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Accurate spatial maps of wetlands are critical for regional conservation and rehabilitation

assessments, yet this often remains an elusive target. Such maps ideally provide

information on wetland occurrence and extent, hydrogeomorphic (HGM) type, and

ecological condition/level of degradation. All three elements are needed to provide

ancillary layers to support mapping from remote imagery and ground-truthing.

Knowledge of HGM types is particularly important, because different types show different

levels of sensitivity to degradation, and modeling accuracy for occurrence. Here, we

develop and test a simple approach for predicting the most likely HGM type for mapped

yet unattributed wetland polygons. We used a dataset of some 11,500 wetland polygons

attributed by HGM types (floodplain, depression, seep, channeled, and un-channeled

valley-bottom) from theWestern Cape Province in South Africa. Polygons were attributed

and described in terms of nine landscape metrics, at a sub-catchment scale. Using a

combination of box-and-whisker plots and PCA, we identified four variables (groundwater

depth, relief ratio, slope, and elevation) as being the most important variables in

differentiating HGM types. We divided the data into equal parts for training and testing

of a simple Bayesian network model. Model validation included field assessments. HGM

types were most sensitive to elevation. Model predication was good, with error rates of

only 32%. We conclude that this is a useful technique that can be widely applied using

readily available data, for rapid classification of HGM types at a regional scale.

Keywords: Bayesian network, classification, South Africa, Western Cape, probability, principal components

analysis

INTRODUCTION

One of the means of categorizing wetlands is according to hydrogeomorphic (HGM) type, which
is defined by geomorphic setting (e.g., hillslope or valley-bottom), water source (e.g., surface water
dominated or sub-surface water dominated) and pattern of water flow through the wetland unit
(diffuse or channeled) (Brinson, 1993; Ollis et al., 2013). Given the fact that HGM types are defined
in terms of key driving process that underlie wetlands (Brinson, 1993) they provide a useful means
of inferring ecosystem functioning and supply of ecosystem services (Euliss et al., 2013) as well as a
means of delimiting broad response units for ecological condition assessments (Kotze et al., 2012).
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It has been noted further how HGM types differ in terms of
degradation patterns (Rivers-Moore and Cowden, 2012) and
vulnerabilities (Kotze, 2011). Therefore, classifying wetlands
according to HGM type has a potentially useful contribution
to make toward assessing and promoting the sustainable use of
wetlands, particularly at a broad catchment/landscape scale.

While data on wetland extent, HGM type, and ecological
condition are increasingly recognized as important for global-
and regional-scale (province, state, county, or catchment)
wetland assessments, methods, and studies on these approaches
are limited worldwide (Guidugli-Cook et al., 2017). Historically,
wetlands have been iteratively mapped and typed using a
combination of field assessments and interpretation of aerial
photographs. This is not only a labor intensive process,
but typically leaves large swathes of landscape under-
mapped. Consequently, there is an increasingly widespread
application of satellite imagery data for wetland inventory
and mapping; although currently used techniques have
recognized limitations for detecting some types of wetlands
(see for example Davidson et al., 2018). Whereas, national
wetland inventories are not available for many parts of the
world, where these do exist, there are often concerns about
accuracy, or data deficiency such as for cases when wetland
polygons have no attributes. Large discrepancies in concurrence
between national inventories and field observations of wetlands
(Guidugli-Cook et al., 2017) raises concerns about the reliable
use of national datasets when scrutinized at a regional or
local scale.

In South Africa there are tens of thousands of wetlands
covering 2.6 million hectares (van Deventer et al., 2020), and
therefore to type all of these wetlands manually would require
considerable resources. If reliable automated method/s using
model/s can be developed for identifying HGM type, they offer
the means of typing wetlands at a fraction of the cost of doing
so manually.

