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ABSTRACT
We pursue a program to confront observations with inhomogeneous extensions of the
FLRW metric. The main idea is to test the Copernican principle rather than as-
suming it a priori. We consider the ΛCDM model endowed with a spherical ΛLTB
inhomogeneity around us, that is, we assume isotropy and test the hypothesis of homo-
geneity. We confront the ΛLTB model with the latest available data from CMB, BAO,
type Ia supernovae, local H0, cosmic chronometers, Compton y-distortion and kinetic
Sunyaev–Zeldovich effect. We find that these data can constrain tightly this extra
inhomogeneity, almost to the cosmic variance level: on scales & 100 Mpc structures
can have a small non-Copernican effective contrast of just δL ∼ 0.01. Furthermore,
the constraints on the standard ΛCDM parameters are not weakened after marginal-
izing over the parameters that model the local structure, to which we assign ignorance
priors. In other words, dropping the Copernican principle assumption does not imply
worse constraints on the cosmological parameters. This positive result confirms that
the present and future data can be meaningfully analyzed within the framework of
inhomogeneous cosmology.

Key words: large-scale structure of Universe – cosmology: observations – cosmolog-
ical parameters – cosmology: theory

1 INTRODUCTION

Cosmology studies the largest possible spatial and tempo-
ral scales of the observable universe and, as a consequence,
relies strongly on principles that can simplify our under-
standing of the spacetime. Indeed, most observations are a
collection of redshifted photons which are difficult to inter-
pret without a framework that can be used to disentangle
temporal evolution from a possible spatial variation around
us. In order to make progress cosmologists have been as-
suming the Copernican principle, according to which we do
not occupy a special location in the universe. In addition,
if the universe is statistically isotropic, it then follows its
statistical homogeneity, leading to the validity of the FLRW
metric, the backbone of the standard cosmological model.
By adopting the FLRW metric cosmologists made terrific
progress in our understanding of the universe, providing a
quantitative description of its evolution since the beginning
of time and at all observable scales.

Cosmology now started mapping good fractions of the
observable universe, soon producing data at the rate of
petabytes per year. This wealth of information may show
that previously assumed hypotheses need to be relaxed, in
particular the one of the FLRW metric. The universe may
indeed feature large-scale inhomogeneities and isotropies
which cannot be explained by the standard model of cos-
mology. While the Copernican principle may still be valid on
much grander scales than the observable universe, it could
well be discordant with our observations. It follows that it
is imperative to test the FLRW metric, the ultimate goal
being to reconstruct the metric from observations (Stebbins
2012).

The FLRW metric can be tested through two comple-
mentary approaches: developing consistency tests and con-
straining inhomogeneous models. The first approach aims
at falsifying FLRW (see Clarkson 2012, for a review), while
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2 Camarena, Marra, Sakr & Clarkson

the second at discovering features and structures beyond the
standard model.

The second approach has been pursued by comput-
ing, for example, the fractal dimension in both two (Alonso
et al. 2015; Gonçalves et al. 2018) and three (Scrimgeour
et al. 2012) dimensions using galaxy catalogs, showing a
good agreement with the standard model. Isotropy has been
tested using the CMB (Akrami et al. 2014), supernovae (Sun
& Wang 2018; Zhao et al. 2019; Krishnan et al. 2021), com-
pact radio sources (Jackson 2012), quasars (Hirata 2009;
Siewert et al. 2020; Secrest et al. 2020), galaxies (Nadolny
et al. 2021) and clusters of galaxies (Migkas et al. 2020,
2021).1

Here, we assume isotropy and test the hypothesis of ho-
mogeneity around us using the method proposed in Valken-
burg et al. (2014), that is, we test the validity of the Coper-
nican principle. We adopt the ΛLTB model (see, e.g. Marra
& Paakkonen 2010) which is basically the standard ΛCDM
model endowed with a spherical over/underdensity. The ob-
server will sit at the center of the spherical structure. In
other words, we neglect anisotropic degrees of freedom or,
equivalently, average the observer’s observations over angles.

We constrain the size and contrast of the spherical
structure using the latest cosmological observations, and
compare the result with the expectation from the Coperni-
can prior—the probabilistic counterpart of the Copernican
principle. In order to consider the full likelihoods, we com-
bine MontePython (Audren et al. 2013) for the MCMC explo-
ration and likelihoods, CLASS (Blas et al. 2011) for the CMB
computation and VoidDistances2020 (Valkenburg 2012) for
the ΛLTB metric functions via a wrapper that translates the
MontePython trial vector into an effective FLRW vector that
is suitable for CLASS. We make publicly available the full
monteLLTB pipeline at github.com/davidcato/monteLLTB.
We consider the full Planck 2018 data (Aghanim et al.
2018), Pantheon supernovae (Scolnic et al. 2018), the cos-
mic chronometer dataset (Moresco 2015), anisotropic and
isotropic BAO distances (Beutler et al. 2011; Ross et al.
2015; Alam et al. 2017), the Compton y-distortion (Fixsen
et al. 1996), the kinetic Sunyaev-Zeldovich effect (Reichardt
et al. 2020), and the local constraint on H0 via the local
prior on the absolute magnitude MB of Type Ia supernovae
(Camarena & Marra 2020, 2021).

This paper is organized as follows. In Section 2 we
briefly present the ΛLTB model, in Section 3 we discuss
the observations that we consider and how to confront them
with ΛLTB, and in Section 4 we introduce the Copernican
prior. We then show our results in Section 5 and discuss
them in Section 6. We conclude in Section 7.

2 A SPHERICAL INHOMOGENEOUS
UNIVERSE DOMINATED BY THE
COSMOLOGICAL CONSTANT

Following the notation of Biswas et al. (2010), the line el-
ement of the spherically symmetric LTB (Lemaitre 1997;

1 Other ways to test inhomogeneity have been proposed, such as
the time dependence of the polarization of the CMB photons that
have been inverse-Compton scattered by the hot gas in massive
clusters of galaxies (Jimenez et al. 2019).

