization of Cij for all four polarizations, using data from a representative subset of 
the HERA array for simplicity. Here, the values have a bimodal distribution (most obvious in the East-East and 
North-North polarizations), where most antennas are either showing a consistently low metric value, or are close 
to the array average. This bimodality is also clear in the lower panels showing the per-antenna metric Ci. Here, we 
see more clearly that there is a fairly stable array-level average metric value for each polarization, with a handful 
of antennas appearing as outliers. The dashed line in the lower panels shows the threshold that is used for antenna 
flagging, with the points below the threshold marked in red - see Section 2.3 for more on this. There are three 
primary features to note in Figure 4. First, we see that antennas 51 and 87 are lower than the array average in the 
North-North and East-East polarizations, but are higher than average in the other two polarizations. These points 
are marked in cyan in the lower panel. The reason for this pathology is that antennas 51 and 87 are cross-polar-
ized, meaning that the cables carrying the East and North polarizations are swapped somewhere along the cable 
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path - this will be discussed further in Section 2.2. Second, we can see that the typical value of Cij is higher in the 
East-East polarization than in the North-North polarization. This is because of the elevated signal-to-noise ratio 
observed in the East-East polarization due to contributions from the galactic plane and diffuse emission. Lastly, 
we observe that there appears to be a slight increase in the average metric power for baselines within the same 
node compared over baselines to antennas in different nodes. We explore this effect in the next section.

2.1.1.  Understanding the Correlation Metric With Simulations

Figure 4 shows that there is a significant amount of structure in the correlation matrices, specifically related to 
node connections. Baselines within a node appear to have larger values of Cij than baselines between nodes. We 
have previously noticed instances of severe node-based structure when there are timing mismatches between 
nodes due to a failure of the clock distribution system. Figure 5 is an example from an observation when the 
timing system was known to be broken and we see clearly that timing mismatches depress the correlation met-
ric. This causes much clearer node structure than the more common structure seen in Figure 4. Therefore, one 

Figure 3.  Schematic showing how we visually represent the matrix Cij and the per-antenna metric Ci. Each pixel in the matrix represents an individual baseline ij, 
identified by the two antennas that pixel corresponds to. The light blue lines denote the node boundaries and antennas within each node are additionally sorted by 
their sub-node level electronic connections. The panel below the matrix shows the per-antenna average, calculated as the column mean for each antenna. (Note that in 
practice this average is computed iteratively - see Section 2.3).
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wonders: are the larger Cij values on the intra-node baselines due to some milder form of this clock distribution 
issue—perhaps a small error in timing—or is this structure otherwise explicable or even expected?

Put another way, what is the expectation value of Cij as defined in Equation 1? We can make the assumption that 
𝐴𝐴 ⟨𝑉𝑉 even

𝑖𝑖𝑖𝑖 ⟩ = ⟨𝑉𝑉 odd
𝑖𝑖𝑖𝑖 ⟩ ≡ 𝑉𝑉 true

𝑖𝑖𝑖𝑖  and that the two only differ by their noise, nij, with mean 0 and variance 𝐴𝐴 𝐴𝐴2
𝑖𝑖𝑖𝑖 . Ignoring 

Figure 4.  The correlation metric Cij as calculated in Equation 1. Light blue lines denote the boundaries between nodes. The per-antenna average metric Ci as calculated 
in Equation 2 is plotted below each matrix. The dashed line indicates the flagging threshold, such that blue dots indicate unflagged antennas, red indicates flagged 
antennas, and cyan indicates antennas identified as being cross-polarized (see Section 2.2). Note that we do not use the North-East and East-North polarizations for 
antenna flagging.



Radio Science

STORER ET AL.

10.1029/2021RS007376

8 of 26

time and frequency dependence, then we can use Equation 1 to first order (ignoring correlations between the 
numerator and denominator) to find that

⟨𝐶𝐶𝑖𝑖𝑖𝑖⟩ =

⟨
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this approximate expectation value shows us the importance of the signal-to-noise ratio (SNR). At high SNR, 
〈Cij〉 goes to 1, assuming the two even and odd signal terms are actually the same—that is that the array is corre-
lating. At low SNR, 〈Cij〉 goes to 0.

It follows then that the apparent node-based structure in Cij might actually be the impact of the relationship be-
tween SNR and baseline length. Inspecting the array configuration (see Figure 1) we see that baselines within 
the same node tend to be shorter than baselines involving two nodes. Shorter baselines are dominated by diffuse 
galactic synchrotron emission, which means that they tend to have a higher signal than longer baselines. Since 
all baselines have similar noise levels and since higher SNR leads to larger values of Cij, this could account for 
the effect.

In order to confirm that our node structure is explicable as a baseline length effect rather than some other systemat-
ic, we can implement a simple simulation with thermal noise. We calculate 𝐴𝐴 𝐴𝐴 true

𝑖𝑖𝑖𝑖  from our data as 𝐴𝐴 (𝑉𝑉 even
𝑖𝑖𝑖𝑖 + 𝑉𝑉 odd

𝑖𝑖𝑖𝑖 )∕2 , 
and take this as a reasonable stand-in for the sky signal, in lieu of a more sophisticated simulation, since it should 

Figure 5.  A correlation matrix for a single polarization of HERA phase II data from 21 October 2019 (JD 2458 778), taken 
at a time when the timing system was malfunctioning and antennas between different nodes were not correlating, showing 
a clear block-diagonal along node lines. This is a sample case where the autocorrelations are nominally acceptable, and 
investigation of the cross-correlations is necessary to see this type of failure mode.
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have approximately the right relative power and should largely average out the instrumental noise. To each visi-
bility 𝐴𝐴 𝐴𝐴 true

𝑖𝑖𝑖𝑖  we then add independent Gaussian-distributed thermal noise, with variance given by

𝜎𝜎2
𝑖𝑖𝑖𝑖 =

|𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑗𝑗𝑗𝑗|

Δ𝑡𝑡Δ𝜈𝜈
,� (4)

where Δt is the integration time and Δν is the channel width. This noise is uncorrelated between baselines, times, 
and frequencies. We then calculate Cij. We compare the Cij with simulated noise to the observed Cij in Figure 6. 
We can see clearly that the node-based structure we observed in the original correlation matrices is completely 
reproduced when using a Gaussian noise estimate. This conclusion helps confirm that apparent node-based struc-
ture in Cij is driven by sky feature amplitude, which sets the SNR, rather than systematics.

