

Abstract-This paper describes the design and

evaluation of two browser-based video communication

prototypes that support sign language communication

between Deaf people. The research explores

combinations of technologies, protocols and architectures

with the hope to eventually provide a mobile video system

that Deaf people would want to use enough to pay for.

Technology products, and in particular mobile and

web-based video communication systems, are designed

for the majority of people in general. These are not

necessarily suitable for Deaf people who have very

different physiological and cultural needs. We focus on

browser-based video transmission because end-users

need not struggle with application installation.

Web-browsers are also common on mobile phones. This

paper compares two prototypes built with Adobe Flex

and HTML5, H.264 and H.263 video codecs, and PC and

mobile phone implementations. The paper describes the

motivation, related work, methods, prototype design and

finally analyses results of user experiments conducted

with Deaf users.

Index Terms— Network services, web services, mobile

services, video codecs and protocols

I. INTRODUCTION

This paper describes the implementation of two

browser-based video communication prototypes with

different video codecs, and compares and evaluates the video

quality of the two prototypes. The target community for the

use of the technology is the Deaf Community of Cape Town

(DCCT), an NGO (non-governmental organization) that

supports disadvantaged Deaf people. Deaf with a capital „D‟

denotes people who use sign language as their mother

language. The distinctions between the terms "deaf", "Deaf",

and "hard of hearing" are based principally on the individual's

preferred language (spoken or signed) rather than on the

actual degree of hearing loss.

According to census statistics, there are roughly 4 million

people with hearing impairment in South Africa [3]. Of these,

10% are profoundly Deaf, and they use South African Sign

Language (SASL) as the primary means of communication.

SASL has a totally different grammar and structure from

English. In South Africa, and with the community that DCCT

serves in particular, most Deaf people are under-educated and

under-employed due to a combination of physiological and

socio-economic factors [4]. Without text and computer

literacy, and unable to speak or hear, Deaf people find text

communication difficult. That said, Deaf users frequently use

SMS (Short Message System) with both Deaf and hearing

users. However, their awareness of poor grammar and

spelling in English embarrasses them and inhibits them from

using text to communicate with hearing people they know are

more literate than they are. Thus, Deaf people prefer to

communicate in sign language.

The two browser-based video communication prototypes

can provide a sign language communication service between

Deaf users. The research question is to explore how to design

and evaluate browser-based video communication systems

such that Deaf people will actually want to use them, and pay

for the service if they deem it good enough. In order to find

out what is 'good enough' for Deaf users, we designed, tested

and compared two browser-based prototypes that provide

semi-synchronous and/or asynchronous, as opposed to

synchronous, video for Deaf users. This project is inspired by

a prior semi-synchronous Deaf communication project,

tested with DCCT members that adapted the synchronous

x264 codec for asynchronous video in a standalone

application [1]. Our focus is on a browser-based system

because it is always on-line and can be used at anytime,

anywhere, on any device. Browser-based systems already

transmit video and audio data over the Internet. However, a

significant problem is that the existing browser-based

systems are not suitable for the specific requirements of Deaf

people that wish to communicate in sign language. First of

all, some of the solutions are not open source. Some have low

quality video. All of them include voice because the video

conferencing systems are actually meant for hearing users.

This paper describes two open source browser-based video

systems implemented specifically for sign language

communication. We choose Adobe Flex and HTML5 to

construct the two prototypes. Both Adobe Flex and HTML5

are well known browser-based development technologies.

Adobe Flash has both synchronous and asynchronous

capabilities. HTML5 has asynchronous capability. This

research aims to help Deaf users to access advanced network

technology easily within a browser. Our methods therefore

focus on both technological and social factors. In our opinion,

Deaf culture and user behavior has an influential effect on the

types of technologies we should use. Therefore, user

inclusion is performed during the course of the project.

The paper is organized as follows: Section II describes

work related to currently available open source generic

browser-based video systems, and also some dedicated

standalone Deaf video systems. Section III presents research

methods including user requirements, their analysis, and

evaluation procedure and experimental design. Section IV

describes prototype implementation. Section IV details the

results achieved, and Section V concludes the paper and

suggests avenues for future work.

