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How does a smooth cosmic distance ladder emerge from observations made from a single location
in a lumpy Universe? Distances to Type Ia supernovae in the Hubble flow are anchored on local
distance measurements to sources that are very nearby. We described how this configuration could
be built in a perturbed universe where lumpiness is described as small perturbations on top of
a flat Friedmann-Lemaıtre Robertson-Walker spacetime. We show that there is a non-negligible
modification (about 11%) to the background Friedmann-Lemaıtre Robertson-Walker area distance
due to the presence of inhomogeneities in the immediate neighbourhood of an observer. We find that
the modification is sourced by the electric part of the Weyl tensor indicating a tidal deformation
of the local spacetime of the observer. We show in detail how it could impact the calibration of
the Type Ia supernova absolute magnitude in the Hubble flow. We show that it could potentially
resolve the Type Ia supernova absolute magnitude and Hubble tensions simultaneously without the
need for early or late dark energy.
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I. INTRODUCTION

The observable patch of the universe from earth has structures of different sizes and shapes interacting gravita-
tionally among themselves and with the observer [1–3]. The apparent luminosities from these sources are interpreted
assuming exact cosmological principle, i.e isotropic and homogeneous Friedmann-Lemaıtre Robertson-Walker (FLRW)
model [4–7]. The symmetry of the FLRW spacetime does not allow such a local inhomogeneous distribution of struc-
tures as seen by an observer. Yet the standard model of cosmology assumes it [8–10]. The key justification for this was
provided by Weinberg in 1976. Weinberg showed that the impact of gravitational deflection due to the inhomogeneities
on the apparent luminosities of sources is the same on average to the universe where the inhomogeneities were spread
out homogeneously through space [11]. The proof assumes the following: that the cosmological principle holds [12],
that the time and position in the FLRW and the inhomogeneous spacetime are synchronised [13], that there is no
strong gravitational lensing events or caustics as photons traverse over-densities along the line of sight [14, 15] and
that the redshift is a monotonic function on all scales even in the presence of structures.

Our target here is to explore in detail using the cosmological perturbation theory the assumption that the redshift is
a monotonic function on all scales by calculating the monopole of the area distance on a constant redshift surface. This
is very crucial because the local distance ladder is calibrated using distance measurement to nearby sources [9, 10].
It is well-known that distance to those sources is not a simple function redshift [16–18]. Several works have studied
the luminosity distance (distance modulus) in perturbation theory before [19–27], the result from these efforts show
that the background FLRW spacetime is a good approximation of the area distance in the observed universe [28, 29].
Independent studies based on general relativistic N-body simulation reached a similar conclusion [13, 30, 31]. However,
these studies focused on the following redshift limit 0.023 ≤ z ≤ 1100 [13, 28, 30–32]. The focus on this redshift range
was motivated by the fact that the SHoES collaboration and the Carnegie-Chicago Hubble Program (CCHP) truncated
the sample of the peak magnitudes of the SNIa at z ≥ 0.02 [6, 9]. On the surface, this appears to be sufficiently
motivated but on closer examination, it becomes clear that the determination of the Hubble rate using the peak
magnitudes of Type Ia supernova (SNIa) within this redshift range (0.023 ≤ z ≤ 0.5) relies crucially on the geometric
distance measurement of a set of anchors that are very nearby [6, 9]. Essentially, the calibrated absolute magnitude
of the SNIa in the Hubble flow, could depend on the distance measurement to the anchors in the z ≤ 0.01 redshift
range [33]. This is very important because the absolute magnitude of the SNIa in the Hubble flow is simply the
log10 of the distance measured at 1Mpc. Such a dependence could manifest as a tension in absolute magnitude of the
SNIa [34–36] if the anchors live in a local over-density with a non-trivial curvature.

To build a consistent cosmic distance ladder in a perturbed universe that captures the interplay between the
geometric distance measurements to a set of anchors and the SNIa in (0.023 ≤ z ≤ 0.5) redshift range, we derive
a very concise expression for the area distance that includes general relativistic corrections in a perturbed FLRW
spacetime. The full general relativistic expression for the area distance within the cosmological perturbation theory
is humongous, it covers more than a page when written down [19, 21]. This usually involves perturbing the Sach’s
equation for the area distance [19, 21] or perturbing the Jacobi map [26, 27] or using the light-cone formalism to
decompose the Jacobi map [22–24]. The formalism we present here is much simpler and points straight to the key
terms. Using this expression, we show that at very small redshifts (limit where the redshift goes to zero), the monopole
of the distance-redshift relation is determined by the rate of shear deformations of the local spacetime. Distance to the
nearby anchors is not given by the FLRW spacetime since the rate of shear deformation tensor vanishes in an FLRW
spacetime. We show that for a consistently calibrated zero-point of the distance modulus, the SHoES and CCHP
teams should infer the same Hubble rates and the Hubble rate inferred by both teams corresponds to global volume
expansion. Finally, by fitting the Alcock-Paczynski parameters [37] based on the FLRW spacetime to corresponding
perturbed expression, we show that the Hubble rate determined this way is sensitive to the local environment. The
key result on area distance is given in equation (64) and the possible resolution of the supernova absolute magnitude
tension is given in equation (104).