Tolman 1934; Bondi 1947) metric can be written as

ds2 = −dt2 + R′2(r, t)
1 + 2r2k(r)M̃2

dr2 +R2(r, t)dΩ , (1)

where dΩ = dθ2 + sin2 θdφ2, M̃ is an arbitrary mass scale
and k(r) is an arbitray function related to the curvature.
The FLRW limit is reached through R(r, t) → a(t)r and
k(r) → const, where a(t) is the FLRW scale factor. Note
that a prime denotes the partial derivative with respect to
the radial coordinate r and a dot will denote the partial
derivative with respect to the time t.

Using Einstein’s equations and an energy-momentum
tensor containing the late-time ΛCDM components (mat-
ter and cosmological constant), we obtain the ΛLTB model,
whose dynamics follows:

Ṙ2(r, t)
R2(r, t) = 2m(r)

R3(r, t) + 2r2k(r)M̃2

R2(r, t) + Λ
3 , (2)

ρm(r, t) = m′(r)
4πGR′(r, t)R2(r, t) , (3)

where ρm(r, t) is the energy density of matter, G is the grav-
itational constant and m(r) is the so-called Euclidean mass
function (Marra & Paakkonen 2012, Appendix B).

From the line element (1), we can note that the ex-
pansion of the universe is not only inhomogeneous but also
anisotropic and, instead of a unique scalar factor, there are
a transverse scale factor, a⊥(r, t) = R(r, t)/r, and a longitu-
dinal one, a‖(r, t) = R′(r, t). The corresponding expansion
rates are then

H⊥(r, t) = ȧ⊥(r, t)
a⊥(r, t) , (4)

H‖(r, t) =
ȧ‖(r, t)
a‖(r, t)

. (5)

In addition, using the previous Friedmann-like equation, we
can define the present-day density parameters of matter,
curvature and cosmological constant as:

Ωm(r) = 2m(r)
R3(r, t0)H2

⊥(r, t0) , (6)

Ωk(r) = 2r2k(r)M̃2

R2(r, t0)H2
⊥(r, t0) , (7)

ΩΛ(r) = Λ
3H2
⊥(r, t0) . (8)

For sake of simplicity hereafter we drop the subscript ⊥ and
simply use a ≡ a⊥ and H ≡ H⊥, unless stated otherwise.
Combining equations (6–8) with equation (2) it is possible to
find the function t(R, r), which is specified by the so-called
Big Bang function tBB(r) (see, e.g., eq. (23) in Valkenburg
2012).

We have seen that the ΛLTB model is specified by three
arbitrary functions: the mass function m(r), the curvature
profile k(r), and the Big Bang function tBB(r). One is but
an expression of the gauge freedom which we fix here by set-
ting m(r) = 4πM̃2r3/3 (Biswas et al. 2007; Biswas & No-
tari 2008)2. The other two functions have physical meaning.
By setting tBB(r) = constant one forbids decaying modes

2 This particular gauge excludes solutions with true vacuum over
a finite r interval (Valkenburg 2012).
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The Copernican principle in light of the latest cosmological data 3

which would be in disagreement with the standard infla-
tionary paradigm (Silk 1977; Zibin 2008). Intuitively, this
happens because the initial singularity would happen at dif-
ferent times for different shells so that large inhomogeneities
would be present in the past.

One is then left with only one free function, k(r), which
then specifies the profile of the inhomogeneity, that is, its
size and depth. We adopt a compensated profile:

k(r) = kb + (kc − kb)P3(r/rB , 0) , (9)

where kb and kc are the curvature outside and at the center
of the spherical inhomogeneity, respectively, rB is the co-
moving radius of the inhomogeneity and the function Pn(x)
is (Valkenburg et al. 2014):

Pn(x) =
{

1− exp [− (1− x)n /x] 0 ≤ x < 1
0 1 ≤ x. . (10)

Profile (9) ensures that the LTB and FLRW met-
rics match at the finite radius rB and also implies that
there exists a radius rL < rB at which the central
over/underdense region makes the transition to the sur-
rounding mass-compensating under/overdense region. The
use of a compensated profile guarantees that outside the
LTB metric (z > zB) one has exactly standard cosmol-
ogy, particularly important for a consistent treatment of the
CMB at z � zB . Also, a compensating over/underdense re-
gion is an expected feature of the standard large-scale struc-
ture: voids are surrounded by sheets and filaments, and su-
perclusters by voids.

An example configuration is given in Figure 1, where
we show the matter density contrast:

δρ(r, t) = ρm(r, t)
ρm(rB , t)

− 1 , (11)

and the (integrated) mass density contrast δ(r):

δ(r, t0) =
4π
∫ r

0 dr̄ δρ(r̄, t0)R2(r̄, t0)R′(r̄, t0)
4πR3(r, t0)/3 (12)

= m(r)
4πGR3(r, t0)/3 ρout

m (t0) − 1 = Ωm H2
0

Ωout
m Hout

0
2 − 1 ,

where “out” denotes the corresponding FLRW quantities.
Note that we are using a volume element without spatial
curvature because it is the Euclidean mass that enters the
Friedmann-like equation (2). The contribution of spatial cur-
vature is, in any case, negligible for sub-horizon inhomo-
geneities (Marra & Notari 2011). Note also that δ(r = 0, t) =
δρ(r = 0, t) and that δ(r = rB , t) = δρ(r = rB , t) = 0. In
particular, the central contrast δ(r = 0, t0) = δ0 is directly
related to kc.