However, to date, attempts to automate the identification
of HGM type have met with very limited success, and in two
test areas in the Western Cape, the automated HGM types
yielded a very low level of congruency with the field-verified
HGM types (van Deventer et al., 2016). For previous studies
on modeling HGM type for South Africa, the analysis was
based on a 90m digital elevation model (DEM) and on the
interim step of generating landform classes (van Deventer et al.,
2016). While adequate for representing the range of landforms
at a country-wide scale, there was an under-estimation of
slope and an over-estimation of valley floors, and an overall
accuracy of 43% was estimated for prediction of wetland HGM
type which is not sufficient for decision making at the local
scale (van Deventer et al., 2014). Nevertheless, fundamental
to setting conservation targets for landscape features such as
wetlands, as well as prioritizing wetland systems, for example,
for rehabilitation, is a sound spatial layer of wetland occurrence
(location and extent) that includes information on wetland
hydrogeomorphic type and ecological condition. Here, we
recognize that spatial wetland ancillary data should be developed
in a logical sequence, beginning with occurrence and extent,
followed by hydrogeomorphic (HGM) type, and then ecological

condition. We include ecological condition as the final step based
on catchment-scale ecological condition models that showed that
different HGM types respond to different predictor variables; for
example, elevation was the best predictor of floodplain ecological
condition, while population density was a significant predictor
of seep ecological condition (Rivers-Moore and Cowden, 2012).
Given the variable nature of these wetland parameters within the
landscape, it is more pragmatic to assign degrees of probability
rather than absolute classifications to mapped wetlands. In other
words, ancillary data layers will be able to provide probability
values for occurrence, type, and ecological condition, from which
wetland practitioners will be able to make statements such as
“at this location, there is an 85% probability of a wetland
occurring, which is five times more likely to be a seep than a
floodplain, and there is a 70% probability that it is in a degraded
state.” Here, the ecological condition of a wetland refers to
present condition relative to an un-impacted reference condition
which shows little or no influence of human actions (Anderson,
1991). In southern Africa, owing to limited availability of data
on biological response indicators, the assessment of ecological
condition generally requires a strong reliance on stressor-
based indicators, in particular relating to land-cover and land-
use in the wetland and its influent catchment (Kotze et al.,
2012). The assessment method developed by Kotze et al. (2012)
provides standardized metrics for assessing ecological condition
of wetlands in South Africa, and is designed to account as
far as possible for the differential responses of HGM types to
specific stressors.

It is therefore logical that landscape-level predictive models,
based on “soft” classification techniques, should be used to
complement traditional approaches to wetland mapping.
In South Africa, logistic regression models in different
regions of the country have already indicated that prediction
accuracy for both occurrence and ecological condition differ
between HGM types (Rivers-Moore and Cowden, 2012;
Hiestermann and Rivers-Moore, 2015; Melly et al., 2016).
However, in both case studies, these ancillary probability
layers were dependent on extensive baseline wetland mapping
exercises. The development of such spatial layers requires
a complementary process of baseline wetland mapping and
predictive model development. Baseline wetland maps provide
a testing and verification dataset for model development,
while the latter provides ancillary data on wetland occurrence
and ecological condition to assist in improving baseline
wetland inventories.

For wetland type classifications in South Africa, the Level
IV classification (HGM type) by Ollis et al. (2013, 2015) is in
standard use by wetland practitioners, and is in line with other
global classification systems (Brinson, 1993). The classification of
Level IV HGM units, including seep, depression, valley-bottom,
and floodplain wetland types, also takes cognizance of inland
vs. coastal systems, regional setting, and landscape position.
Therefore, there is a great need for the development of refined
and more robust models to allow HGM type to be identified
more reliably. Here, we develop and test a simple approach for
predicting themost likely HGM type formapped yet unattributed
wetland polygons.
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FIGURE 1 | Map of study area, showing City of Cape Town and Drakenstein municipalities and their respective wetlands datasets; inset shows context of study area

within the Western Cape Province of South Africa.

METHODS

Study Area
Our study area was defined on the basis of having two reliable,
adjacent and independent datasets of wetland polygons available
(Figure 1). Both datasets describe a range of wetland types in the
Western Cape province of South Africa, within the Cape Floristic
region. The naturally occurring vegetation in this area is “fynbos”
(a distinctive, Mediterranean climate, sclerophyllous vegetation
biome only occurring on the southern tip of Africa); despite
relatively high levels of land cover transformation, wetland
HGM types would be generally unaffected by these changes.
This is based on direct observation that climate, geology and
landscape position govern occurrence and type (Hiestermann
and Rivers-Moore, 2015; Ollis et al., 2015), whereas land cover
transformation and degradation underpin ecological condition
(Kotze et al., 2012). Underlying geology consists primarily
of a mix of sandstones and fractured metasedimentary rock,
interspersed with subordinate shales and mudstones; Table
Mountain sandstones dominate in the west, while the Cape
Fold Mountains fractured metasedimentary rocks occur in the
east (Colvin et al., 2007). Topography is highly heterogeneous,
with much of the study area characterized by relatively short
(50–300 km) rivers in deeply incised valleys.