The rest of the paper is organised as follows: We give a very concise derivation of the area distance that isolates
cleanly the effect of radial and tangential distortions of the source position in section II. We show how the tidal
effects contribute to the monopole of the area distance at a very small redshift in sub-section II.4. We discuss the
consequences of the tidal deformation in section III. In sub-section III.2 , we discuss the calibration of the SNIa
peak magnitude using the TRGB and in sub-section III.3 we discuss the calibration using cepheids. The discussion
on the SNIa absolute magnitude tension is provided in sub-section III.4. In sub-section III.5, we illustrate how the
Alcock-Paczynski parameters might be interpreted given a perturbed expression for the area distance and the Hubble
rate. We conclude in section IV. The details of the derivation of the area distance in a perturbed universe are given
in the Appendix A.
Cosmology: We adopt the following values for the cosmological parameters of the standard model [8]: the di-
mensionless Hubble parameter, h = 0.674, baryon density parameter, Ωb = 0.0493, dark matter density parameter,
Ωcdm = 0.264, matter density parameter, Ωm = Ωcdm + Ωb, spectral index, ns = 0.9608, and the amplitude of the
primordial perturbation, As = 2.198×10−9. The small English alphabets from a−e denotes the full spacetime indices,
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where i and j denote the spatial indices.

II. AREA DISTANCE IN A UNIVERSE WITH STRUCTURES

Sources are detected at their image positions (apparent position), xaI , they are related to their physical position xas
via a general coordinate transformation:

xas (x′) = xaI +
(
∂xa

∂x′b

)
I

(
x′b − xbI

)
+O (x′ − xI)

2
, (1)

In the Geometric optics limit, we can describe light rays which carry distance information as affinely parameterised
null geodesics kb∇bka = 0, where ka is the photon tangent vector to the null geodesic emanating from a source at
position xas and converging at the observer at xao . For points sources, xas and xao constitute a conjugate pair. Here, ∇
is the spacetime covariant derivative and ka satisfies the Eikonal equation kak

a = 0. This photon trajectory traces a
curve which is parametrised by the affine parameter λ according

ka = dxa

dλ . (2)

Given a comoving observer with a time-like 4-velocity, ua (uaua = −1), we decompose ka into parallel and orthogonal
components with respect to ua: ka = E(ua ± na), where E is the photon energy, E = −uaka and na is a space-like
line of sight (LoS) direction vector (nana = 1). In this set-up, we consider a one-parameter family geodesics, among
the one-parameter family, we choose a “central ray” as a “unique ray” and calculate deviation of the infinitesimally
close nearby geodesics. In general the deviation is attributed to the effect of gravity [38]. The result we get at the
end is independent of this choice since what is important is the difference [39, 40]. Treating xaI (λ) as the trajectory
of the central ray, we define a difference/connecting/deviation vector as the difference between the inferred apparent
position and the physical position of the source at the same affine parameter distance λ: x′a(λ)−xaI (λ) ≡ ξ′a. Putting
this into equation (1) gives

ξa = J abξ′b +O(ξ′b)2 , (3)

where we have introduced the Jacobian, J ab = ∂xa/∂xbI = δab + Dab, with Dab = ∂bξa. We work in orthonormal
basis, ea, such that the rest frame of the observer has a time-like orthonormal basis vector ea0 = ua and the radial
vector has a orthonormal basis vector ea1 = na. We denote the two angular orthonormal basis vector as eaA, where,
A = 2, 3. The screen space metric(the two space orthogonal to the geodesics) is denoted by Nab = gab + uaub − nanb
and gab is the metric of the full spacetime. It is used to project the spacetime indices to the orthonormal tetrads
indices on the screen space; NabeaAebB = ηAB and eaA = Na

be
b
A.

For the irreducible decomposition of the Jacobian, we follow the formalism introduced in [41, 42]. The computation
of the area distance within this formalism requires only the screen space projected components of the Jacobian. To
obtain this part, it is enough to decompose just the spatial component of the deviation vector ξi with respect to ni:
ξi = ξ‖n

i + ξi⊥, where ξ‖ = ξin
i is the component parallel to ni and ξ⊥A = eiAξi is the angular or the screen space

projected part. Similarly, the Jacobian can also be decomposed as

Dij = ninjD‖‖ + 2n(iej)
AD⊥A‖ + ei

Aej
BD⊥AB , (4)

where D‖‖ = Dijninj , D⊥A1 ‖ = niejA1Dij and D⊥A1A2 = eiA1e
j
A2Dij . ni∂in

j = 0 vanishes on the Minkowski
spacetime(or on the conformal FLRW spacetime). The angular part of the Jacobian, D⊥AB may be decomposed
further into irreducible parts:

D⊥AB = eiAe
j
BDij , (5)

= eiAe
j
B

[
1
2 θ̄ξ‖δij + ∂⊥iξ⊥j

]
, (6)

= eiAe
j
B

[
1
2 θ̄ξ‖δij +Nijκ+ εijω + γij

]
= 1

2DδAB + γ〈AB〉 + εABω , (7)

where εAB is the Levi-Civita tensor on the screen space, we made use of the decomposition of ξi with respect to ni
in the second equality, θ̄ is the divergence of ni on the conformal FLRW spacetime and we introduced the following
terms in the last equality