Finally, in Figure 7 we confirm that our metric distribution is representative of the sky by plotting Cij versus 
baseline length for all four polarizations using real sky data. We color each baseline by whether both constituent 
antennas were unflagged (blue), at least one was flagged for having a low correlation metric (red) or at least one 
was flagged for being cross-polarized (cyan). We clearly see the smooth distribution we would expect from sky 
features, with clearly distinguishable sub-groups by flagging categorization. We would expect a power law slope 
for galactic emission with strong variation as a function of baseline azimuthal angle, while the point source com-
ponent should be independent of baseline length or angle, and noise should be similar to point sources (Byrne 
et al., 2021). Notably, the nominally good antennas generally follow this pattern, with a strong increase toward 
shorter baselines. Additionally, baselines observing the North-East and East-North polarizations of the sky show 
a potential transition between galactic domination to point source or noise domination around 100 meters. At 
frequencies near the middle of the HERA band this corresponds to 1.5°, which is roughly the scale at which point 
sources are commensurate with galactic emission (Byrne et al., 2021). Given the significant agreement between 
our measured and expected distributions of Cij, we are confident in our conclusion that the observed structure in 
Figure 4 is driven by sky features rather than instrumental systematics.

2.2.  Identifying Cross-Polarized Antennas

As we have already seen in passing, the correlation metric Cij clearly identifies cross-polarized antennas. Here, 
cross-polarized means that the physical cables carrying the East and North polarization measurements got 
swapped in the field. When things are hooked up correctly, we expect to see a stronger correlation between match-
ing polarizations (i.e., EE (HERA dipoles, being fixed, are referred to by their cardinal directions. This avoids 

Figure 6.  Comparison of the correlation metric computed using true noise from the data (left) and simulated Gaussian thermal noise calculated using the 
autocorrelations (middle), along with the residual (right). We see here clearly that the node-related structure observed in Figure 8 is fully reproduced using simulated 
Gaussian noise in lieu of the measured noise used in the original calculation.
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much confusion.) and NN), and a weaker correlation between different polarizations. Cross polarized antennas 
have the opposite situation, with stronger correlation in EN and NE.

We identify this situation automatically with a cross-polarization metric formed from the difference between four 
polarization combinations in the per-antenna correlation metric:

𝐶𝐶𝑃𝑃
‖

−𝑃𝑃×
𝑖𝑖 ≡ 1

𝑁𝑁ants − 1
∑

𝑗𝑗≠𝑖𝑖
(𝐶𝐶𝑃𝑃

‖

𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑃𝑃×
𝑖𝑖𝑖𝑖 ).� (5)

where P∥ is either the EE or NN polarization, and P× is either the NE or EN polarization.

We then calculate our cross-polarization metric as the maximum of the four combinations of same-polarization 
and opposite-polarization visibilities:

𝑅𝑅𝑖𝑖 = max
{

𝐶𝐶𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁
𝑖𝑖 , 𝐶𝐶𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸

𝑖𝑖 , 𝐶𝐶𝐸𝐸𝐸𝐸−𝑁𝑁𝑁𝑁
𝑖𝑖 , 𝐶𝐶𝐸𝐸𝐸𝐸−𝐸𝐸𝐸𝐸

𝑖𝑖

}

� (6)

we take the maximum because it is possible to get negative values for some of the 𝐴𝐴 𝐴𝐴𝑃𝑃
‖

−𝑃𝑃×
𝑖𝑖  when one polarization 

is dead and the other is not. However, when all four values are negative (i.e., a negative maximum), then the 
antenna is likely cross-polarized. In Figure 8, we show each of the four differences of Cij. Two antennas, 51 and 

Figure 7.  The correlation metric Cij for real data plotted versus baseline length for all four polarizations, with red points representing baselines including at least one 
antenna that was flagged by this metric, cyan points representing baselines including at least one antenna that was identified as cross-polarized (see Section 2.2), and 
blue points representing baselines where neither constituent antenna is flagged. We observe that nominally well-functioning antennas follow an expected power law 
shape for galactic emission as a function of baseline length and we note that cross-polarized antennas are clearly identifiable as having excess power in the North-East 
and East-North polarizations.
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87, show negative values in all four combinations, indicating swapped cables. Three other antennas—37, 38, and 
101—show up negative in two polarizations, which indicate a single dead polarization, rather than a swap.

2.3.  Identifying and Removing Antennas in Practice

Using our correlation metric Ci defined in Equation 2 and our cross-polarization statistic Ri defined in Equation 6 
we can implement an iterative algorithm to flag and remove broken and cross-polarized antennas. In Figure 4, we 
clearly saw that dead antennas have a value of Ci very near zero. As a result, when we calculate Ci for functional 

Figure 8.  The cross-polarization metric defined in Equation 5. Any antenna with an average metric Ri that is negative in all four polarization combinations is deemed 
cross-polarized and marked in the lower panels in cyan. Antennas with a positive antenna mean are marked with blue dots and those with a negative mean are marked 
with red dots. Here, antennas 51 and 87 are cross-polarized.
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antennas by averaging over all constituent baselines, the low correlation between a functional and a dead antenna 
will decrease the overall value of Ci for the functional antenna. In the case where only a couple of antennas are 
broken among the whole array this may be tolerable, but it is possible for this bias to cause functional antennas to 
look much worse than they are, and to potentially drop below the flagging threshold.