Datasets used for this study were the wetlands coverage for

the City of Cape Town metropolitan municipality (n = 7,272

polygons; City of Cape Town, 2017), and the Drakenstein local

municipality (n = 4,237 polygons; Day et al., 2009). While

falling in to the same predominantly winter rainfall region,

the two study areas cover a rainfall gradient from relatively

TABLE 1 | Node states and thresholds.

Node State Threshold

Elevation Low/medium/high Low<200<medium<500<high

Slope Flat/steep Flat<5<steep

Relief ratio Low/high Low<0.25<high

Groundwater depth Shallow/deep Shallow<8<deep

wetter in the west to relatively drier in the east (mean annual
precipitation gradient of ∼600–200mm; Schulze, 1997), within
a Mediterranean climate.

Within the study area, the majority of mapped wetlands
have been classified to Level IV HGM type, according to
the classification defined by Ollis et al. (2013). Datasets
were compiled by wetland specialists, with HGM types
assigned through a combination of field assessments and local
terrain knowledge.

Analyses
Only inland wetlands were considered, with estuarine HGM
types excluded from analyses. The number and area of HGM
units per dataset were described using bar and pie charts. HGM
polygons for the study area (n = 11,379) were next attributed
in terms of their landscape position, shape and likely links to
groundwater (Colvin et al., 2007).

• Landscape position included the metrics elevation (90m digital
elevation model; USGS, 2018), from which slope and aspect
(both degrees) were derived using appropriate surface analysis
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algorithms (Clark Labs, 2009). Relief ratio, as an indication

of catchment terrain roughness, was also derived from the

DEM, using quaternary catchments (fourth order catchments;

primary management areas for South Africa, based on a

standardized mean annual runoff per unit area; Midgley

et al., 1994) as the overlay image, and basin length and

change in elevation (maximumminusminimum elevation) for
each catchment. Lastly, HGM types were attributed by their
association with Strahler stream order and geomorphological
zone (upland vs. lowland, based on 1:500,000 scale river
longitudinal zones with a breakpoint between upper and lower
foothills; Moolman, 2006).

• HGM polygon attributes: Area (m2) and perimeter (m); Log
transformation of area and perimeter; shape (area: perimeter

ratio—Equation 1); fractal dimension (Equation 2)

Shape =

Perimeter2

Area
(1)

Fractal dimension =

2∗ln (Perimeter)

ln (Area)
(2)

• Groundwater depth (m below ground; Colvin et al., 2007).

Wetland HGM data were then screened for differences in
the metrics (shape, area, fractal dimension, perimeter: area
ratio) between regions using a Principal Components Analysis
(McCune and Mefford, 2011; correlation cross-products matrix).
The purpose of this analysis was to provide an objective
basis for either combining datasets or keeping them separate.

FIGURE 2 | Total area (ha) of wetlands by HGM type (top) and proportion of wetlands by HGM type for the Drakenstein (bottom left) and CoCT (bottom right) regions.
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FIGURE 3 | Principal Components Analysis for channeled valley-bottom

(VB-C) and unchannelled valley-bottom (VB-U) wetlands based on area,

perimeter, shape, and fractal dimension. Convex hull codes: 1, VB-C

(Drakenstein); 2, VB-C (CoCT); 3, VB-U (Drakenstein); 4, VB-U (CoCT).

HGM types were standardized in the CoCT and Drakenstein
datasets to floodplain, seep (hillslope and valleyhead seep types
merged), flat, depression (depression, isolated, and depression-
linked channel types merged), channeled valley-bottom and
unchannelled valley-bottom.