D⊥ = DAA , γ〈AB〉 = D⊥(AB) −
1
2NABD⊥C

C , ω = 1
2ε

ABD⊥AB . (8)
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where D is the trace of DAB , it describes the isotropic distortion of the image of the source due to inhomogeneity. Its
irreducible form is given by

D⊥ = ∂⊥An
A
⊥ξ|| − 2κ = 2

r
ξ|| − 2κ , (9)

where κ is the weak gravitational lensing convergence, ξ||∂⊥AnA⊥ is a general relativistic correction to the weak
gravitational lensing convergence. The importance of this term (ξ‖| was first recognised in [14], where it was pointed
out that it describes the effect of the radial lensing. It has a natural interpretation in redshift space where its describes
the Doppler lensing effects, as we shall see the leading order part describes the parallax effect which usually exploited
to estimate geometric distances to nearby sources. When we say parallax effect, we mean the displacements in the
source position due to the relative motion of the observer with respective to the local over-density. On the conformal
FLRW background, θ̄ is given by θ̄ = ∂⊥An

A
⊥ = 2/r. Similarly, ∂⊥[An⊥B] = 0 and ∂⊥〈An⊥B〉 = 0 on the conformal

FLRW background. Furthermore, γ〈AB〉 is the shear, it corresponds to the the trace-free part of D⊥AB , it describes
the anisotropic stretching of initial circular image and ω is the twist, it corresponds to anti-symmetric part of D⊥AB .
These observables are defined in terms of the deviation vector:

κ = −1
2N

AB∇⊥Aξ⊥B , γAB = ∇⊥〈Aξ⊥B〉 , ω = εAB∇⊥[Aξ⊥B] . (10)

The area distance, dA, is related to the area element of the screen space(area of the wave-front advancing towards
from the past) according to dA =

√
N dΩ = d2

AdΩ , where N is the determinant of the induced physical metric on the
screen space. It is related to the metric of the celestial sky, ΩAB , according to the general metric transformation law

NAB = ∂xC

∂x′A
∂xD

∂x′B
ΩCD . (11)

The determinant of a product of matrices is equal to the product of the determinants of each matrix: Det[N ] =
Det[Ω]Det[J ]2, therefore, we can use the Cayley–Hamilton theorem to evaluate the determinant of Det[J ] since
Det[Ω] = 1

Det[J ] = Det[J̄ ]
[
I +Dii + 1

2
(
DiiDjj −DijDij

)
+O(ε3)

]
, (12)

where Det(J̄ij) is related to the area distance on the background spacetime according to d̄2
A = Det(J̄ij) andε is an

infinitesimally small cosmological perturbation theory parameter. On the full spacetime d2
A = Det(Jij) and taking

the square root gives

dA = d̄A

[
1 + ξ‖

d̄A
− κ− 1

4
(
γijγ

ij − ωijωij
)

+O(ε3)
]
. (13)

An observer on Earth has a non-vanishing peculiar motion with respect to the cosmic rest frame. Most telescopes,
automatically corrects for the the impact of the relative velocity between the Earth and the sun so that observables
are given in the heliocentric frame [43]. Let’s denote the non-vanishing relative velocity between the heliocentric
frame and the cosmic rest frame with vasun−CRF. This contribution of the heliocentric relative velocity distorts the
solid angle. The distortion of the solid angle due to vasun−CRF is usually implemented by boosting dA in equation (13)
to the heliocentric frame which has a non-vanishing peculiar velocity. Let ũa denote the four-velocity of the observer
in this frame. The relationship between ũa and ua is given by [44]

ũa = γ(ua + vasun−CRF), where γ = 1√
1− v2

sun−CRF

, vasun−CRFua = 0 , (14)

The solid angles in both frames are related according to [16, 45]:

dΩ
dΩ̃

=
(
E

Ẽ

)2
= γ2(1− navasun−CRF)2 , (15)

where Ẽ/E = γ(1 − navasun−CRF) [46]. Then the infinitesimal change in the area becomes dA = d̃2
A

∣∣dΩ/dΩ̃
∣∣dΩ̃ ,

hence, the relationship between the area distance in both frames becomes

d̃A = Ẽ

E

∣∣∣∣
o

dA ≈
[
1− nivisun−CRF + ninjvisun−CRFvjsun−CRF + 1

2v
a
sun−CRFvasun−CRF

]
dA . (16)

As we shall describe in detail later and elsewhere using the Jacobi field formalism, this additional contribution to the
area distance due to the heliocentric observer peculiar velocity are not describable within the cosmological perturbation
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theory on an FLRW background without the addition of the higher multipoles of the peculiar velocity field. Please
see [47] for details on this topic. More discussion on this is provided in sub-section II.2.

For consistency or sanity check, we can expand equation (16) up to linear order in velocity to find d̃A = d̄A(1 −
nivisun−CRF + ξ‖/d̄A + κ|linear). This helps to see immediately that all the general relativistic corrections described
in [19, 21, 45] at linear order are contained in nivoi + ξ‖/d̄A. Our main focus here is to examine this term at second
order. The impact of the observer peculiar velocity on the distance measurement was discussed in [48, 49].