As said earlier, we fixed the freedom in the definition of
r via m(r) = 4πM̃2r3/3. This means that r approximates
the FLRW comoving coordinate only at initial time when
the perturbation is small. At present time, the corresponding
FLRW comoving coordinate is given by:

rout = R(r, t0)/aout(t0) , (13)

so that the FLRW and LTB physical distances coincide (ne-
glecting again the negligible curvature contribution). Note
that rout

B = rB because of the adopted matching condition.
Despite the fact that rB is the radius of the spherical in-
homogeneity, the true scale of interest here is rout

L since it
defines the size of the central under/overdensity.
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Figure 1. Top: The mass density contrast, δ(r, t0), and matter
density contrast, δρ(r, t0), as functions of the FLRW radius of
eq. (13). The underdense region extends up to rout

L , at which
δρ = 0. The compensating overdense region at rout

L < rout < rout
B

is necessary to have δ(rB , t0) = 0. Bottom: The transverse and
longitudinal Hubble rates of eqs. (4) and (5) as a function of
the redshift, as compared to the Hubble rate of the background
ΛCDM model.

Our inhomogeneous universe is then specified by the
inhomogeneous parameters and by the standard six ΛCDM
parameters. The latter are the normalized Hubble constant
h, the baryon density Ωb, the cold dark matter density Ωcdm,
the optical depth τreio, the amplitude of the power spectrum
As, and its tilt ns. Within our modeling, the inhomogeneity
is specified by the parameters zB and δ0, where zB is the
redshift corresponding to the radius rB of the spherical in-
homogeneity, and δ0 is the matter density contrast at the
center (r = 0).

To improve the convergence of the Monte Carlo Markov
Chain (MCMC), instead of −1 ≤ δ0 < ∞, we will use the
following variable:

δ̃0 =
{

δ0 δ0 ≤ 0
δ0/(1 + δ0) δ0 > 0 , (14)

MNRAS 000, 1–12 (0000)



4 Camarena, Marra, Sakr & Clarkson

so that we can adopt a flat prior on −1 ≤ δ̃0 ≤ 1. In the
following we will omit the tilde.

3 OBSERVATIONAL PROBES

As said above, the observer sits at the center of the spherical
structure, that is, we neglect anisotropic degrees of freedom
or, equivalently, average the observer’s observations over an-
gles. In order to confront with observations we then have to
solve the corresponding geodesic equations:

dt

dz
= − R′(r, t)

(1 + z)Ṙ′(r, t)
, (15)

dr

dz
= −

√
1 + 2r2k(r)M̃2

(1 + z)Ṙ′(r, t)
. (16)

Although it is not possible to find analytically R(r, t), one
can use Carlson’s elliptic integrals (Carlson 1995) to accu-
rately evaluate t(R, t) from equation (2). Then, using numer-
ical inversion, R(r, t) can be precisely obtained (Valkenburg
2012). To perform this semi-analytic computation of the
metric functions and LTB dynamic we use the vd2020 code.
We have embedded the vd2020 code into the montepython
code (Brinckmann & Lesgourgues 2018; Audren et al. 2013),
in order to take advantage of the likelihood structure and
the MCMC sampler, resulting in the monteLLTB code, which
is described in Appendix A.

3.1 Cosmic microwave background

As we adopt a compensated profile which matches the
FLRW metric at zB < 1, the physics at (pre-)decoupling
is as in the standard ΛCDM model. Consequently, if we also
assume the standard adiabatic power spectrum, changes on
the CMB power spectrum are only produced by line-of-sight
effects. More precisely, in comparison with a ΛCDM model,
the spherical inhomogeneity only changes the primary CMB
spectrum via the late-time Integrated Sachs-Wolfe effect
(ISW) and the angular distance to the last scattering sur-
face. It is important to stress that the choice of a standard
power spectrum is a posteriori justified, since observations
will only allow radial inhomogeneities whose density contrast
can be considered as a ΛCDM linear perturbation (Valken-
burg et al. 2014). In this context, we moreover assume that
the inhomogeneity does not change the late-time ISW effect
as compared with ΛCDM.

Thus, an effective FLRW metric can be used to ac-
count for the changes produced in the CMB and it can be
obtained through a rescaling of the background cosmology
(Zibin et al. 2008; Marra & Paakkonen 2010; Biswas et al.
2010; Moss et al. 2011).

Starting from the matching shell of coordinates
{tB ≡ t(rB), rB} and demanding the same angular dis-
tance in both the effective FLRW and the ΛLTB cosmol-
ogy, we solve the geodesic equations of the ΛCDM back-
ground until r = 0. This will give us the age of the effec-
tive FLRW cosmology, tFLRW(r = 0) = teff

0 . In the same
way, we can also obtain the boundary redshift as mea-
sured by an observer in the effective FLRW cosmology,
zeff

B = aFLRW(teff
0 )/aFLRW(tB) − 1. We are then able to

find the background quantities of the effective FLRW model

(Marra & Paakkonen 2010, eqs. (3.6–13)). Note that the
non-background parameters, As, ns and τreio will remain
unchanged.

The CMB power spectrum of the effective FLRW model
is computed through the CLASS code (Blas et al. 2011) (de-
tails in Appendix A). We use the latest Planck observations
for both high-` and low-` for the TT+TE+EE spectrum,
available at esa.int/Planck (Aghanim et al. 2018).

Note that the impact of large-scale inhomogeneities on
low-` requires the challenging computation of perturbations
in an inhomogeneous background, mostly because of the
complex contribution of the late ISW effect (Tomita & Inoue
2009; Clarkson & Regis 2011; Bolejko et al. 2011). However,
as mentioned before, we assume that the late ISW effect is
not modified by the spherical inhomogeneity because of the
a posteriori-small inhomogeneity contrast. Nevertheless, in
order to offer a robust analysis, we have also tested the im-
pact of this assumption by performing an analysis without
the low-` Planck data, see Appendix B.