Next, to select variables that were useful in categorizing HGM
types, we used a combination of box-and-whisker plots and a
second PCA to describe HGM types by morphometric variables
(R Development Core Team, 2009; McCune and Mefford, 2011).
The box-and-whisker plots were used to visualize differences in
median values, and data ranges, for the HGM metrics. The PCA
was undertaken to assess relative importance of each metric,
and which metrics were correlated to reduce metric redundancy.
Thereafter, HGM types were qualitatively categorized in terms of
metric traits (high,medium, and low) for eightmetrics [elevation,
geomorphological zone (upland vs. lowland), Strahler stream
order, shape, relief ratio, groundwater depth, slope (Horton,
1932, 1945; Schumn, 1956; Gordon et al., 1992; Frimpong et al.,
2005; Colvin et al., 2007)], with HGM “signatures” illustrated
using a radar plot. Aspect was considered independently, by
calculating the frequency of HGM types for 90◦ aspect arcs
(north= 315–45◦, etc.), plotted in a radar plot.

For the development of the Bayesian network (Bn), we
excluded wetland shape because it pre-supposes the existence
of a reliable wetland occurrence map. Using the optimal list of
variables (slope, groundwater, elevation, relief ratio), a Bn model
was developed based on four causal nodes, using Netica (Norsys
Software Corp., 2010). Node states and thresholds are provided
in Table 1. Continuous data were reassigned to node states using

TABLE 2 | Eigenvalues for the principal components analysis for channeled and

unchannelled valley-bottom wetlands by municipality based on area, perimeter,

shape, and fractal dimension.

PC 1 PC 2

Cumulative

percentage of

variance explained

38.89 63.62

Variable

Code −0.216 −0.038

Area 0.604 −0.243

Perimeter 0.670 −0.071

Shape −0.372 −0.597

Fractal −0.047 0.761

logical if/then statements within a spreadsheet, based on the
defined thresholds. Each data record constituted a “case instance”
(i.e., a unique instance of a result node based on its combination
of causal nodes). Data were randomly split into training and test
data (75/25% split train n = 8,533; test n = 2,846). Once the Bn
had been constructed, conditional probabilities were calculated
using the case file of the training data.

Model Evaluation and Verification
Model sensitivity to findings relative to the HGM node was
evaluated, and verification was undertaken by testing cases
against two independent case files. In the first validation exercise,
we used the case test file described above i.e., the digital data.
For the second validation process, we collected field information
on confirmed presence and HGM type of wetlands in the study
area between March and May 2019. A total of 115 wetland point
locations were recorded, and classified by HGM type according
to Ollis et al. (2013). These data were attributed with values for
the predictor nodes; these values were then converted to node
states, and a second test case file developed i.e., a field data
case test file. The independent case files were used to verify the
training data set used to construct the Bayesian Network. Model
performance was evaluated based on four standard outputs
provided by Netica: node sensitivity; frequencies of predicted
vs. actual HGM types; the number of times the model was
“surprised” in predictions; and receiver operating characteristic
(ROC) curves for each test case file, based on sensitivity and
specificity (quality of test). The ROC graph provided a visual
output for assessing model performance (Fawcett, 2006).

RESULTS

In the Drakenstein study region, the dominant HGM type by area
was “depression,” and “seep” by number; similarly, depression
wetlands dominated by area and number for the CoCT area
(Figure 2). There was little distinction between study region
for unchannelled and channeled valley-bottom types (Figure 3;
Table 2) confirming that both datasets could be combined in the
terms of the modeling exercise.

A PCA indicated that morphometric variables were useful in
distinguishing HGM types (Figure 4; Table 3). Here, variables
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FIGURE 4 | Principal Components Analysis biplot of wetland HGM types based on polygon morphometry; 1, channeled valley-bottom; 2, unchannelled

valley-bottom; 3, depression; 4, flat; 5, floodplain; 6, seep. Vectors show variables with r2 > 0.4.

TABLE 3 | Eigenvalues for the principal components analysis for wetland HGM

types based on morphometric values of wetland polygons.