II.1. General relativistic correction to the area distance on constant redshift surfaces

We work in Conformal Newtonian gauge on a flat FLRW background spacetime for simplicity:

ds2 = a2{− [1 + 2Φ
]
dη2 +

[
1− 2Ψ

]
δijdxidxj

}
, (17)

where δij is the metric of the spatial section of the Minkowski spacetime, Φ and Ψ are the Newtonian and curvature
potential respectively. In the limit of vanishing anisotropic tensor in General relativity, Φ = Ψ. The components of
ua perturbed up to second order in perturbation theory are given by

u0 = 1− Φ + 3
2Φ2 − 1

2Φ(2) + 1
2∂iv∂

iv , (18)

ui = ∂iv + 1
2v

i(2) + 1
2∂

iv(2) , (19)

where vi is the peculiar velocity, ∂i is the spatial derivative with respective to the background spacetime and v is the
peculiar velocity potential. The metric perturbation in equation (17) remains valid except in the vicinity of a very
strong gravitational field source such as a black hole [50]. In general, Φ satisfies

|Φ| � 1 , |Φ′|2 � ∂iΦ∂iΦ , (∂iΦ∂iΦ)2 � ∂i∂jΦ∂i∂jΦ . (20)

where ′ is the partial derivative with respect to the conformal time. The last term could be large ∂i∂jΦ ∝ δρ/ρ� 1 ,
where δρ/ρ is the perturbation in the matter density, However, we do not encounter such terms on the past light-cone,
rather we have a projected mass density field, ∇2

⊥Φ, which is well-behaved due to the weak gravitational lensing
geometric term that regulate its amplitude. Using equation (2), we calculate the perturbed position of the source
xi(η̄, x̄) = x̄i(η̄) + δxi(η̄, x̄) , where δxi denotes perturbation in the position, η̄ and x̄ are the background conformal
time and position respectively. In the appendix A we show how to re-map the background conformal time and position
in terms of the affine parameter λ associated with the null geodesics

xiFLRW(λs, n̂) ≈ d̄A
{
ni + δxi⊥

rs
− 1
rs

∆xj⊥∇⊥jδx
i
⊥ (21)

+
[
δx‖

rs
− 1
rs

∆x‖∂‖δx‖ −
1
rs
δxi⊥∇⊥iδx‖ −

(
1− 1

rsH s

)(
δλ−∆x‖∂‖δλ− δx

j
⊥∇⊥jδλ

)
H
]
ni
}
,

where rs ≡ (λo − λs) is the comoving distance and d̄A = a(λs)rs is the area distance, H is the conformal Hubble
rate, δλ is the perturbation of the affine parameter and ∆x‖ = δx‖ + δλ. Using equation (21), we define the deviation
vector within standard cosmology as

ξi(λs, n̂)
d̄A

≡ xiFLRW(λs, n̂)− x̄iFLRW(λs)
d̄A

= niξ‖(λs, n̂) + ξi⊥(λs, n̂)
d̄A

. (22)

The orthogonal component or the deviation vector is given by

ξi⊥(λs, n̂)
d̄A

= δxi⊥
rs
− 1
rs

∆xj⊥∇⊥jδx
i
⊥ ≈ 2

∫ rs

0

(rs − r)
rs

∇i⊥Φ(1)dr . (23)

Using this, we find that the gravitational lensing shear is given by

γ(1)
ij (zs, n̂) =

∫ rs

0

(r − rs)r
rs

∇⊥〈i∇⊥j〉(Φ(1) + Ψ(1))dr . (24)

Note that in the low redshift limit, ξ‖ is the key term we focus on. Therefore, in order to understand it much better,
we decompose it further into geometric deformation part δrgeo and the radial or line of sight deformation part δrn̂:

ξ‖(λs, rn̂)
d̄A

≡ δrgeo(λs, rn̂)
r

+ δrn̂(λs, rn̂)
r

, (25)
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where δrgeo is related to the Wrinkle surface effect described in [29]. One can immediately isolate the terms that
describe this effect from first three terms in the second line of equation (21)

δ rgeo(λs, rn̂)
r

=
δx‖

rs
− 1
rs

∆x‖∂‖δx‖ −
1
rs
δxi⊥∇⊥iδx‖ . (26)

The second term and third terms in equation (26) are due to Post-Born correction [23, 51–54]. Given the metric in
equation (17), δrgeo is given by

δrgeo

r
= − 2

rs

∫ rs

0
(Φ + Ψ) dr (27)

+ 4
rs

∫ rs

0
dr′
∫ r′

0
dr′′(rs − r′)∇⊥iΦ(r′n̂)∇i⊥Φ(r′′n̂) + 4

rs

∫ rs

0
(rs − r)∇i⊥Φ

∫ rs

0

r

rs
∇⊥jΦdr .