II. RELATED WORK

Work related to our browser-based Deaf video prototypes

Browser-based Sign Language Communication

Yuanyuan Wang, William D. Tucker

Department of Computer Science

University of the Western Cape, Private Bag X17, Bellville 7535

Tel: +27 21 9592461, Fax: +27 21 9593006

email: {2918818, btucker}@ uwc.ac.za

can roughly be divided into three categories: technologies

that can be used to build such prototypes, reference

implementations for browser-based video although built for

hearing, and not Deaf, users and finally, video systems

explicitly tailored to support sign language communication

between Deaf people.

A. Technologies

Adobe Flash is a common, yet proprietary, way for users to

exchange video and audio data over the Internet. Many

browsers support Adobe Flash with plug-ins. There are two

ways to transmit media data between a server and a client

using Adobe Flash [5]. Firstly, video media can be

transferred asynchronously as a download with Hypertext

Transfer Protocol (HTTP). This method practically

guarantees a high standard of video quality that is primarily

dependent on the host machine's processing capability at the

expense of the delay incurred to wait for the media to

download. Secondly, video can be streamed with the Real

Time Media Protocol (RTMP) [6]. In this way, the bandwidth

availability determines the quality and speed of the video

playback. Streaming can be real-time, or continuously start

and stop thus providing a mixture of real-time and

asynchronous transfer, making it semi-synchronous in nature.

Video quality can also be artificially degraded to improve the

streaming speed.

Another technology is HTML5 [7], the newest version of

Hypertext Markup Language (HTML), the core markup

language of the Internet web pages. HTML5 is a revision of

HTML4. HTML5 adds new tags and new Application

Programming Interfaces (APIs), and incorporates web forms

2.0. HTML5 supports live audio and video in a web page.

This new character of HTML5 makes it a possible alternative

to Adobe Flash when building browser-based media services.

XML [8] is a general-purpose language that is used to

create a set of markup languages for individual responses. A

markup language is a computer language with a logical

structure beside the data. XML is classified as an extensible

language, for it can be used to define specific tags for a given

user application. Each XML tag is used to mark each part

inside an XML document. Tags always appear in pairs. An

XML document can be handled by using the Document

Object Model (DOM) [9]. An XML file can be taken as a tree

structure, and each node in this tree structure has its own type,

name, value and attributes. DOM is used to set and get these

nodes, and adjust the positions of nodes. The most important

aim of XML is to build a bridge between two different

information systems. The documents and data of the two

systems can be shared and exchanged easily by using XML

[10]. For example, NewsML [11] is an extended XML

format. It is used in Japan as a standard format in the group of

Japan Newspaper Publishers & Editors Association. Japanese

newspaper agencies are able to get big headline news from

the major newspaper companies easily through NewsML

transmission.

Before introducing video codecs [12], the difference

between the media file and the codec should be clarified. A

media file is a container to store video and audio data, often

with some scripting. The algorithm used to compress video

and audio data is the codec. A video codec is a technology,

often embedded in a device, to compress or decompress

digital video data. A video codec represents a fundamental

analogue dataset in a digital way. A typical video codec

model includes the following steps: decoding and sampling,

input processing, output processing and encoding. In a video

communication system, the size of the video frame and

sequences are determined by the codec. Video codecs have a

significant impact on video quality [13]. H.264 [14] is a

standard for video compression. This standard is also called

H.264/MPEG-4 AVC or AVC. H.264 has a number of new

features that make it particularly more efficient than the

previous codec standards in a variety of network

environments. The key new features include multi-picture

inter-picture prediction features, lossless macro-block coding

features, and flexible interlaced-scan video coding features

and so on. The aim of H.264 is to present a better video

quality at low bit rates than the previous standards such as

H.263 and MPEG-2.

B. Reference applications and projects

Browser-based video communication systems are

commonly available. We are interested in open source

solutions because we can examine the architecture. Tokbox

(www.tokbox.com) is a browser-based communication

system that supports live video with Adobe Flash. Tokbox

users need not install or download specialty plug-ins in the

client. Tokbox is like a web version of Skype

(www.skype.com) without PSTN (public switched telephone

network) breakout. Dimdim (www.dimdim.com) is another

browser-based system based on Adobe Flash. It is open

source and supports multi-user conference. However,

Dimdim users need to install custom plug-ins to use advanced

features such as desktop sharing. Vmukti (www.vmukti.com)

is another browser-based open source system for

conferencing. Vmukti is built on the .NET framework, and is

therefore much different from Tokbox and Dimdim. This

means that Vmukti users need to install .NET in order to use

it, and this system only runs on the Windows operating

systems.