Variable 1 2

Cumulative percentage of variance explained 16.6 32.9

HGM code −0.3102 −0.4653

Area 0.5019 −0.3002

Perimeter 0.5677 −0.3849

Shape −0.2714 0.353

Fractal dimension 0.002 0.0142

Aspect −0.1308 −0.118

Elevation 0.018 −0.0082

Groundwater depth 0.0596 −0.0353

Slope −0.3301 −0.4653

Stream order 0.3394 0.4053

Relief ratio 0.1037 0.1564

describing polygon size (shape and area) accounted for the
highest amount of variation in axis 1, while landscape
characteristics (slope, stream order, and relief ratio) accounted
for the highest amount of variation in axis 2. While elevation
and groundwater depth did not come out strongly in the
PCA, the box-and-whisker plots highlighted five morphometric
variables (elevation, groundwater depth, relief ratio, slope, and
shape) that provided clear distinctions between HGM group
types (Figure 5). HGM types tended to be associated with
upland vs. lowland zones to varying degrees (Figure 6). When
median HGM type characteristics for morphometric variables
that offered a degree of distinguishing power were plotted on a
radar diagram, each HGM signature was unique (Figure 7).

The relationship between these variables and HGM type were
linked by conditional probabilities in a Bn (Figure 8). By way

of examples; at high elevations, there is a 71% probability that a
wetland will be a seep, and this increases to an 87.4% probability
when slope is steep. Conversely, for flat areas and low elevations,
the most likely HGM type is depression at 54%. In our model,
HGM type was most sensitive to elevation as a predictor variable
(Table 4), with certain HGM types (seeps and flats) being more
typically associated with higher elevations, while other HGM
types (valley bottom and floodplains) are associated with lower
elevations. Overall, prediction accuracy for the model had an
error rate of 32.5% (Tables 5, 6). Notably, the HGM types
with the poorest predictions were valley-bottom wetlands, which
were incorrectly predicted as depressions or seeps. Conversely,
prediction accuracies of seeps and depressions were high.
The ROC plots further indicated that model predictions were
generally good, but that the predictions were more accurate
for the digital dataset than for the field-assessed HGM types
(Figure 9).

DISCUSSION

There is a growing demand for data on the ecological condition
of wetlands, which is central to tracking improvements or
deteriorations in the quality of this resource (Jacobs et al.,
2010; Driver et al., 2011). This requires information not
only on wetland location and extent, but also type. Since
ecological condition varies on the basis of landscape context
and HGM type (Jacobs et al., 2010; Gutzwiller and Flather,
2011), and wetland function varies by HGM type (Weller et al.,
2007), management programmes cannot prioritize wetlands for
conservation and rehabilitation without knowing HGM type.
Information on total area per HGM type within a region is
critical for national monitoring programmes, as well as for
predicting loss rates over time. While comprehensive mapping of
all three components (location, type, and ecological condition)
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FIGURE 5 | Box-and-whisker plots of HGM type by elevation (top left); groundwater depth (m below ground) (top right); relief ratio (center left); slope (center right); and

shape (bottom), where D, depression; F, flat; Fp, floodplain; S, seep; VB-C, channeled valley-bottom; and VB-U, unchanelled valley-bottom. Boxes indicate median

values of metrics per HGM type plus 25th/75th percentiles, while whiskers indicate data range.

FIGURE 6 | Count of wetlands by HGM type for the Drakenstein municipality

for upland vs. lowland catchments.

is probably the most reliable approach, probability mapping
provides statistical estimates of these parameters with a high
level of repeatability at a fraction of the cost (Stein et al.,
2016).

Probabilistic prediction of HGM type is an innovative
approach. This is because it makes use of readily available
spatial coverages to predict HGM type. Excellent 90m digital
elevation models are available globally, from which slope
and relief ratio can be easily derived. Global datasets of
groundwater depth are also available at the same resolution (for
example, Fan et al., 2013). Our approach has the advantage
in that it circumvents the need to use a landform image
(i.e., natural features in the landscape: valleys, hills, etc.),
which has previously been a problem because of limited
availability and cost of sufficiently fine-scaled digital elevation
models, such as those based on light detection and ranging
(LIDAR) data.
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In general terms, our model is a useful generic approach
for improving the reliability of prediction for all major HGM
types with the exception of valley-bottom wetlands. The poor
performance in predicting valley-bottomwetlands may be simply
a result of poor learning from the case files, given the relatively
low prevalence of valley-bottom types in the chosen study area.
It may be the consequence of not including a size metric in the