3.2 Type Ia Supernovae

Supernovae Ia (SNe) are standardizable candles largely used
in cosmology. Their apparent magnitudes, mB , allow us to
constrain cosmological models through the relation

mB(z) = 5 log10
dL(z)
1Mpc + 25 +MB , (17)

where dL is the luminosity distances andMB is the absolute
magnitude. From the LTB metric (1), one can note that the
angular and luminosity distances, respectively, are:

dA(z) = R(r(z), t(z)) , (18)
dL(z) = (1 + z)2R(r(z), t(z)) , (19)

where t(z) and r(z) are the solution to the geodesic equa-
tions (15) and (16).

Here, we use the Pantheon dataset (Scolnic et al. 2018),
which contains a total of 1048 supernovae in the redshift
range 0.01 < z < 2.3. Unlike previous SNe datsets, as for
instance JLA (Betoule et al. 2014), the apparent magnitude
mB of the Pantheon catalog already includes the correction
due to stretch x1, color c and host-galaxy correction ∆M ,
leaving then MB as the only nuisance parameter. 3

We will consider both the full dataset and also the low-
z subset in the redshift range 0.023 ≤ z ≤ 0.15 that is used
to infer the Hubble constant via a cosmographic fit.

3.3 Local prior

In order to constrain very local scales it is important to
include a prior on the Hubble constant. As discussed in Ca-
marena & Marra (2021) (see also Benevento et al. 2020;
Efstathiou 2021), it is better to include the latter constraint

3 An LTB analysis of the SDSS-II supernova dataset (Kessler
et al. 2009) has shown that different light-curve fitters lead to
different constraints on the LTB voids, especially on the size of
inhomogeneity (Bengochea & De Rossi 2014). In this work, we do
not explore this correlation between LTB parameters and light-
curve fitter.

MNRAS 000, 1–12 (0000)
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The Copernican principle in light of the latest cosmological data 5

via a prior on the absolute magnitude MB of Type Ia su-
pernovae, removing the contribution from the cosmographic
analysis that is adopted to fit for H0. The reasons are i) cos-
mography may fail when sudden low-redshift transitions are
possible (especially relevant for the present case) and, in any
case, its cosmographic parameters q0 and j0 will not agree
with the ones adopted for the standard analysis (within LTB
there is not a unique H0 but instead H0(r) = H(r, t0)), ii)
all supernovae are expected to share the same MB , and iii)
supernovae should not be double counted. For more details,
see Camarena & Marra (2021).

For the absolute magnitude of supernovae we adopt the
effective gaussian prior MB = −19.2334 ± 0.0404 from Ca-
marena & Marra (2020). This determination is obtained
through a de-marginalization of the SH0ES determination
in Reid et al. (2019).

3.4 Cosmic chronometers

Using spectroscopic techniques it is possible to determine
the relative age between a pair of passively-evolving galax-
ies at different redshifts. Such differential age, along with
the corresponding redshifts, can be used to determine the
rate dz/dt without any assumptions about cosmology. In
an FLRW universe the rate dz/dt simply corresponds to
the Hubble parameter since H(z) = ȧ/a (Jimenez & Loeb
2002). In an LTB model, as it is clear from equations (15)
and (5), the same rate corresponds to the radial Hubble pa-
rameter H‖.

We use the dataset compiled in Moresco et al. (2016,
Table 4) to constrain ΛLTB. Such set contains 30 data points
spanning the redshift range 0 < z < 2 (Moresco et al. 2016,
2012; Simon et al. 2005; Stern et al. 2010; Zhang et al. 2014;
Moresco 2015).

3.5 Baryonic Acoustic Oscillations

At the drag epoch, td, baryonic acoustic oscillations imprint
the (comoving) sound horizon scale rd in the matter two
point correlation function. Such scale can be used as a stan-
dard ruler, along both the longitudinal and transverse direc-
tions.

Within FLRW both the longitudinal and transverse
BAO scales are given by ∆z = ld(1 + z)H(z) and ∆θ =
ld/dA(z), respectively, where ld = rd/(1 + z) is the proper
sound horizon. On the other hand, in a spherically inho-
mogeneous model, where the anisotropic expansion rates
rule the dynamics, the BAO scales follow (Garcia-Bellido
& Haugboelle 2009; Zibin et al. 2008; Biswas et al. 2010):

l‖ =
a‖(r(z), t(z))
a‖(r(z), td)

rd

(1 + zd) , (20)

l⊥ = a(r(z), t(z))
a(r(z), td)

rd

(1 + zd) . (21)

leading then to

∆z(z) = l‖(1 + z)H‖ , (22)

∆θ(z) = l⊥
dA(z) , (23)

where zd is the redshift at the drag epoch, obtained using
the effective FLRW model.

Depending on the survey analysis, it is possible to detect
both the radial, ∆z, and angular, ∆θ, BAO scales or simply
their isotropic combination

dV = rd

(
z

∆θ2∆z

)1/3
. (24)

Here, we use both isotropic and anisotropic measurements
coming from 6dFGS (Beutler et al. 2011), SDSS-MGS (Ross
et al. 2015) and BOSS-DR12 (Alam et al. 2017). The
isotropic measurements 6dFGS and SDSS-MGS allow us to
assess low redshifts, 0.1 and 0.15, respectively, while the
BOSS anisotropic data allow us to probe the redshifts 0.38,
0.51 and 0.61.

BAO analyses make use of a fiducial cosmological model
to analyze the observed redshifts and angles and so measure
the transverse and longitudinal BAO peak positions. For a
wide range of wCDM cosmologies, Carter et al. (2020) found
no evidence for systematic errors in the measured BAO sig-
nal. As the ΛLTB luminosity distance-redshift relation has
a phenomenology qualitatively similar to wCDM (Valken-
burg et al. 2013) and the inhomogeneity contrast will be
constrained to linear level by observations, the latter work
suggests that the use of a fiducial ΛCDM model in the BAO
analyses should not introduce a significant bias into our re-
sults.