δrn̂ describes the deformation of the photon trajectory by the inhomogeneities along the line of sight. One can pick
out the terms that describe this effect from the last set of terms in the second line of equation (21)

δrn̂(λs, rn̂)
r

= −
(

1− 1
rsH s

)
H s

(
δλ−∆x‖∂‖δλ− δx

j
⊥∇⊥jδλ

)
. (28)

Earlier work by Ellis and Solomons describes this contribution as radial lensing effect [14]. As we shall see in the
next section that in redshift space, it describes the parallax effect as earlier mentioned or more generally the Doppler
lensing effect [55]. This effect manifests as a displacement in the position of the background source due to the fact
that an observer is moving relative to a local over-density. This effect has been used exclusively used to obtain the
distance to the very nearby sources [56]. From its relationship with the tangential gravitational lensing convergence,
κS = −

(
ξ||/r − κ

)
, it has opposite physical effect to κ [57].

II.2. Local group Barycentric observer and affine parameter perturbations

Although the deviation vector is defined in terms of the affine parameter which is monotonic when initialised at
the observer, it is not an observable. What is observable is the redshift of a source which is defined as a ratio of the
photon energy at the source, Es, to the photon energy at the observer location, Eo:

(1 + zobs) = Es
Eo

. (29)

At late time, gravitationally bound sources move relative to the cosmic rest frame. The peculiar motion contributes
to the observed redshift of a source according to [16]

(1 + zobs) = (1 + z̄)
(
1 + zo

pec
) (

1 + zSN
pec
)
, (30)

where z̄ is the redshift associated with the Hubble flow or the cosmological redshift(for the rest of the paper, we
sometimes use z to denote the cosmological redshifts especially in figures), zo

pec is the redshift associated with the
motion of the heliocentric frame with respect to the cosmic rest frame and zSN

pec is the redshift associated with the
peculiar motion of the source’s frame with respect to the cosmic rest frame. In special relativity, zSN

pec and zhelio
pec are

related to the peculiar velocity vXi according to [17]

(1 + zXpec) =

√√√√1 + vX
‖

1− vX
‖

and (1 + zXpec) = 1√
1− vX⊥

2
(31)

where vXi = nivXi is line-of-sight direction component, vX⊥
2 = vX⊥iv

Xi
⊥ and vX⊥i = Ni

jvXj is the transverse component.
The relative velocity between the heliocentric frame and the cosmic rest frame receives contribution from several
sources

vsun−CRF = vsun−LSR + vLSR−GSR + vGSR−LG + vLG−CRF , (32)

where vsun−LSR is the motion of the sun relative to the nearby stars that define the dynamical Local Standard of Rest
(LSR), vLSR−GSR is the circular rotation of the LSR about the galactic center. vGSR−LG is the motion of the Galactic
Standard of Rest (GSR) or the Galactic Rest Frame (GRF) relative to the Local Group (LG) centroid and vLG−CRF is
the peculiar velocity of the LG with respect to the CRF. Each of these relative velocity contributions defines a unique
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4-velocity according to equation (14). Each 4-velocity induces a unique coordinate system [38]. Secondly, what we
really want is vsun−CRF, we can’t describe this within the cosmological perturbation theory on the expanding FLRW
background (i.e equation (17)). We shall see in sub-section II.4 that equation (17)) breaks down at about 1 Mpc.
Therefore, we assume that the observer is located at the Barycenter of our local group and that the source is also
positioned at the barycenter of its host halo or cluster. With these assumptions, we can re-write equation (30) as

(1 + zobs) ≈ (1 + z̄)
(
1 + zLG

pec
) (

1 + zSN,host
pec

)
= Es
Eo

= (−kaua)s
(−kbub)o

, (33)

where zLG
pec is the redshift associated with the motion of our local group and zSN,host

pec is the redshift associated with
the host halo of the SNIa. As we shall describe in detail in sub-section II.3 that provided we correct for the monopole
and dipole associated with the barycentric observers, we can always boost the final result back into the Heliocentric
frame where the observer lives. We shall describe how this is done in detail elsewhere because this paper is already
technically complicated, we do not intend to make it even more complicated.

Moreover, it is important to point out that the cosmological analysis of the SNIa samples in the Hubble flow are
done as function of the cosmological redshift and not in terms of the heliocentric redshift [18]. That is the cosmological
analysis are not done in terms of the observed redshift given in equation (33). Please see a more detailed discussion of
this in [58]. The constraint on cosmological parameters would differ if the analysis is done in terms of zobs especially
when only a sub-sample of the low-s SNIa is used. Hence it is important to express all the SNIa on the constant
redshift surface. Details on how to obtain the cosmological redshifts from the observed redshift of sources for the
Pantheon+ supernova samples were given in [17]. The recent cosmological analysis of the Pantheon+ supernova
samples made use of this technique [59].

On the theory side, this is easy to define. For example, to express our result in terms of the cosmological redshift or
to define the surface of constant redshift, we simply expand the full expression for the redshift in perturbation theory

1
(1 + zobs)

= a(λs)
a(λo)

[
1 + (−H δ(1)λ− δ(1)z) (34)

+1
2

(
−H δ(2)λ− δ(2)z + 2(δ(1)z)2 + 2H δ(1)zδ(1)λ+

(
dH
dλs

+H 2
)

(δ(1)λ)2
)

+O(ε3
]
.