The frame of view for all of these systems leans toward the

'floating' head to support (and not replace) audio

communication, and the video frame rate and resolution

appear suboptimal in order to prioritize voice traffic for

hearing users.

C. Video for sign language

The best example of mobile Deaf video research is

MobileASL (mobileasl.cs.washington.edu). To balance the

video quality and bandwidth issues, this project uses skin

detection algorithms to find important areas in the video,

called regions of interest, and focuses on the movement

within these areas only. These are areas of the body that are

most used to communicate in sign language and are outside

the 'floating' head frame of view from the neck up, and

include the torso and areas peripheral to the chest. The sign

language in MobileASL is ASL (American Sign Language).

The real-time video codec used by MobileASL is H.264.

In 2008, a research project on Deaf video communication

was implemented based on a high quality asynchronous

video service. The project developed a semi-synchronous

video communication standalone application with high video

quality and minimal latency [13]. To evaluate the QoS

(Quality of Service) of the application to see if it satisfied

Deaf users, an objective video quality measurement tool

called MSU (Moscow State University) video quality

measurement tool was used to gather objective data such as

frames per second. In addition, user observation and

interviews with Deaf users were used to collect subjective

data. Triangulated objective and subjective results showed

that H.264 could be adapted to provide quality asynchronous

video communication to support sign language

communication.

III. METHODS

We wish to combine the features covered in the previous

section with the end goal of browser-based video on a mobile

phone. In order to move in that direction, we employed an

iterative mixed qualitative and quantitative method. Firstly,

we intentionally involved Deaf users from DCCT. Secondly,

we leverage quantitative methods to objectively measure and

analyze prototype performance. The result from each

iterative cycle guides the research effort of the design and

evaluation of browser-based video prototypes. Each iteration

is intended to affect some change in the prototypes to meet

the requirements of Deaf users gathered from the previous

iteration, similar to a user-orientated spiral model in the

software development life cycle. An iteration starts with

planning and moves through development, evaluation and

analysis, spirals up and re-enters the planning stage.

We developed multiple prototypes in order to perform

evaluation and analysis. A simple prototype is built and

evaluated quickly. Then the prototype is intensified based on

analysis of user feedback. Various prototypes, say A and B,

are not necessarily developed at the same time, as versions of

A and B appear throughout the spiral of software life cycle. In

each cycle from the planning to the analysis, a traditional

waterfall model is used. Each phase of the waterfall

transforms an outcome of the previous step into the income of

the current step, and produces a new outcome as output.

The technical system development methodology in this

paper is a prototyping approach that is a vector triangle with

three axes: human-centered qualitative research methods,

quantitative methods to collect metrics and iterative software

engineering methods. User involvement produces valid user

requirements and evaluation that are supported by

quantitative data analysis. The iterative software engineering

method adjusts the direction and produces a series of

prototypes.

With human-centered research, prototype design is driven

by the collection of user requirements, analysis of those

requirements and the user interface. We also need to measure

video quality and require an overall experimental design to

combine these activities. This section describes each of these

issues in turn. Prototype implementation issues are presented

in the next section.

A. User Requirements

The target group for this research is Deaf South Africans.

We have the opportunity to work with a representative

sample in the form of the staff and social workers of DCCT,

located at the Bastion of the Deaf in Newlands, a suburb of

Cape Town. The DCCT staff and social workers act as

research participants. In the planning phase, we also got help

and ideas from another Deaf NGO, SLED (Sign Language

Education & Development) staff, who taught us South

African sign language for six months.

DCCT has supported a community of nearly one thousand

Deaf people in the Cape Town area since year 1987 [15].

Many DCCT members have poor levels of spoken, written

and reading literacy in any of the eleven official South

African languages. They use SASL as their primary language

for the daily communication [15, 16]. DCCT exemplifies

Deaf cultural pride along with the illiteracy, physiological

impairment and underemployment of many Deaf South

Africans, particularly those that are historically

disadvantaged [4]. Therefore, DCCT provides the local Deaf

community with a wide range of benefit programs, such as

group work and community development.