To prevent the expected value of our metric from being biased by dead antennas, we implement an iterative metric 
calculation and flagging approach, outlined in Algorithm A1. First, we calculate Ci for all antennas and identify 
any that are completely dead (i.e., Ci = 0) and remove them. Then, recalculate Ci and Ri for all antennas, identify 
and remove the worst antenna if it falls below the threshold. We continue with this recalculation and reassessment 
of the metrics until all remaining antennas are above the threshold in both metrics. Figure 9 shows a comparison 
between the values of Ci calculated by directly averaging Cij for each antenna versus using the iterative algorithm. 
We see clearly from this figure that implementing an iterative approach brings our data into a truly bimodal realm 
where establishing a threshold is straightforward. Based on the observed values, we set an empirical threshold of 
Ci = 0.4, such that any antennas below that value will be flagged and removed. Note that the two antennas marked 
in cyan are both cross-polarized, so their value near the threshold is not worrisome. As noted in Section 2.2, these 
points are flagged for having a maximum value of Ri below zero. This iterative approach to flagging is robust 
against varying proportions of broken antennas, which is essential for flagging during the commissioning phase 
of an array. While the iterative approach somewhat increases computation time, we find the trade-off to be worth-
while. Even with the iterative approach, flagging based on the cross-correlation metrics scales at worst with the 
number of visibilities, which we find reasonable. Our most computationally expensive step is simply reading in 
all of the data. In the case where this step becomes computationally prohibitive in a real-time pipeline, we may 
take advantage of the time-stability of the correlation metric and calculate antenna flags on a sparser time inter-
val. As it is computationally infeasible to hold data for all baselines over the whole night in memory at once, we 
reserve time domain data quality assessments for autocorrelations only, as discussed in Section 3.

It is also relevant to note that we only use the North-North and East-East polarizations during antenna flagging. 
There are multiple reasons for this. First, we see in Figure 7 that the expected value of Cij is higher in same-polar-
ization correlations compared to cross-polarization correlations. The larger separation in expected value between 
functional and dead antennas leads to a more robust flagging threshold. Second, we have no evidence in HERA 
data to indicate the existence of systematics that appear only in correlations between different polarizations. 
Therefore, flagging only on the same-polarizations allows for clearer distinction between functional and broken 
antennas without missing any known failure modes of the system.

Figure 9.  Comparison of the final value of Ci calculated for each antenna using a direct average over Cij versus the iterative calculation outlined in Algorithm A1. 
We see that using the iterative algorithm helps create a clearer boundary between functional and nonfunctional antennas. Antennas marked in cyan are those that were 
flagged for being cross-polarized. This plot uses the same representative subset of antennas used in Figures 4 and 6.
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3.  Auto-Correlation Metrics
While the correlation metrics provide an absolute check on data quality of a particular antenna, not all effects will 
be caught by this approach. For example, if one antenna has a bandpass structure completely unlike the rest—an 
effect that might be calibratable—it is useful to identify it and flag it as a symptom of some deeper malfunction in 
the array. It is useful, therefore, to assess antennas for ways in which they deviate from others, assuming that the 
plurality of antennas will be well-behaved (Even when the majority of antennas are malfunctioning, our iterative 
techniques for outlier detection can still be robust when the malfunctions are multi-causal. To crib from Anna 
Karenina, all happy antennas are alike, but every unhappy antenna is unhappy in its own way).

Identification of misbehavior is more difficult with a new system. A newly built telescope system with novel 
combinations of technologies means that we lack an a-priori model for how signal chains might malfunction. In 
early commissioning we observed broadband temporal and spectral instabilities in visibilities which motivated a 
metric that examines whole nights of data.

We choose to focus on autocorrelations Vii for two reasons. The first is data volume. The number of autocorrela-
tions scales with Nant while the number of visibilities scales with 𝐴𝐴 𝐴𝐴2

ant —far too big to load into memory at once 
for a whole night of data. Second, because our goal is to identify malfunctioning antennas before calibration, we 
focus on autocorrelations because they are easier to compare without calibration. Comparison between visibilities 
measuring the same baseline separation requires at a minimum a per-antenna delay calibration to flatten phases. 
That term in autocorrelations cancels out, leaving each 𝐴𝐴 𝐴𝐴 obs

𝑖𝑖𝑖𝑖 ∝ |𝑔𝑔𝑖𝑖|2𝑉𝑉 true
auto  . Since most bandpass gains should be 

similar, autocorrelations can be sensibly compared to one other to look for outliers before calibrating. Even if |gi|
2 

differs between antennas that is something we would like to know and perhaps rectify in the field.

Historically, autocorrelations from radio interferometers are seldom used. For example, at the VLA the autos are 
usually discarded (Taylor & Rupen, 1999). The usual reasons given for this are that autocorrelations have a noise 
bias and that gain variations are assumed to not correlate between antennas. However, given HERA's sensitivity 
to calibration stability, this assumption is worth reconsidering. Recently, other collaborations have also begun 
exploring autocorrelations as a valuable tool for assessing data quality (Rahimi et  al.,  2021) and performing 
calibration (Barry et al., 2019).