3.6 Compton y-distortion

Reionized off-center structures can act as a mirror, scatter-
ing CMB photons within our past lightcone along our line-
of-sight. This injects photons with different temperatures
and produces a spectral distortion, known as Compton y-
distortion, of the CMB thermal black body spectrum. In
the single-scattering and linear approximation, the spectral
distortion produced by the off-center structure is (Moss et al.
2011; Caldwell & Stebbins 2008; Zibin 2011):

y = 7
10

∫ zre

0
dz
dτ

dz
β2(z) , (25)

where zre is the redshift of the reionization epoch, β(z) is the
dipole of the off-center structure and the time dependence
of the optical depth τ is given by

dτ

dt
= σT fb

(
1− YHe

2

)
ρm(t)
mp

, (26)

where σT is the Thompson cross section, fb is the baryon
fraction, YHe is the helium mas fraction andmp is the proton
mass. Note that equation (25) assumes that the dominant
contribution to the y-distortion is given by the dipole, ne-
glecting the higher multipoles.

In ΛCDM, the dipole β(z) is produced by peculiar veloc-
ities, that is, by perturbations. On the other hand, the very
ΛLTB background produces a dipole for off-center struc-
tures. In fact, we can rougly approximate β(z) ' DδH,
where D is some proper distance (Alnes & Amarzguioui
2006). Here, in order to provide an accurate estimation
of y-Compton distortion, we compute β(z) following the
procedure stated in Garcia-Bellido & Haugboelle (2008).
First, one identifies the redshift of the off-center structure,
z, then starting at coordinate {t(z), r(z)}, one solves the
outgoing and ingoing geodesic equations to the surface of

MNRAS 000, 1–12 (0000)



6 Camarena, Marra, Sakr & Clarkson

last scattering obtain z− and z+, respectively. Then, con-
sidering that the temperature of CMB scales according to
T ∝ 1/z, the dipole in the light-cone is given by β(z) =
(z+ − z−)/(2 + z+ + z−) (see Figure 1 in Garcia-Bellido &
Haugboelle 2008).

The y-Compton spectral distortion provides an interest-
ing way to extract cosmological information that could be
even useful to improve our understanding of the standard
ΛCDM model (see for instance Lucca et al. 2020). However,
the current measurement is not precise enough to provide
any statistically significant constraint on ΛCDM. In fact, the
only available measurement comes from the COBE-FIRAS
satellite (Fixsen et al. 1996), which sets an upper limit at
2σ given by y < 1.5× 10−5. Although this upper limit does
not offer major information regarding the ΛCDM paradigm,
it nevertheless directly constrains the dipole, β(z), and so
spherical inhomogeneity.

3.7 The kinetic Sunyaev–Zeldovich effect

The existence of a dipole for off-center structures also pro-
duces anisotropies in the CMB spectrum via the kSZ ef-
fect. Generated by the inverse Compton scattering of low-
energy photons with high-energy electrons, the kSZ effect
is a powerful observable to constrain inhomogeneous models
(Garcia-Bellido & Haugboelle 2008; Zhang & Stebbins 2011;
Zibin & Moss 2011; Bull et al. 2012).

Here, we will consider the so-called linear kSZ effect
(Zhang & Stebbins 2011). Using the Limber approximation
and considering the effect due to all free electrons in the
reionized universe we compute the linear kSZ effect as (Zibin
& Moss 2011):

CkSZ
` ' 16π2

(2`+ 1)3

∫ rre

0
dr r

[
β(r)dτ

dr

]2
∆2

m , (27)

where rre is the radial coordinate at zre and the nonlinear di-
mensionless matter power spectrum depends on r according
to:

∆2
m = ∆2

m

((
k̄ = 2`+ 1

2r
)
× Ξ, z(r)

)
, (28)

where Ξ is introduced in order to correct for the LTB
anisotropic expansion:

Ξ =
(1 + z

1 + z

)[
a2(t, r(z))
a2(t(z), r(z))

a‖(t, r(z))
a‖(t(z), r(z))

]1/3

. (29)

Indeed, let us consider a comoving wavenumber k̄ at
an early-enough time t̄ at which, thanks to the absence of
decaying modes, the metric is close to FLRW and a harmonic
decomposition of the temperature perturbations is possible.
Because of the subsequent anisotropic expansion, the proper
mode k̄/ā is stretched differently along the longitudinal and
transverse direction:
k{‖,⊥}

a
= k

a

a{‖,⊥}(t, r)
a{‖,⊥}(t, r)

. (30)

As we need to feed a single wavenumber to the standard
power spectrum, we will then consider, in analogy to the
BAO scales, the isotropic wave number

[
k2
⊥(z)k‖(z)

]1/3, jus-
tifying the previous equations.

We constrain spherical inhomogeneity using the first
kSZ measurement at more than 3σ given by Dobs

3000 =

3.0 ± 1.0 µK (Reichardt et al. 2020), where 2πD` = `(` +
1)C`. We compute the non-linear power spectrum using the
HALOFIT model (Smith et al. 2003) and considering the
background FLRW cosmology. Note that, because of lin-
ear perturbations and peculiar velocities, the ΛCDM back-
ground also contributes to the kSZ effect, i.e., the kSZ effect
does not disappear when zB , δ0 → 0. We take into account
this ΛCDM contribution using the patchy and homogenous
parameterizations (Calabrese et al. 2014):

h-AkSZ = 1.65
(
σ8

0.8

)4.46
, (31)

p-AkSZ = 2.03
[

(1 + zre)
11 − 0.22

](
∆zre

1.05

)0.51

, (32)

where ∆zre = z(xi = 25%) − z(xi = 75%) is the duration
of reionization and xi is the ionization fraction of hydrogen.
We compute xi using the tanh model (Lewis 2008).