The Deaf people in this community have two particular

characteristics relevant to the technology research. The first

is that they use sign language as the primary language to

communicate with other Deaf people. The second is that they

have limited computer literacy. Only a few communication

applications are used by them, such as Skype and Camfrog

(www.camfrog.com), and from observation and interviews

we know that they do not use these very often simply because

most Deaf people in this community do not have PCs at home

or advanced cell phones. In fact, the only real Internet access

they have is at the Bastion, and they also battle to physically

get to the Bastion because of problems with public transport,

especially its cost.

The issue of sign language means that these people have

specific requirements that are fundamentally different from

the majority of Internet communication users. The issue of

textual and computer (not sign language) illiteracy means

that they are unable to grapple with commonplace

Internet-based communication software. We must endeavor

to address these issues in our prototypes.

We collect user behavior data in three ways to understand

and analyze user requirements. Firstly, we record computer

usage and gross bandwidth consumption from 2007 in the

computer lab at the Bastion. We analyzed this data and saw

what Deaf users actually do when they use those computers

(see Table 1). Secondly, we visit with Deaf participants at the

Bastion once a week since the beginning of 2009. We

communicate with Deaf users face-to-face, using SASL

ourselves and/or with a sign language interpreter. Thirdly, we

explain the project to Deaf users and used a questionnaire to

collect data about technology usage. We analyze both

quantitative and qualitative data, and can therefore build

informed prototypes on both PC and mobile platforms. We

focus on the user interface and video quality to support sign

language communication, like similar projects, e.g. [17],

[18].

As mentioned before, the following table shows how

DCCT members use computer and network. The total user

number has increased from 2007 to 2009 while the total login

times has increased and then dropped down. Deaf people use

mail as their major communication application. In the

meanwhile the number of mail usage has decreased from

2007 to 2009. We are considering it might because mailbox

could not fit their communication requirements. It is easy to

see that the usage of video chat software does not increase

rapidly. The usage of both Instant Messaging (IM) and video

chat are up and down in the three years. It seems like Deaf

http://www.camfrog.com/

people tried to use IM applications and video chat

applications, but they gave up finally.

Year Login

Time

s

User

Num

ber

Internet Item

Instant

Messag

ing

(e.g.

MSN)

Video

Chat (e.g.

Skype)

Mail

(e.g.

Gmail)

2007 929 92 8 4 661

2008 1025 129 51 11 245

2009 677 157 11 8 112

B. Requirement analysis

Due to exposure to technologies to support Deaf

communication since 2000 [4], and the introduction of a

computer lab to the Bastion in 2004, Deaf users associated

with DCCT have attained varying degrees of computer

literacy. Table 1 show that many Deaf users are familiar with

email. We therefore built the prototype-Flash and

prototype-HTML in the style of an email client.

C. Measurement of service quality

This project gathers both objective and subjective data to

evaluate service quality. We record the usage of server

resource and evaluate the performance of the system. The

objective data is analyzed with linear graph. Subjective data

is collected with user observation, interviews and

questionnaires. We visit DCCT weekly to perform user

observation and gather participants' feedback. These visits,

combined with the study of South African sign language, and

our relationship with DCCT as an organization, provide

opportunities to comprehend the Deaf community deeply. As

we involve ourselves with the target community, we come to

appreciate Deaf culture and user behavior. The understanding

enriches our thoughts and helps us consider system design

from alternative viewpoints, for example as hearing mobile

phone users we might not see that the high resolution camera

is always on the wrong side of the phone for high quality

enough video to support sign language communication, or

that a Deaf person must put the phone down in order to sign

with both hands. Overall, such subjective understandings

combined with objective quality comparisons triangulate to

yield informed prototype design and evaluation.