Each antenna's auto-correlation stream can be reduced statistically across an entire observation to a single metric 
spectrum, which can then be quickly compared to all other spectra to search for outliers. For HERA, a drift-scan 
telescope which operates continuously each night for months at a time, one full night's observation time is a 
useful averaging time range. We focus on four factors motivated by antenna failure modes noted in manual in-
spection of hundreds of antenna-nights of autocorrelation data: bandpass shape (Section 3.1), overall power level 
(Section 3.2), temporal variability (Section 3.3), and temporal discontinuities (Section 3.4). The purpose of this 
section is to develop quantitative metrics that capture these qualitative concerns in a rigorous way, attempting to 
reduce antenna “badness” along each of these dimensions to a single number. In Section 3.5, we show how these 
four statistics together produce a useful summary of per-antenna performance (see Figure 15).

Each of these four statistics comes in two flavors. The first is a median-based statistic, which is more robust 
against transient or narrow-band outliers in each time versus frequency plot or “waterfall,” like RFI. The second 
is a more sensitive mean-based statistic. Our basic approach, outlined in pseudocode in Algorithm A2, is to 
remove the worst antennas with the robust statistics, then flag RFI, then flag the more subtly bad antennas with 
the mean-based statistics. In the following sections, we offer a more precise definition of the calculations and the 
algorithmic application.

3.1.  Outliers in Bandpass Shape

Our first metric is designed to identify and flag antennas with discrepant bandpass structures. This often indicates 
a problem in the analog signal chain. As we mention in Algorithm A2, we first reduce the auto-correlation for 
antenna i, polarization p to a single spectrum S(ν) as follows.

𝑆𝑆med
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) ≡

med {𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑡 )}𝑡𝑡
med {𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑡 )}𝑡𝑡𝑡𝑡𝑡

� (7)
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where 𝐴𝐴 med {}𝑡𝑡 indicates a median over time while 𝐴𝐴 med {}𝑡𝑡𝑡𝑡𝑡 indicates a median over both time and frequency. 
This gives us a notion of the average bandpass shape while normalizing the result to remove differences between 
antennas due to overall power. The reduction from waterfall to spectrum only needs to be computed once per 
antenna.

We can now compute the median difference between each antenna's spectrum and the median spectrum with the 
same polarization p according to the following formula:

𝐷𝐷med
𝑖𝑖𝑖𝑖𝑖 ≡ med

{

|

|

|

𝑆𝑆med
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) − med

{

𝑆𝑆med
𝑗𝑗𝑗𝑗𝑗 (𝜈𝜈)

}

𝑗𝑗
|

|

|

}

𝜈𝜈
,� (8)

where j indexes over all unflagged antennas. To determine which antenna to flag, if any, we convert each 𝐴𝐴 𝐴𝐴med
𝑖𝑖𝑖𝑖𝑖  

into a modified z-score by comparing it to the overall distribution of distances. These modified z-scores are de-
fined as

�mod
�,� ≡

√

2erf−1(0.5)
(

��,� − med {��,�}�
)

MAD {��,�}�

≈ 0.674 49
(��,� − med {��,�}�

MAD {��,�}�

)

,
� (9)

where 𝐴𝐴 MAD {}𝑗𝑗 is the median absolute deviation over antennas and erf−1(x) is the inverse error function. The 
factor of 𝐴𝐴

√

2erf−1(0.5) normalizes the modified z-score so that the expectation value of a zmod of a sample drawn 
from a Gaussian distribution is the same as its standard z-score (Were the distribution of distance metrics Gauss-
ian (it is generally not), then one could think of modified z-score of 8 as an “8σ outlier.” This kind of language is 
imprecise, but often useful for building intuition).

Having computed modified z-scores for every antenna and every polarization, we iteratively remove the antenna 
with the worst modified z over all metrics and both polarizations. When one polarization is flagged, we flag the 
whole antenna. We then recompute 𝐴𝐴 𝐴𝐴med

𝑖𝑖𝑖𝑖𝑖  and 𝐴𝐴 𝐴𝐴mod
𝑖𝑖𝑖𝑖𝑖  and continue flagging antennas until none have a modified 

z-score over a chosen threshold, in our Case 8.0. All subsequent metrics use the same threshold for median-based 
flagging.

Next, we perform a simple RFI flagging, analogous to the algorithm used in HERA Collaboration et al. (2021), 
but performed on a single auto-correlation waterfall averaged over all remaining antennas. This process includes 
a search for local outliers after median filtering and then mean filtering, which are flagged as RFI. Finally, a 
thresholding algorithm is performed that throws out entire channels or entire integrations, which are themselves 
significant outliers after analogous 1D filtering. The results of this process are shown in Figure 10. This process 
flags 12.6% of the data, excluding band-edges, and leaves 11.3% of channels and 1.0% of all times completely 
flagged. This is likely an under-count of RFI; the algorithm is designed to flag the most egregious outliers that 
might skew the statistics described below, rather than to find and remove RFI for the purpose of making sensitive 
21 cm power spectrum measurements.

After RFI flagging, we next compute shape metric spectra with mean-based statistics. Analogously to Equation 7 
this case,

𝑆𝑆mean
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) ≡

⟨𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑡 )⟩𝑡𝑡
⟨𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑡 )⟩𝑡𝑡𝑡𝑡𝑡

,� (10)

where 𝐴𝐴 ⟨⟩𝑡𝑡 indicates a weighted-mean over the time dimension, giving zero weight to times and frequencies flagged 
for RFI. Likewise, these spectra are reduced to scalar distance metrics as

𝐷𝐷mean
𝑖𝑖𝑖𝑖𝑖 ≡

⟨

|

|

|

𝑆𝑆mean
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) −

⟨

𝑆𝑆mean
𝑗𝑗𝑗𝑗𝑗 (𝜈𝜈)

⟩

𝑗𝑗
|

|

|

⟩

𝜈𝜈
,� (11)

where again averages are performed over unflagged antennas, times, and frequencies. Just as before, we compute 
modified z-scores to iteratively flag the worst antenna outlier, recalculating 𝐴𝐴 𝐴𝐴mean

𝑖𝑖𝑖𝑖𝑖  after each antenna is flagged. 
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This proceeds until no antennas exceed a z-score of four; half of that was used during the first round median cut. 
Again, this threshold is the same for mean-based flagging in all subsequent metrics.