It is worth stressing that our implementation of the kSZ
effect is not free of ambiguities and is based on the a poste-
riori result that observations constrain the ΛLTB inhomo-
geneity to an almost linear perturbation of ΛCDM. A fully
consistent treatment of kSZ requires the not-yet available
understanding of the growth of matter perturbations in an
inhomogeneous background.

4 COPERNICAN PRIOR

If the Copernican principle is valid, then the perturbations
inferred from CMB observations should describe the early
universe at any point and, in particular, also at our observ-
ing position. It follows then that we can use CMB summary
statistics such as the power spectrum to translate the Coper-
nican principle into its statistical counterpart, the “Coper-
nican prior.” Specifically, the Copernican prior enforces the
requirement that local inhomogeneities – parametrized by
zB and δ0 within our construction – must agree with the
power spectrum as predicted by the CMB (Valkenburg et al.
2014).

To build the Copernican prior, we start by assuming
that the density contrast, δ, is a Gaussian field with a van-
ishing mean. Under the assumption of a spherical inhomo-
geneity, we compute the variance of δ through the standard
mean square estimator

σ2(r) =
∫ ∞

0

dk

k
∆2

m0(k)
[

3 j1(r k)
r k

]2

, (33)

where ∆m0(k) is the standard dimensionless power spec-
trum today and j1 is the spherical Bessel function of the
first kind. We adopted the linear power spectrum as we are
interested on large scales (& 20Mpc) at which the nonlin-
earities have a negligible impact on our results. The radius
r is the size of the inhomogeneity that the Copernican prior
will constrain. As we are considering a compensated profile,
we cannot compute the likelihood of having a given pertur-
bation on the scale rB as it is δ(rB , t) = 0 by construction
(see Fig. 1). Rather we must use the scale rL of the actual
under/overdensity. Thus, the Copernican prior is defined as

P(δ0, zB) ∝ exp
[
−1

2
δ2(rL(δ0, zB), t0)
σ2(rout

L (δ0, zB))

]
, (34)
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where δ(r, t0) is given in equation (12), the function
rL(δ0, zB) gives the radius of the central under/overdensity
given the central contrast δ0 and the redshift of the inhomo-
geneous patch zB , and the FLRW radius rout is defined in
equation (13). We will then compare the observational con-
straints on ΛLTB with the ones from the Copernican prior
convolved with the CMB likelihood:

P (δ0, zB) =
∫
dpiP(δ0, zB)LCMB(pi, δ0, zB) , (35)

where pi denote the standard ΛCDM parameters and LCMB
is the CMB likelihood of Section 3.1. Therefore, P is the
probability distribution of δ0 and zB , given the initial con-
ditions obtained from the CMB and their uncertainty, which,
under the Copernican principle, describe matter perturba-
tions around us.

Finally, the above prior differs from the one adopted in
Valkenburg et al. (2014) on three aspects. First, we removed
the normalization factor (σL

√
2π)−1, since it has the effect

of weighting differently different values of zB , while instead
the Copernican prior should penalize in the same way fluc-
tuation at any zB . Second, Valkenburg et al. (2014) uses
the relativistic mass to compute δ(r) while we adopt the
Euclidean mass as in (12). Quantitatively the difference is
small and the Euclidean mass definition can be better com-
pared with equation (33). Lastly, we correct for the LTB
gauge by using rout.

5 RESULTS

As mentioned earlier, we have performed the data analy-
ses using the monteLLTB code (see Appendix A). We use
the Gelman-Rubin diagnostic (R, Gelman & Rubin 1992) to
evaluate the convergence of the Markov-chain Monte Carlo
analysis. Explicitly, we demand chains with (R − 1) . 0.05
for the inhomogeneity parameters δ0 and zB . This leads to
ΛCDM parameters with a convergence of (R−1) ∼ O(10−3).
Most of the plots showed in this section have been produced
using getdist (Lewis 2019).

5.1 Constraints on the inhomogeneity

Figure 2 shows the marginalized constraints on the comov-
ing size rout

L and integrated mass contrast δL = δ(rL, t0) of
the ΛLTB inhomogeneity for various combinations of observ-
ables.4 Also shown are the constraints from the Copernican
prior convolved with the CMB likelihood of equation (35),
that is, the region of the parameter space that is allowed
within the standard model of cosmology. It is clear that only
linear non-Copernican structures are allowed at larger radii
once all the observables are considered, while for smaller
sizes the Copernican principle (CP) is confirmed and, actu-
ally, observations start to map the local structure.

In order to better see this, we show in Figure 3 the ef-
fective contrast beyond what is allowed by the Copernican
principle as a function of the effective size rout

L . We define
this non-Copernican δL as

√
σ2

obs − σ2
CP within the corre-

sponding rout
L bin, where σ2

obs and σ2
CP are the variances of

4 As for δ0, we are actually showing δ̃L instead of δL, as explained
after eq. (14).

Parameter ΛCDM ΛLTB

102ωb 2.25+0.026
−0.027 2.25+0.027

−0.025

ωcdm 0.119+0.002
−0.002 0.119+0.002

−0.002

H0 68.56+0.84
−0.82 68.53+0.82

−0.81

ln1010As 3.04+0.03
−0.03 3.04+0.03

−0.03

ns 0.967+0.007
−0.007 0.967+0.007

−0.007

τreio 0.056+0.016
−0.016 0.056+0.016

−0.015

ΩΛ 0.70+0.011
−0.011 0.70+0.011

−0.011

Table 1. 68% confidence level intervals for the six ΛCDM param-
eters and also the derived parameter ΩΛ, marginalized over the
effect of inhomogeneities around us (ΛLTB) and for the standard
ΛCDM model that assumes the Copernican principle.