D. Experimental design

The experimentation consists of three phases. The first

phase is to 'system test' prototypes in the laboratory [19]. The

second phase examines prototypes with a few participants in

a laboratory environment, e.g. two Computer Science

students who took a six month sign language course and two

DCCT staff. These participants have experience with

computer software. A questionnaire is prepared concerning

the prototype and the experienced volunteers answer it and

give feedback. The third phase tests prototypes in a real world

environment at the Bastion, as in [20]. Five DCCT members

use the prototypes and provide feedback. A questionnaire is

prepared for, and answered by, the five participants. Video

data of the Deaf users are recorded automatically by the

prototypes with their consent. We ask Deaf participants

questions about the prototypes using a sign language

interpreter, such as: what functions confuse them, what they

like in a given prototype and why they like it. The test data is

collected and analyzed at the end of each phase. Evaluation

and the next round of design are based on this data and its

analysis.

IV. IMPLEMENTATION

This part shows how technologies and protocols were

combined to build the two browser-based prototypes:

prototype-Flash and prototype-HTML. Both prototypes run

only on a PC at this time. The Flash prototype is a real-time

tool and the HTML5 prototype is asynchronous.

A. Prototype-Flash

Prototype-Flash: Figure 1 shows the steps to start a video

chat in prototype-Flash. When both client A and client B

decide to start a chat, an Adobe Flash setting dialog is shown

on each client. The Flash server stores the video stream from

client A temporarily after client A agrees to open his webcam

from the setting dialog. To obtain faster streaming, the voice

is ignored because it is not needed. The Flash server manages

all video streams by mapping each stream to a unique

username of each client. The video is published and any

client can get the video stream if she knows the unique

username of the publisher. In this prototype the username is

the login name. In prototype-Flash, many common features

of communication software are provided such as text chat and

user profile modification. The Flash server handles an online

user list to store information about online users. This list is a

shared object [21] that is shown in client. The administrator

can add a new user, delete a user or modify user data, while a

guest cannot control other users‟ data. The text chat data is

also stored in a shared object.

B. Prototype-HTML

HTML5 supports online audio and video playback in a

web browser via HTTP. This prototype provides one-way

video streaming from server to client. Neither HTML5 nor

JavaScript provides for local video capture. Thus the user

must capture a video manually, and data is sent

asynchronously. We enact the HTTP connection with the

Document Object Model (DOM) Application Programming

Interface (API) called XMLHttpRequest [22]. This API is

used in web browser scripting languages, like JavaScript.

XMLHttpRequest can create a connection with the web

server, sending HTTP requests directly to the server and

handling the responses from it. We use XMLHttpRequest to

get a video message and user profile data, while using form

TABLE 1

This data describes what Deaf users did with the Internet at

the Bastion from 2007-2009.

Figure 1. The figure shows how a two-way video streaming

starts using Adobe Flash technology.

submit to post a video file to the server. There are five HTTP

connection types in prototype-HTML when a client connects

to the server via XMLHttpRequest: login, logout, new video

message check, message delete and user profile change.

When a user logs in, the server prepares a work folder for

the user, and reads the user profile into the online user list.

The contact list of the user and video messages for him are

sent to the client. A video file information list is presented

when a user logs in and new video messages are listed out.

All video files in the list are sent from other users to this

client. The video files are stored and managed on the server;

only the link addresses and file information data are sent to

the client through a XML format.

The client gets the XML data and shows the data in the

web browser. The user can playback each video message via

the link address that is stored in the attribute "url". The user

can modify his profile and delete all video messages by

sending requisite requests. A modified profile is written into

a XML file when user logs out.

Apparently due to security concerns, JavaScript does not

provide an API to upload a local file onto the web server. We

therefore use an HTML form submit to upload a video. The

header information and video data are combined and sent

together. The server splits the request data into header and

video stream, and saves the stream as a video file in a work

folder. The file information is saved into an XML file in the

same folder.

V. RESULTS

In this paper we are going to detail the result of phase one

and phase two only. In the first phase of experimentation, the

performance quantitative data is gathered via system test. The

memory and bandwidth usage data was monitored and

logged on the server side. The performance data help us to

analyze if prototype-Flash and prototype-HTML could run

continually and stably. The result of analysis will be referred

in the next step of development also. We used a virtual

machine with Windows XP OS as the server. Windows

performance monitor [23] and Performance Analysis of Logs

(PAL) are used to record usage data and evaluate the data.