Imposing that the redshift is entirely due to Hubble flow(cosmological redshift surface) implies that

δ(1)λ = −δ
(1)z

H
, (35)

δ(2)λ = − 1
H

[
δ(2)z − (δ(1)z)2

(
1 + 1
H 2

dH
dλs

)]
. (36)

This immediately fixed the perturbation in the affine parameter. Plugging this back to equation (28), we obtain the
leading order terms contributing to the radial lensing effect at the constant redshift surface

δ rn̂

r
≈ −

(
1− 1

rsH s

)[ (
∂‖vs − ∂‖vo

)
+ 1
H s

(
∂‖vs − ∂‖vo

)
∂2

‖vs + 2∇⊥j∂‖vs
∫ rs

0
(r − rs)∇i⊥Φdr

]
. (37)

where we have focused on the leading order terms. The leading order approximation is determined by considering
the number of spatial derivatives [60]. For example, at the linear order in perturbation theory, terms with two
spatial derivatives(it could be angular, or radial(derivative along the line of sight)) of the gravitational potential or
the velocity potential are dominant terms. These are terms which are traditionally classified as Newtonian terms.
For example, matter density, Kaiser redshift space distortion term. Terms with one or zero spatial derivatives are
sub-dominant and are classified as general relativistic terms. Under this scheme, the first term in equation (39) is
classified as general relativistic term. Similarly, at the second-order in perturbation theory, the same scheme applies
to the intrinsic second-order term. For the terms quadratic in the first-order terms, the Newtonian terms contain four
spatial derivatives in total while the general relativistic term terms are those with less than four spatial derivatives.
For example in equation (39), the leading order terms at second order are those with three partial derivatives of the
gravitational potential or velocity potential along the line of sight or angular derivatives. This is the reason why we
sometimes describe the terms in equation (39) as general relativistic effects.

Comparing equation (37) to equation (27), we observe that the geometric deformation terms are sub-dominant at
low redshift, hence, the leading order contribution comes from the radial lensing effect or the parallax effect. Finally
the leading order approximation we will be studying in the subsequent sub-section is

ξ‖(z̄, n̂)
d̄A

= δrgeo

r
+ δrn̂

r
≈ δrn̂

r
(38)

≈ −
(

1− 1
rsH s

)[ (
∂‖vs − ∂‖vo

)
+ 1
H s

(
∂‖vs − ∂‖vo

)
∂2

‖vs + 2∇⊥j∂‖vs
∫ rs

0
(r − rs)∇i⊥Φdr

]
. (39)
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The second and the third terms of equation (39) are what we study in detail in sub-section II.3.

II.3. Monopole of the area distance and full sky spherical harmonics decomposition

Our interest is to calculate the monopole or the all sky average or direction average of the area distance

〈dA(z̄, n̂)〉Ω = d̄A(z̄)
[
1 +

〈
ξ‖

d̄A

〉
Ω

+ 〈κ〉Ω −
1
4

(〈
γijγ

ij
〉

Ω −
〈
ωijω

ij
〉

Ω

)]
. (40)

where 〈· · ·〉Ω denotes the monopole on a constant redshift (z) sphere

〈X(z̄)〉Ω ≡
∫

dn̂X(z̄, n̂) . (41)

The all sky average of the lensing convergence 〈κ〉Ω vanishes because κ is a total divergence of a 2-vector on the screen
space 〈κ〉Ω = −

∫
dΩ∇B⊥ξ⊥B/2 = 0 . The twist vanishes for purely scalar perturbation at leading order [61], hence〈

ωijω
ij
〉

Ω = 0 leaving

〈dA(z̄, n̂)〉Ω = d̄A(z̄)
[
1 +

〈
ξ‖

d̄A

〉
Ω
− 1

4
(〈
γijγ

ij
〉

Ω

) ]
. (42)

Note that
〈
ξ‖/d̄A

〉
Ω 6= 0, it is a general relativistic effect. We will show that in the low redshift limit

〈
ξ‖/d̄A

〉
Ω

dominates: 〈dA(z̄, n̂)〉Ω ' d̄A(z̄)
[
1 +

〈
ξ‖/d̄A

〉
Ω

]
and its contribution is non-negative. At high redshift, equation (40)

reduces to

〈dA(z̄, n̂)〉Ω ' d̄A(z̄)
[
1− 1

4
〈
γijγ

ij
〉

Ω

]
' d̄A(z̄)

[
1− 1

2

〈
(κ)2

〉
Ω

]
, (43)

where
〈
κ2〉

Ω ≈
〈
γijγ

ij
〉

Ω /2 on small scales. This is a well-known result [28, 29].
In order to evaluate the all sky average of the perturbation to the area distance given in equation (42), we split

equation (39) (i.e
〈
ξ‖/d̄A

〉
Ω) further into two parts in order to improve clarity of presentation〈

ξ‖

d̄A

〉
Ω
≡
〈
ξ‖

d̄A

〉A
Ω

+
〈
ξ‖

d̄A

〉B
Ω
, (44)

where
〈
ξ‖/d̄A

〉A
Ω and

〈
ξ‖/d̄A

〉B
Ω are the monopole of the second and third terms in equation (39) respectively. Now

let’s go through the full sky spherical harmonic expansion of each term in detail. Firstly, we separate the terms
contributing to