In Figure  11, we show the results of this operation with example waterfalls and metric spectra for antennas 
that were and were not flagged by our modified z-score cut of 4.0. In general, we find that the metric robustly 
identifies antennas with metric spectra discrepant from the main group of antennas. Almost everything in red 
in Figure 11 is a pretty clear outlier. Where exactly to draw the line is tricky and likely requires some manual 
inspection of metric spectra and waterfalls for antennas near the cutoff. Note that this figure includes flagging by 
all four metrics. Some moderate outliers in shape were not flagged for shape but were flagged for other reasons, 
indicating that this metric and the other three discussed below are not completely independent.

Figure 10.  Auto-correlation averaged over good antennas, before and after RFI flags. RFI is excised using local median and mean filters to search for outliers, followed 
by 1D thresholding. This is a simplified version of the algorithm used in HERA Collaboration et al. (2021) with the exception that it is sped up by performing it on a 
single waterfall averaged over unflagged antennas.

Figure 11.  Here, we show the shape metric spectra, defined in Equation 10, for all North/South-polarized antennas in the array (center panel). Outliers (red lines) are 
defined as has having a modified z-score greater than 4.0 in their scalar distance metric (Equation 11) compared to the average good antenna (black dashed line) and 
the distribution of good antennas (light green lines). Note that this figure includes flagging by three other metrics causing some antennas to be flagged even though 
they look okay here. We highlight two example antennas and show their full auto-correlation waterfalls, one flagged (161; left panel and dark red dashed line) and one 
functioning normally (85; right panel and dark green dashed line).
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3.2.  Outliers in Bandpass Power

We next turn to looking for outliers in bandpass power. High power might indicate incorrect amplifier settings 
while a signal chain malfunction might cause anomalously low power. Our approach for finding outliers in power 
is very similar to the one for finding outliers in bandpass shape laid out in Section 3.1. Here, we lay out the math-
ematical approach, highlighting and motivating differences between the two.

Once again, we begin by defining median-based metric spectra, which collapse each antenna's waterfall down to 
a single number per frequency. For bandpass power, that is simply

𝑆𝑆med
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) ≡ med {𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑡 )}𝑡𝑡 .� (12)

this is simply an unnormalized version of Equation 7. However, instead of directly comparing each antenna's 
spectrum with the median spectrum, we instead compare their logarithms:

𝐷𝐷med
𝑖𝑖𝑖𝑖𝑖 ≡ med

{

|

|

|

log
(

𝑆𝑆med
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈)

)

−

log
(

med
{

𝑆𝑆med
𝑗𝑗𝑗𝑗𝑗 (𝜈𝜈)

}

𝑗𝑗

)

|

|

|

|

}

𝜈𝜈
,

� (13)

this logarithmic distance measure reflects the fact that gains are multiplicative and that the optimal ranges for 
amplifier and digitization are themselves defined in decibels. We take the absolute value of the difference of the 
logs because we want to penalize both antennas with too little power, which may indicate a malfunction, and 
antennas with too much power, which may cause a nonlinear response to the sky signal.

After RFI flagging as described in the previous section, we next proceed with outlier detection using modified 
mean-based statistics, which are straightforward adaptations of Equations 12 and 13:

𝑆𝑆mean
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) ≡ ⟨𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑡 )⟩𝑡𝑡 ,� (14)

𝐷𝐷mean
𝑖𝑖𝑖𝑖𝑖 ≡

⟨

|

|

|

|

log
(

𝑆𝑆mean
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈)

)

− log
(

⟨

𝑆𝑆mean
𝑗𝑗𝑗𝑗𝑗 (𝜈𝜈)

⟩

𝑗𝑗

)

|

|

|

|

⟩

𝜈𝜈
.� (15)

Once again, as we can see in Figure 12, this metric picks a number of antennas that are clearly behaving differ-
ently than the main group. As we saw in the previous section we see there are some antennas, which appear to be 

Figure 12.  Here, we show bandpass power metric spectra, defined in Equation 14, for all North/South-polarized antennas in the array (center panel). Just as in 
Figure 11 we show flagged and unflagged antennas, highlighting example auto-correlation waterfalls of good (85; right panel) and bad (75; left panel) antennas, as 
defined by the modified z-score of their distance metric (Equation 15). While antenna 75's bandpass structure is similar to the normal antennas, its autocorrelation has 
roughly an order of magnitude less power. This makes us suspicious that the amplifiers in the signal chain are not operating properly.
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“in family” according to this metric but are flagged for other reasons. But now we can start to see why this might 
be. A few of the flagged antennas appear to be fine according to their bandpass shape but are significantly lower 
or higher in power than the rest.

3.3.  Outliers in Temporal Variability

We now turn to the question of searching for outliers in the temporal structure of the antenna response. While 
the metrics follow a similar pattern—median-based spectra and distances, followed by mean-based spectra and 
distances—they are mathematically quite different from those in Sections 3.1 and 3.2.