Figure 2.1 and figure 2.2 show the CPU and memory usage

history of prototype-Flash and prototype-HTML. The blue

line gives us an idea about the percentage of processor to

handle user process. In this case user process means the

conversation between client and server. The red line

illustrates how many memory bytes are available. It is easy to

see that prototype-Flash spends all CPU resources from the

start even when there is no video chat starts.

Prototype-HTML expends CPU resources only when a

communication starts. In both figures the red lines are almost

straight. It shows prototype-Flash and prototype-HTML do

not ask a lot of memory during conversations.

About network workload, we monitored transferred bytes

throughout the network. The pink line draws the total

bandwidth in real-time. The aqua-blue line specifies how

many bytes of data the server is received. Figure 2.1 points

out that in prototype-Flash client and server do not exchange

data if there is no two-way communication. Although the

server spends a lot processor resources, it releases part of the

resources during a video chat starts. The highest percentage

of bandwidth expended on conversion is about 50%. Figure

2.2 indicates that prototype- always consumes some

bandwidth even when there is no conversion. The basic

percentage of bandwidth expended by our prototypes is about

60%. The server uses a little more network resources when a

communication starts.

In the second phase, the qualitative data about user

feedback is collected throughout questionnaire. The four test

subjects, two Deaf and two hearing, gave both prototypes a

positive evaluation, and considered the video quality to be

acceptable. We were informed that both Deaf users would

like to use the prototypes in actual life. Table 2 presents an

overview of some of the feedback. Both the computer science

students and the Deaf users gave prototype-HTML higher

evaluation about video quality and user interface. One of the

subject said he thought prototype-HTML included more

interactive elements and gave him a better interaction

experience. However, the overall impression of

prototype-Flash and prototype-HTML are the same. Subjects

considered both of the two prototypes could be good

communication tools, yet their quality can still be improved.

Subjects were more satisfied with the QoS of asynchronous

video. They were not concerned about real-time

communication very much.

 Average Point (0–100)

Overall

Impression

Video

Quality

User

Interface

Prototype-Flash 75 75 75

Prototype-HTML 75 90 95

VI. CONCLUSIONS AND FUTURE WORK

We believe that browser-based sign language

communication to be promising technology on both PC and

mobile platform for Deaf users. Section I introduced the

motivation and the background about this research. The aim

of the project is to build and test out two browser-based sign

language communication systems. Section II presented the

related work which is the reference of this paper. Section III

addressed the research methods. The qualitative method and

quantitative method and software engineer method work

TABLE 2

Average points of prototype-Flash and prototype-HTML are

shown.

Figure 2.1. This figure shows two days performance log

on prototype-Flash server.

Figure 2.2. This figure shows two days performance log

on prototype-HTML server.

together and point to our research direction. Section IV

detailed the implementation. Section V described the result

we got. From the data gathered, it seems that the

prototype-HTML is more popular with our audience.

Prototype-HTML server also spends less computer resources

than prototype-Flash. However, prototype-Flash uses

bandwidth cleverly.

We have not yet tested the two prototypes with Deaf

people with more limited computer skills. Furthermore,

neither prototype can run video communication on both PC

and mobile phone. In the final third phase, we will attempt to

port the best prototype, according to data triangulation, to a

mobile phone. The mobile version should be similar to

cellular video conferencing and/or Short Message Services

(SMS), depending on the temporal modality, real-time or

asynchronous. Some of the physical problems associated

with mobile devices we are unable to fix, such as having the

high quality video camera next to the display and having

wide angle camera to view the torso of a signing user instead

of the „floating‟ head.

ACKNOWLEDGMENT

 The authors thank the staff and members of Deaf

Community of Cape Town (DCCT) for their participation in

the project. We also thank Telkom, Cisco and THRIP for

financial support via the Telkom Centre of Excellence (CoE)

programme. THRIP funding is managed by the National

Research Foundation (NRF). Any opinion, findings and

conclusions or recommendations expressed in this material

are those of the author(s) and therefore the NRF does not

accept any liability in regard thereto.

REFERENCES

[1] A. Cavender, R.E. Ladner, and E.A. Riskin,

“MobileASL:: intelligibility of sign language video as

constrained by mobile phone technology,” in Proc. 8th

ACM SIGACCESS Conf. Computers and Accessibility,

2006, p. 78.