δL relative to the empty and green contours of Figure 2, re-
spectively. Figure 3 shows that structures can have a small
extra effective contrast of just δL ∼ 0.01.5

5.2 Constraints on the the standard model
parameters

Figure 4 and Table 1 show the constraints on the six ΛCDM
parameters, marginalized over the effect of inhomogeneities
around us. For comparison sake, we also show the constraints
relative to the standard ΛCDM model that assumes the
Copernican principle. Our results show that dropping the
Copernican principle has a minor effect on the ΛCDM pa-
rameters, slightly increasing the allowed parameter region
because of the small correlations with the ΛLTB parame-
ters. We show in Appendix C the triangular plot with all
the correlations.

6 DISCUSSION

6.1 The local structure and the H0 tension

If only the CMB, the prior on the supernova absolute mag-
nitude MB and the low-redshift supernovae are included in
the analysis, then one sees from Figure 2 that a local un-
derdensity of effective size 600–900 Mpc and effective depth
of -(0.2–0.1) is favored by the data, strongly at odds with
the Copernican prior. This shows how a void can solve the
H0 tension by boosting the local Hubble rate (see Camarena
et al. 2021). However, it is enough to include the full super-
nova dataset to see that the void scenario is excluded. In
other words, although the local structure may cause envi-
ronmental effects such as a possible bias on the local value
of H0 (see Camarena & Marra 2018, and references therein),
we find that a local inhomogeneity cannot solve the H0 cri-
sis. We discuss this thoroughly in Camarena et al. (2021)
(see also Cai et al. 2021, and references therein).

From Figures 2 and 3 it is also clear that available ob-
servations started to probe the local structure, going be-
yond cosmic variance expectations. There have been claims
that we live inside a local void, see, for instance, Keenan

5 Note that, because of the non-Gaussian nature of the posterior,
it is not straightforward to compare Figure 3 with Figure 2.
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Figure 2. Marginalized constraints on the effective contrast δL and size rout
L of the ΛLTB inhomogeneity at 68% and 95% confidence

level. The empty contours show the constraints from the corresponding combination of observables. The green area shows the region of
the parameter space that is allowed by the standard model, here represented via the Copernican prior convolved with the CMB likelihood.

0 95 190 285 380 475 570 665 760 855 950

rout
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10−2

10−1

√
σ

2 ob
s
−
σ

2 C
P

CMB + SNe + MB

CMB + SNe + MB + BAO + Hz + y-distortion + kSZ

Figure 3. Effective contrast beyond what is allowed by the
Copernican principle (CP) as a function of the effective size rout

L of
the ΛLTB inhomogeneity. One can see that non-Copernican struc-
tures can have a small extra effective contrast of just δL ∼ 0.01.

et al. (2013); Whitbourn & Shanks (2014); Böhringer et al.
(2020); Colgáin (2019). These claims were challenged by the
analyses of, e.g., Kenworthy et al. (2019); Luković et al.

(2020). According to our results, deep structures are al-
lowed only on very local scales, . 100 Mpc, possibly con-
tradicting the claims by Keenan et al. (2013); Whitbourn &
Shanks (2014); Böhringer et al. (2020), which suggest larger
voids. In particular, by comparing the observational con-
straints with the ones from the Copernican prior, we do not
find a marked preference for underdensities with respect to
overdensities.6 However, one must note that, on such small
scales, anisotropies play an important role, which is not
captured by our modeling. Therefore, it is not straightfor-
ward to compare our results with analyses that model local
anisotropies.

6.2 Towards inhomogeneous cosmology

Figure 2 shows how the region of the δL-rout
L parameter

space that is allowed by data is progressively constrained
to closely follow the one allowed by the Copernican prior. It
is interesting to note that while the case CMB+SNe+MB

6 Note that, as said after eq. (14), we are showing results for δ̃.
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Figure 4. Marginalized constraints on the six ΛCDM parameters and also the derived parameter ΩΛ and the supernova absolute
magnitude MB . We compare the constraints marginalized over the effect of inhomogeneities around us with the ones relative to the
standard ΛCDM model that assumes the Copernican principle. This plot shows that the standard ΛCDM results are robust against the
effect of inhomogeneities, whose effect is basically negligible, see Table 1. In other words, cosmological inference without the Copernican
principle not only is possible, but is affected to a very minor extent.

already tightly constrains the ΛLTB model, large-scale in-
homogeneities at rout

L & 500 Mpc are efficiently constrained
only by the combinations of all probes, showing their syn-
ergies in constraining deviations from FLRW. These results
represent a substantial improvement as compared to the pre-
vious analysis of Valkenburg et al. (2014).

Globally, one can quantify how much non-Copernican
structure is allowed by comparing, in Figure 2, the CP area
with the one allowed by data, as proposed by Valkenburg
et al. (2014). Table 2 shows the ratios of the areas of the
2σ contours for the different cases here analyzed. One can
note that, when the whole parameter space is considered,
the ratio is close to 1. However, as remarked earlier, very-
large-scale inhomogeneities are more difficult to constrain
and so we also compute the ratios considering only scales
rout

L ≥ 190 Mpc. These results show that the ratio is ∼ 3
when CMB+SNe+MB are considered and decreases to ∼ 2
when all data are included.

Finally, we also considered the case of nonzero back-
ground curvature and found that our results remained basi-
cally unaltered. The reason is that CMB strongly constrains
the background value of Ωk, and this is not affected by the
compensated LTB inhomogeneity, which is constrained to
small contrasts by the other observables.

All these results imply that, within the present mod-
eling, we are close to establishing the Copernican principle
and, even more important, that dropping the Copernican
principle assumption does not imply worse constraints on
the cosmological parameters.