〈
ξ‖/d̄A

〉A
Ω into terms evaluated at the same source position from the term evaluated at both source

and observer positions: 〈
ξ‖

d̄A

〉A
Ω
≈ −

(
1− 1

rsH s

)
1
H s

[ 〈
∂‖v

(1)
s ∂2

‖v
(1)
s

〉
Ω −

〈
∂‖v

(1)
o ∂2

‖v
(1)
s

〉
Ω

]
. (45)

The all sky average of the term evaluated at the same source position i.e
〈
∂‖v

(1)
s ∂2

‖v
(1)
s

〉
Ω is zero by symmetry. This

implies that all the contribution to the monopole of the area distance from
〈
ξ‖/d̄A

〉A
Ω is due to

〈
∂‖v

(1)
o ∂2

‖v
(1)
s

〉
Ω:〈

ξ‖

dA

〉A
Ω

=
(

1− 1
rsH s

)〈
∂‖vo∂

2
‖vs
〉

Ω . (46)

Note that this contribution is dependent on the observer peculiar velocity and becomes important at very low redshifts.
That’s why we refer to as parallax effect. It can be used to determine not just Stellar distances and distances to
nearby extra-galactic sources [62]. Expanding equation (46) in full sky spherical harmonics leads to〈

ξ‖

dA

〉A
Ω

=
(

1− 1
rsH s

)
(D(z)H (z)f(z))(D(zo)H (zo)f(zo))

`max∑
`=0

(2`+ 1)
∫ dk

2π2 kPm(k)j′`(kro)j′′` (kr) . (47)

Please see Appendix C for details on how to perform the spherical harmonics decomposition. Ordinarily, equation (47)
would have been the final result we are looking for but we have to remember that due to the restriction(barycentric
observer approximation) or the cosmological perturbation theory constraint, i.e we positioned the observer at the
barycenter of our local group. The ` = 0 and ` = 1 modes carry this information. Therefore, when we sum from
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` = 0 to ` = ∞, we are calculating the monopole of the area distance that the local group barycentric observer will
measure. In order to remove this obvious coordinate dependence of the final result, we adopt the strategy used in the
analysis of the CMB temperature anisotropies [63].

The strategy adopted in the treatment of the CMB temperature anisotropies in the presence of large peculiar
velocity contribution to the monopole and the dipole is to expand all the terms(i.e equation (C3)) in full sky spherical
harmonics and them sum from ` = 2 to ` = ∞ [63, 64]. Using the correspondence between the spherical harmonics
and symmetric trace-free tensor, one can show that ` = 0 and ` = 1 modes are coordinate dependent [64, 65]. We
showed in Appendix C that the following correspondence holds at low redshift〈

∂||v
(1)
s ∂2
||v

(1)
s

〉
Ω
−
〈
∂‖v

(1)
o ∂2

‖v
(1)
s

〉
Ω ≈

〈
∂||v

(1)
s ∂2
||v

(1)
s

〉
Ω
, with `min = 2. (48)

= (D(z)H (z)f(z))2
`max∑
`=2

(2`+ 1)
∫ dk

2π2 kPm(k)j′`(kr)j′′` (kr) . (49)

We made use of this correspondence for computational efficiency. Using this strategy, we find that the full-sky
spherical harmonics of decomposition of the rest of terms are〈

ξ‖

dA

〉A
Ω

= −
(

1− 1
rsH s

)
H (zs)(f(zs)D(zs))2

`max∑
`=2

(2`+ 1)
∫

dk1

2π2 k1Pm(k1)j′`(k1rs)j′′` (k1rs) , (50)

〈
ξ‖

dA

〉B
Ω

= −
(

1− 1
rsH s

) `max∑
`=1

(2`+ 1)(`+ 1)!
(`− 1)!H (zs)f(zs)D(zs)

[
1
π

]2 ∫
dk1

k1
Pm(k1)j′`(k1rs)I`(k1, rs) , (51)

〈
γijγ

ij
〉

Ω =
[

2
π2

] `max∑
`=2

(2`+ 1)(`+ 2)!
(`− 2)!

∫
dk1

k2
1
Pm(k1)I`(k1, rs)I`(k1, rs) , (52)

where D is the growth factor for the density perturbation and f is the growth rate, j`(x) is the spherical Bessel
function and j′`(x) and j′′` (x) are first and second derivatives of the spherical Bessel function of order ` . Pm is the
matter power spectrum, we compute Pm using the CAMB code [66], I` is the integral along the line of sight

I`(k, rs) = −3
2Ωm0H

2
0

∫ rs

0
dr
[

(r − rs)
rsr

(1 + z)D(z)j`(k1r)
]
. (53)

Again equations (50) and (51) vanish in the plane-parallel limit when the observer dependent term is neglected.
So it is important that a full-sky spherical harmonic decomposition is employed. At large `, the three integrals in〈
γ(1)
ij γ

(1)ij
〉

Ω
maybe reduced to one using the Limber approximation [67]:

2
π

∫
k2dkf(k)j`(kr)j`(kr′) = δ(r − r′)

r2 f

(
`+ 1/2)

r

)
. (54)

Implementing these is equation (52) and performing the delta function integration leads to

〈
γ(1)
ij γ

(1)ij
〉

Ω
≈ 9

4
Ω2
m0
π

`max∑
`=2

(2`+ 1)(`1 + 2)!
(`1 − 2)!