FIGURE 7 | Radar plot of HGM signatures based on qualitative median scores

of morphometric variables; 1, channeled valley-bottom; 2, unchannelled

valley-bottom; 3, depression; 4, flat; 5, floodplain; 6, seep. Spokes reflect

variables relating to each of six HGM types, qualitatively scored according to

the categories in Table 1 in conjunction with their median values in Figure 5,

where values 1–3 reflect categories as low/medium/high. Two additional

variables (zone and stream order: Moolman, 2006) reflect HGM type majority

membership for either upland or lowland zone (3, upland; 1, lowland) and

Strahler stream order (1:500,000 scale).

model, since valley-bottom wetlands would typically be larger
than depressions. Alternatively, there are encouraging results
from other studies to specifically map valley-bottom wetlands
(Collins, 2017), such that a HGM typing process could be
successfully achieved by using a mix of ancillary data. This
would involve an initial process of identifying all valley-bottom

TABLE 4 | Node sensitivity of variable nodes relative to the “HGM” node.

Node Mutual information Percent beliefs

HGM 1.946 100.00

Elevation 0.1244 6.38

Relief ratio 0.062 3.19

Groundwater depth 0.041 2.12

Slope 0.015 0.75

Mutual information describes the reduction in entropy in the target node (HGM) due to a

finding in the variable nodes, also expressed as a relative percentage.

TABLE 5 | Predicted vs. actual assignment of wetland HGM types based on test

cases.

Predicted

Flat Floodplain Depression Seep VB-C VB-U Actual

0 0 3 5 0 0 Flat

0 0 113 3 0 0 Floodplain

0 0 1,260 186 0 0 Depression

0 0 258 659 0 0 Seep

0 0 114 47 0 0 VB-C

0 0 172 26 0 0 VB-U

VB-C and VB-U refer to channeled and unchannelled valley bottom wetlands.

FIGURE 8 | Bayesian network model for predicting wetland HGM type based on node states for elevation, slope, groundwater depth, and catchment relief ratio.
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TABLE 6 | Number of times the Bn was “surprised” for different probability values.

State <1% <10% >90% >99%

Flat 0.12 (3/2,502) 0.28 (8/2,844) 0 (0/0) 0 (0/0)

Floodplain 0.15 (1/685) 3.44 (91/2,643) 0 (0/0) 0 (0/0)

Depression 0 (0/0) 1.49 (6/402) 0 (0/0) 0 (0/0)

Seep 0 (0/0) 0 (0/0) 4.68 (17/363) 0 (0/0)

CVB 0.88 (1/114) 4.87 (123/2,526) 0 (0/0) 0 (0/0)

UVB 0.37 (4/1,070) 1.67 (30/1,793) 0 (0/0) 0 (0/0)

Total 0.21 (9/4,371) 2.53 (258/10,208) 4.68 (17/363) 0 (0/0)

FIGURE 9 | Receiver operating characteristic curves comparing the prediction

accuracy of the digital data vs. the field data for HGM type in the study area.

wetlands, followed by classifying the remaining wetlands using
our model.

We recommend further research and model
refinement/verification that improve the quality and resolution
of input layers, and secondly in terms of translating the
predictions of the Bn model to raster images of probabilities for
each HGM type. For the former, consensus from the wetland
scientific community on a suitable national elevation map,
and an appropriate resolution (20 m: Hiestermann and Rivers-
Moore, 2015; Melly et al., 2016; 30m (USGS 1-arc minute with

large voids) and 90m (USGS 3-arc minutes void filled) will be
needed. The higher the resolution of the DEM, the higher the
anticipated reliability of the predictions. This would in turn form
the basis for refined derived images from this map, including
slope and relief ratio. For the latter, classification of the raster
classes for each predictor variable into states, and subsequent
translation of the HGM type model to a spatial probability
product will assist with assigning HGM types to identified and
mapped wetlands. This could then act as a hypothesis layer for
testing against ongoing ground-truthing wetland surveys.
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