During observing and subsequent inspection analysis sharp discontinuities were observed in the autocorrelations. 
Often, though not always, these are rapid changes occurring within a single integration. Sometimes they are ac-
companied with apparent changes in the bandpass shape or power. Sometimes the effects are relatively localized 
in frequency; sometimes they are broadband. Sometimes they are frequent jumps; sometimes there are just a 
handful of discontinuities followed by minutes or hours of stability. Developing a physical understanding of the 
origin of these effects is an ongoing research effort outside the scope of this paper. Absent that understanding—
and a hardware fix to prevent the effects—we have to consider this behavior suspicious and therefore meriting 
flagging.

Here and in Section 3.4, we present two metrics for automatically identifying temporal effects. In general, we 
are looking for forms of temporal structure of the autocorrelations that cannot be explained by the sky transiting 
overhead. The first looks for high levels of temporal variability throughout the night. To distinguish temporal 
variability due to sky-rotation from anomalous temporal structure, our metrics are based on a comparison of each 
antenna's auto-correlation waterfall with an average waterfall over all antennas. For our first round of median 
statistics, we use the median absolute deviation of the waterfall along the time axis after dividing out the median 
waterfall over antennas. Thus,

𝑆𝑆med
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) ≡ MAD

{

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑡 )
med {𝑉𝑉𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡𝑡 )}𝑗𝑗

}

𝑡𝑡

.� (16)

to produce a single spectrum for each antenna that can be reasonably interpreted as the standard deviation over 
time of each channel with respect to the mean over time.

We calculate the distance metric for each antenna by taking the median over frequency of how much the antenna's 
temporal variability metric spectrum exceeds the median metric spectrum over all antennas:

𝐷𝐷med
𝑖𝑖𝑖𝑖𝑖 ≡ med

{

𝑆𝑆med
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) − med

{

𝑆𝑆med
𝑗𝑗𝑗𝑗𝑗 (𝜈𝜈)

}

𝑗𝑗

}

𝜈𝜈
.� (17)

note that we do not take the absolute value of the difference; while shape and power mismatches are penalized 
both for being too low and for being too high, we do not penalize antennas for varying less that the median. These 
simply become negative z-scores–indicating that an antenna has less temporal variation than the median signal–
and do not result in flags.

Our mean-based metrics are a straightforward adaptation of Equations 16 and 17:

𝑆𝑆mean
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) ≡

[⟨

(

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑡 )
⟨𝑉𝑉𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡𝑡 )⟩𝑗𝑗

)2
⟩

𝑡𝑡

−
⟨

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑡 )
⟨𝑉𝑉𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡𝑡 )⟩𝑗𝑗

⟩2

𝑡𝑡

]1∕2

,
� (18)

𝐷𝐷mean
𝑖𝑖𝑖𝑖𝑖 ≡

⟨

𝑆𝑆mean
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) −

⟨

𝑆𝑆mean
𝑗𝑗𝑗𝑗𝑗 (𝜈𝜈)

⟩

𝑗𝑗

⟩

𝜈𝜈
.� (19)

In theory, the denominator of Equations 16 and 18 should change each time an antenna is thrown out and the 
distance measures and modified z-scores are recomputed. This can be computationally expensive when a large 
fraction of the array needs flagging, as has sometimes been the case during HERA commissioning. In practice, 
we take a shortcut. During the median-statistics round, we simply neglect this effect, relying on the fact that the 



Radio Science

STORER ET AL.

10.1029/2021RS007376

18 of 26

median statistics are relatively insensitive to the set of antennas that are flagged. During the next round using 
mean-based statistics, we iteratively remove antennas until no antennas remain above our modified z-score cut. 
Only then do we recompute the metric spectra in Equation 18. In general, this has the effect of making the metric 
spectra more sensitive to temporal variability, since the mean spectrum will include fewer anomalously variable 
antennas. The standard procedure of removing antennas and recalculating each 𝐴𝐴 𝐴𝐴mean

𝑖𝑖𝑖𝑖𝑖  (but not each 𝐴𝐴 𝐴𝐴mean
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) ) is 

repeated. This loop continues until no more antennas are flagged after recalculating 𝐴𝐴 𝐴𝐴mean
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) one final time.

As a brief aside, we present Table 1, which shows the number of antennas flagged by each metric at each step. The 
table shows that the power and shape metrics are relatively bimodal, in that the vast majority of antennas flagged 
by those metrics were bad enough to be flagged by the median-based statistics, and very few antennas required 
the more sensitive iterative approach. In contrast, we see that antennas flagged by the temporal variability and 
temporal discontinuities (outlined in the next section) metrics have a more gradual distribution of badness, ren-
dering the mean-based iterative flagging step all the more necessary.

In Figure 13 we show the resulting mean-based metric spectra after iteratively removing outliers. While there 
are some very clear outliers that are successfully identified, the precise line between what should be considered 

Power Shape Temporal Temporal Total

Variability Discontinuities

Round 1 (Median-Based)

19 24 26 19 36

Round 2 (Mean-Based)

3 3 13 33 30

Note. Each antenna can be flagged by multiple metrics, so the total number of antennas flagged per round is less than the 
sum of flags per metric. Additionally, antennas may be flagged for one reason during the median-based round and another 
during the mean-based round, which explains why the total for each metric can possibly exceed the total for the whole round.