[2] P. Ladd, Understanding deaf culture: In search of

deafhood, Multilingual Matters Ltd, 2003.

[3] D. Miller, K. Gyllstrom, D. Stotts, and J. Culp,

“Semi-transparent video interfaces to assist deaf persons

in meetings,” in Proc. 45th Annual Southeast Regional,

2007, p. 506.

[4] M. Glaser and W.D. Tucker, “Telecommunications

bridging between Deaf and hearing users in South

Africa,” in Proc. CVHI 2004, 2004.

[5] J. Gay and S. Allen, “Macromedia Flash Communication

Server MX: Use cases and Feature Overview for rich

Media,” Messaging and Collaboration, 2002.

[6] A. Fecheyr-Lippens, “A Review of HTTP Live

Streaming,” 2010.

[7] I. Hickson and D. Hyatt, “HTML 5,” W3C Working

Draft. http://www. w3. org/TR/html5/, vol. 25, 2008.

[8] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler,

and F. Yergeau, “Extensible markup language (XML)

1.0,” W3C recommendation, vol. 6, 2000.

[9] A. Le Hors, P. Le Hégaret, L. Wood, G. Nicol, J. Robie,

M. Champion, and S. Byrne, “Document object model

(DOM) level 3 core specification,” W3C

Recommendation, 2004.

[10] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler,

and F. Yergeau, “Extensible markup language (XML)

1.0,” W3C recommendation, vol. 6, 2000.

[11] M. Kodama, T. Ozono, and T. Shintani, “An

Implementation of a NewsML Management System

using Meta Data,” in Proc. the Annual Conference on

JSAI, 2006, pp. 3B3–3.

[12] I.E. Richardson, Video codec design, Wiley, 2004.

[13] Z.Y. Ma and W.D. Tucker, “Adapting x264 to

asynchronous video telephony for the Deaf,” in Proc.

South African Telecommunications Networks and

Applications Conference 2008, 2008.

[14] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of

the scalable video coding extension of the H. 264/AVC

standard,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 17, 2007, pp. 1103–1120.

[15] W.D. Tucker. “Softbridge: a socially aware framework

for communication bridges over digital divides,” Ph.D.

thesis, Dept. Computer Science, UWC, Bellville, SA

2009.

[16] R.D. Aarons and P. Akach, “6 South African Sign

Language: one language or many?” in Language in

South Africa, Cambridge Univ. Pr, page 127, 2002.

[17] R. Campbell, “Categorical perception of face actions:

their role in sign language and in communicative facial

displays,” The Quarterly Journal of Experimental

Psychology, vol. 52, 1999, pp. 67–95.

[18] L.J. Muir and I.E. Richardson, “Video telephony for the

deaf: Analysis and development of an optimised video

compression product,” in Proc. tenth ACM

International, Multimedia, 2002, p. 652.

[19] T. Kallio and A. Kaikkonen, “Usability testing of mobile

applications: A comparison between laboratory and field

testing,” Journal of Usability Studies, vol. 1, 2005, pp.

4–16.

[20] I. Bongartz, A.R. Conn, N. Gould, and P.L. Toint,

“CUTE: Constrained and unconstrained testing

environment,” ACM Transactions on Mathematical

Software, vol. 21, 1995, pp. 123–160

[21] P. Tandler, T. Prante, C. Müller-Tomfelde, N. Streitz,

and R. Steinmetz, “Connectables: dynamic coupling of

displays for the flexible creation of shared workspaces,”

in Proc. 14th Annual ACM Symposium on User Interface

Software and Technology, 2001, p. 20.

[22] L.D. Paulson, “Building rich web applications with

Ajax,” Computer, vol. 38, 2005, pp. 14–17.

[23] M. Knop, J. Schopf, and P. Dinda, “Windows

performance monitoring and data reduction using

watchtower,” in Proc. 11th IEEE Symposium on

High-Performance Distributed Computing, 2002.

Yuanyuan Wang is currently studying for a Masters degree

at the University of the Western Cape (UWC) with the

Bridging Applications and Networks Group (BANG). Her

research interests include browser-based application, mobile

phone application development and Deaf community.

William D Tucker is a Senior Lecturer in Computer Science

at UWC and leads BANG research there. His main research

interests include ICT4D project and network technology.