Case
Aobs/ACP Aobs/ACP

0≤rout
L 190Mpc≤rout

L

CMB + SNe + MB 1.16 2.85

CMB + SNe + MB + BAO + HZ 1.11 2.88

CMB + SNe + MB + y-dist. 1.12 2.83

CMB + SNe + MB + kSZ 1.07 2.35

CMB + SNe + MB + All 1.02 2.15

Table 2. Ratios of the areas of the 2σ constraints from observa-
tions and the Copernican principle, see Figure 2.

6.3 The LTB parametrization

It is important to mention that our results depend, to some
extent, to the chosen parametrization for the curvature func-
tion given in eq. (9). While it is clear that the two main
physical parameters describing a spherical inhomogeneity
are its size rb and contrast δ0, it is nevertheless true that,
with ever tighter constraints, details of the curvature profile
such as its smoothness could start having an impact. One
could overcome this limitation by considering a more flex-
ible parametrization for the curvature or density profile as
proposed in Redlich et al. (2014), where a an n-node spline
is considered. This approach is clearly recommended if one
wants to find the best-fit inhomogeneous model to observa-
tions and will be pursued in Camarena et al. (2021), but this
is not our scope here.

Here, we wish to test the Copernican principle, that is,
test all the parameter space of LTB models and the adoption
of a more general profile may lead to problems. Indeed, for
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10 Camarena, Marra, Sakr & Clarkson

the analysis of the present work to be meaningful, we wish
to explore the overdensities and underdensities in a similar
fashion and this is not a trivial task within the LTB model
of eq. (1). The reason is that underdensities may experience
shell-crossing singularities which, although unphysical, pre-
vent the analysis and create an artificial asymmetry in the
parameter space. Shell crossing occurs when R′ = 0 and
this happens when the inner faster-expanding underdensity
pushes against the compensating shell. In other words, when
exploring the parameter space of a more flexible profile, shell
crossing could lead to volume effects which would bias the
results.

By inspecting the distribution of models for which the
computation of the LTB dynamics failed, we checked that
the parametrization of eq. (9) does not penalize underdensi-
ties or overdensities. However, one has to keep in mind that
the results shown in Figures 2 and 3 are conditional to the
assumed parametrization of the LTB model.

7 CONCLUSIONS

The analysis carried out in this work is but a first step in
the direction of analyzing and interpreting cosmological and
astrophysical data within the framework of inhomogeneous
cosmologies. Inhomogeneous cosmology is loosely defined as
cosmology without the assumption of large-scale isotropy
and homogeneity, that is, it is not based on an a prior
assumed FLRW metric. As discussed in the Introduction,
data themselves may suggest that the universe could fea-
ture large-scale inhomogeneities and isotropies beyond the
standard model of cosmology. Consequently, it is important
to pursue a program that confront observations with arbi-
trarily inhomogeneous cosmologies.

Here, we adopted the simple approach of endowing the
ΛCDM model with a spherical inhomogeneity. We found
that, within our LTB parametrization, data can tightly con-
strain this extra inhomogeneity. Also, our results show that
the constraints on the standard ΛCDM parameters are not
weakened after marginalizing over the local structure. In
other words, dropping the Copernican principle assumption
does not necessarily imply significantly worse constraints on,
e.g., the dark energy density. This positive result confirms
that the present and future data can be meaningfully ana-
lyzed within the framework of inhomogeneous cosmology.

A possible development of the present analysis is to con-
sider inhomogeneities in the radiation field, as proposed by
Regis & Clarkson (2012). Indeed, if the universe features
large-scale inhomogeneities in the matter, one may expect
a similar behavior in the other fields such as the baryon
fraction or baryon-to-photon ratio which can significantly
alter some of the analysis and constraints. We envision that
present and future cosmological data will nevertheless be
able to constrain the free functions of these models.

Finally, mapping the local structure may have impor-
tant implications; a notable one is its effect on the H0 crisis,
which we discuss in a separate paper where we derive a ro-
bust constraint on the local value of H0 from the ΛLTB
model (Camarena et al. 2021).
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APPENDIX A: THE monteLLTB CODE

We embeded the vd2020 code (available at
github.com/valkenburg/vd2020) into montepython to
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create monteLLTB: a cosmological solver and sampler for
the ΛLTB model. Taking advantage of the likelihood and
sampler structure of montepython we include the ΛLTB
cosmology by adapting the likelihood computation scheme.
We started defining the method ini_LLTB on sampler.py,
which executes the solver vd2020 considering the current
sampled point. Then, a call for ini_LLTB is included into
the method compute_lkl to pass the ΛLTB solution to the
corresponding likelihood. Note that this is possible since
the method of the likehood loglkl now receives a new ar-
gument LLTBin, which contains the ΛLTB solution. We also
modified the likelihoods in order to compute the observables
according the ΛLTB predictions. Note that the output of
vd2020 is managed by the file LLTB_functions.py, which
contains definitions of distances and metric functions.
Finally, it is important to mention that we modified vd2020
in order to customize the management of error, output
precision and outputted functions. However, the core of
the ΛLTB solver, the implementation to compute R(t, r)
through Carlson’s elliptic integrals (Valkenburg 2012),
remained unchanged. The monteLLTB code is available at
github.com/davidcato/monteLLTB.

APPENDIX B: IMPACT OF LARGE SCALES

Here, as discussed in Section 3.1, we assess the impact of not
using low-` Planck data. Figure B1 compares the constraints
when using both high- and low-` Planck data with the more
conservative case of only including high-` Planck data. We
see that the impact on the parameters of the inhomogene-
ity is minor, while the impact on the ΛCDM parameters is,
as expected, strong. In other words, in the present analy-
sis, the low-` Planck data are effective only for the ΛCDM
parameters. A more complete treatment requires the chal-
lenging computation of perturbations in an inhomogeneous
background.

APPENDIX C: TRIPLOT

For completeness we show in Figure C1 the marginalized
constraints and correlations of the eight independent pa-
rameters of the ΛLTB model.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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