Table 1 
Table Showing the Number of Antennas Flagged at Each Step and for Each Metric of AutoMetrics

Figure 13.  Here, we show temporal variability metric spectra, defined in Equation 18, for all North/South-polarized antennas in the array (center panel). Just as in 
Figure 11 we show flagged and unflagged antennas, highlighting example auto-correlation waterfalls of good (85; right panel) and bad (110; left panel) antennas, as 
defined by the modified z-score of their distance metric (Equation 19). The malfunction in antenna 110—chunks of time where the waterfall shape and amplitude varies 
discontinuously—is subtle. It is easiest to see in the waterfall at low frequencies during the first half of the night. These sorts of effects are often more visible in metric 
spectra and in renormalized waterfalls, as demonstrated in Figure 15.
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good and what should be considered bad is ambiguous. Clearly the pathology seen in Antenna 110 is worthy of 
flagging and the metric successfully identifies it as having high variability relative to the average waterfall. Like-
wise, most of what is identified as good appears to be behaving like most of the other antennas. Just as with the 
previous metrics, some level of inspection of antennas near the cutoff is warranted.

3.4.  Outliers in Temporal Discontinuities

Though a range of temporal variation pathologies were noted during the observing and data inspection phase 
one that stood out was abrupt changes occurring faster than the integration time and lasting minutes to hours. 
Our second metric for anomalous temporal structure looks for such sharp discontinuities, which also cannot be 
explained by sky rotation. As with our metric for overall temporal variability (see Section 3.3), our metric is 
based on examining each antenna's waterfall after dividing out the average waterfall of unflagged antennas. In-
stead of using the median absolute deviation or the standard deviation, which are measures of variability on any 
timescale, we instead want to detect variability on the shortest timescale—which is the hardest to explain with 
antenna-to-antenna primary beam variations (Dillon et al., 2020).

Beginning with the auto-correlation scaled by the median over antennas, we compute the discrete difference 
along the time axis, and then collapse that waterfall (which is only one integration shorter than the original) along 
the time axis to a metric spectrum. In our first round of flagging using median statistics, this becomes:

𝑆𝑆med
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) ≡ med

{

|

|

|

|

|

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡 + Δ𝑡𝑡𝑖 𝜈𝜈)
med {𝑉𝑉𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑖(𝑡𝑡 + Δ𝑡𝑡𝑖 𝜈𝜈)}𝑗𝑗

−

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖 𝜈𝜈)
med {𝑉𝑉𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖 𝜈𝜈)}𝑗𝑗

|

|

|

|

|

}

𝑡𝑡

𝑖
� (20)

where Δt is our integration time (9.6 s in this data set). Our distance measure, designed to penalize only excessive 
levels of temporal discontinuities, is the same as in Equation 17:

𝐷𝐷med
𝑖𝑖𝑖𝑖𝑖 ≡ med

{

𝑆𝑆med
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) − med

{

𝑆𝑆med
𝑗𝑗𝑗𝑗𝑗 (𝜈𝜈)

}

𝑗𝑗

}

𝜈𝜈
.� (21)

The adaption to mean-based statistics is straightforward:

𝑆𝑆mean
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) ≡

⟨

|

|

|

|

|

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡 + Δ𝑡𝑡𝑖 𝜈𝜈)
⟨𝑉𝑉𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑖(𝑡𝑡 + Δ𝑡𝑡𝑖 𝜈𝜈)⟩𝑗𝑗

−

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖 𝜈𝜈)
⟨𝑉𝑉𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖 𝜈𝜈)⟩𝑗𝑗

|

|

|

|

|

⟩

𝑡𝑡

𝑖
� (22)

𝐷𝐷mean
𝑖𝑖𝑖𝑖𝑖 ≡

⟨

𝑆𝑆mean
𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈) −

⟨

𝑆𝑆mean
𝑗𝑗𝑗𝑗𝑗 (𝜈𝜈)

⟩

𝑗𝑗

⟩

𝜈𝜈
.� (23)

In Figure 14, we show metric spectra for all antennas for a single polarization and examples of nominal and 
abnormal waterfalls.

Antennas flagged as bad show a wide variety of strange behavior: some show broadband effects, others are more 
localized. Antenna 89 and one other even shows spectrally oscillatory levels of temporal discontinuities; we 
currently have no explanation for this effect. Perhaps these features provide further clues to the ongoing system 
integration and debugging efforts.

The good antennas are fairly tightly clustered around the average, which is spectrally flat. That behavior is expect-
ed if the integration-to-integration differences are purely attributable to thermal noise. Normalizing each water-
fall by the average good waterfall should cancel out the spectral and temporal dependence of the noise. Given the 
theoretical expectation, this might be the easiest of all the metrics to set an absolute cut rather than a relative one 
based on the modified z-score. However, the wide variety of poorly understood malfunctions combined with the 
possibility that low-level RFI might still contaminate these metrics complicates that picture.
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3.5.  Assessing Individual Antenna Quality in Practice

One advantage of the auto-correlation metrics framework is that it is straightforwardly applicable to new com-
binations of metric spectra and distance measures. For example, it should be noted that the anomalous temporal 
structure metrics in Sections 3.3 and 3.4 are not exhaustive. By averaging over the whole night, they privilege 
frequent or persistent effects over infrequent ones. For example, a strong jump in the waterfall like we see in An-
tenna 110 in Figure 13 that then quickly reverts to “standard” behavior and does not repeat might not be caught by 
either metric. One could imagine other ways of computing S(ν) or D that up-weight rare excursions from normal-
ity. While we continue to assess antenna malfunctions and develop other metrics, it is worthwhile to continue the 
visual inspection of auto-correlation waterfalls normalized by the average of nominally good antennas to identify 
other modalities of malfunction.

In particular, we find it useful to produce a suite of per-antenna visualizations of the different metric spectra and 
the corresponding auto-correlation waterfalls. In Figure 15, we show three such examples: one clearly malfunc-
tioning (Antenna 0), one nominal (Antenna 85), and one borderline case that we ultimately flagged (Antenna 24). 
For each, we show their metric spectra compared to all unflagged antennas, along with the z-scores, highlighting 
which antennas were automatically flagged. These plots synthesize the information about how discrepant each 
antenna is along the four axes considered here and help clarify why.

In Figure 15, we also show both the waterfalls and the normalized waterfalls, which are divided by the average 
good waterfall (Figure 10) and then normalized to average to 1. We find it particularly useful to look closely 
at these normalized waterfalls, especially in borderline cases like Antenna 24. Antenna 24's bandpass shape is 
sufficiently discrepant with the others to merit an automatic flag, though this does not necessarily mean that it is 
uncalibratable. More concerning are the abrupt discontinuities at high frequency around 2459 122.3 and around 
2459 122.5. This is precisely the kind of issue we worried about: a strong but rare temporal feature that just barely 
misses the threshold. Examples like this motivate by-eye inspection of borderline antennas. This is what we have 
done with recent HERA data. The automatic pipeline produces Jupyter Notebooks with plots like Figure 15 for 
all antennas, sorting them by the single highest z-score metric. This makes it easy to find the borderline antennas 
and decide whether to flag them on a case-by-case basis.

Figure 14.  Here, we show temporal discontinuity metric spectra, defined in Equation 22, for all North/South-polarized antennas in the array (center panel). Just as 
in Figure 11 we show flagged and unflagged antennas, highlighting example auto-correlation waterfalls of good (85; right panel) and bad (89; left panel) antennas, as 
defined by the modified z-score of their distance metric (Equation 23). The discontinuities are often hard to perceive without a very careful inspection of the waterfall. 
Once again, these sorts of effects are often more visible in metric spectra and in renormalized waterfalls, as demonstrated in Figure 15.
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Figure 15.  An example of the summary dashboard used to inspect antenna metrics showing three cases–one for a clearly malfunctioning antenna, one for a borderline 
flagged antenna, and one for a good antenna. In each we show the metric spectra of the individual antenna compared to all good antennas in light green, helping us to 
easily see whether the antenna is an outlier. We also show the full auto-correlation waterfalls, both raw and fractional deviation from the antenna average (Figure 10). 
The effects detected by our metrics can generally be seen in either the raw or normalized waterfall.



Radio Science

STORER ET AL.

10.1029/2021RS007376

22 of 26

4.  Summary
There are a number of current and upcoming interferometers with hundreds of antennas aiming to reach the 
extreme dynamic range necessary to detect and characterize the neutral hydrogen signal from the epoch of reion-
ization. Separating that signal from foregrounds four to five orders of magnitude stronger requires both large 
volumes of data and the swift and reliable identification of malfunctions that adversely affect data quality. In this 
work, we report on new metrics, which sensitively detect various pathologies and reliably classify them, using 
HERA data as a case study. In some cases, the precise underlying mechanism (e.g., an antenna with swapped 
cables for its two polarizations) is known. In others, a physical explanation requires lab and field tests that are 
beyond the scope of this paper. Armed with per-antenna classifications, instrument teams can more effectively 
triage issues according to their occurrence rate. In HERA's case, by inspecting the nightly analysis and dashboard 
reports that implement the metrics outlined here the team can quickly assess the impact of hardware changes. 
Meanwhile, the definition of metric spectra provides a physically meaningful signature, which can be exploited 
by instrument engineers to identify characteristics like reflections, clipping, interference, and more.

The definition of metrics which isolate features of interest and standard ways of displaying them routinely is 
crucial to managing a large array with a small team. As digital and analog systems grow in capability, arrays 
will continue to grow in antenna count. Arrays like OVRO-LWA-III (Callister et al., 2019), DSA-2000 (Hal-
linan & Ravi, 2021), HIRAX (Saliwanchik et al., 2021), CHORD (Vanderlinde et al., 2019), PUMA (Castorina 
et al., 2020), SKA-Low (Mellema et al., 2013), and more will use hundreds to thousands of elements. Ultimately 
the maintenance time per-antenna imposes a significant design pressure on large arrays. This kind of pressure 
can also affect arrays with fewer antennas but with more elaborate receivers or wider geographic distributions. A 
prime example of this regime is the proposed ngVLA (Di Francesco et al., 2019). With 244 antennas distributed 
across New Mexico, Arizona, and Mexico, along with outriggers extending to VLBA sites across North America 
and six cryogenic receivers, operation will require careful minimization of maintenance time (See ngVLA memo 
020.10.05.00.00–0002-PLA, S6.2 at https://ngvla.nrao.edu/page/projdoc). Quick identification of subtle system-
atic errors using semi-automatic systems like we describe here are expected to be essential.

In 21 cm cosmology experiments, the reliability and precision of arrays will continue to be the dominant factor 
affecting sensitivity. Identifying, flagging, and ultimately fixing subtle instrument issues will continue to be the 
first line of defense. Further work in this area is needed, for example, using simulations to replace the detection 
of relative outliers with absolute thresholds or to replace iterative flagging with a single analysis step. That said, a 
system like the one presented here will be necessary for triaging malfunctions and extracting science-quality data 
to form the basis for future cosmology results.

Appendix A
Figure A1 provides a pseudocode flowchart for the iterative antenna flagging algorithm described in Section 2.3. 
Figure  A2 provides a pseudocode flowchart for the auto-correlation based flagging algorithm described in 
Section 3.

https://ngvla.nrao.edu/page/projdoc
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Figure A1.  Pseudocode flowchart of the cross-correlation metrics flagging algorithm, as discussed in Section 2.
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Data Availability Statement
The complete set of data used in this paper can be found at https://data.nrao.edu/hera/antennaMetrics. Software 
used in this paper can be found at https://github.com/HERA-Team/hera_qm.
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