(
H0

(`+ 1/2)

)4 ∫ rs

0
dr
[
D(z)(1 + z)(r − rs)

rs

]2
Pm (k) , (55)

where the momentum dependence is substituted in terms of r using k = (` + 1/2)/r. This is valid provided ` > 10
[68]. The contribution of each of the terms given in equations (50) and (51) are shown in figure 1. We study how the
coefficient (1− 1/r(zs)H (zs)) boosts the contribution in the limit of zero redshift. In the limit z → 0, 〈ξ‖/dA〉AΩ → 1
indicating that the strong gravitational lensing effect must be included, hence, the single parameter perturbation
theory discussion we have adopted becomes unreliable. We provide steps on what this means and how to handle it in
sub-section II.4.

We show the contribution of the weak gravitational lensing shear in figure 2. On the left panel, we show the
contribution of the weak gravitational lensing shear from the first few multipole moments. We made use of equation
(52) to calculate it, i.e without making the Limber approximation. While on the right panel, we use the Limber
approximation (equation (55)) to calculate a few representative multipole moments. One key point to note from this
is that the impact of cosmic structures may be neglected at high redshift and area distance based on the background
FLRW could be used without worrying about any bias from the tangential lensing terms.

We show in figure 3 the fractional difference between the monopole of the area distance and the FLRW background
limit: ∆(z) =

(
〈dA(z, n̂)〉Ω − d̄A(z)

)
/d̄A(z). At about z = 0.023, we find about 1% correction to the area distance
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FIG. 1. The top right and left panels show the monopole of the Post-Born radial distortion due to LoS peculiar velocity, ( i.e.〈
ξ‖/d̄A

〉A

Ω
) with and without the geometric boost factor, i.e (1− 1/r(zs)H (zs)) respectively. Similarly, the bottom right and

left panels show the monopole of the Post-Born radial distortion due to gravitational deflection (
〈
ξ‖/d̄A

〉B

Ω
). The dark curve

denotes the sum of the first few `s. On the left panels, the curves appear to change signs around z = 0.001 and z = 0.01. We
find this feature disappears as we increase `max.

FIG. 2. On the left panel, we show the first few large scale modes contributing to the monopole of the weak gravitational
lensing shear contribution to the area distance. The sum of the first few `s is denoted with a dark curve. On the right panel, we
show the result of using the Limber approximation (equation (55)) to calculate the monopole of the weak gravitational lensing
shear contribution. For a more accurate result at high redshift, one needs to sum up to `max = 106 [28]. We did not bother to
do this since our focus is on very small redshifts.

from large scale structures. Although, we considered only the leading order terms in the limit z → 0, we do not think
that including the other terms we neglected will change significantly this conclusion. Thus, this shows that using the
background FLRW space time to interpret the SNIa sample is valid. This is in agreement with related studies in this
direction [25, 69]. However, as z → 0, i.e the regime where 〈ξ‖/dA〉AΩ, dominates. We see from the top-left panel of
figure 1 and also in figure 3 that the correction increases dramatically to about 100%. The part of the contribution to
the radial lensing due to the gravitational deflection is sub-dominant and may be neglected in this limit as well. We
checked that going to very high ` does not change this conclusion. This makes including the contribution of 〈ξ‖/dA〉AΩ
to the area distance in the distance likelihood code much simpler [70]. Note that the computation of

〈
ξ‖/d̄A

〉A
Ω involves

only one momentum integral which can easily be optimised. Our crude implementation in Python takes less than a
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FIG. 3. We show the monopole of the fluctuation in the area distance ∆(z) as a function of redshift for the key term that
dominates at small redshift. The inset is a log-log plot of the monopole focussing on the z ≤ 0.023 redshift range. For this plot
we set `max = 100.

second to run.

II.4. Imprints of tidal deformations on the area distance at low redshift

On the right panel of figure 2, we show how the coefficient, i.e (1− 1/r(zs)H (zs)) boosts the contribution of the
post-Born terms in the limit z → 0. On its own, this term diverges in this limit(

1− 1
r(zs)H (zs)

) ∣∣
zs→0 → −

1
r(zs)H (zs)

→ −∞ . (56)

The contribution of
(
∂‖v

(1)
s ∂2

‖v
(1)
s /H

)
(without the coefficient) to the monopole of the area distance is less than 0.1%.

It is this coefficient that boosts the contribution to almost 100% in the limit z → 0.0. So what is going on? Let’s
examine the origin of this term first. From equation (44), in the limit z → 0, the radial distortion is given by

lim
z→0

〈
ξ‖

d̄A

〉
Ω
'
〈
ξ‖

d̄A

〉A
Ω
≈ 1
r

〈
1
H 2

(
∂‖vs − ∂‖vo

)
∂2

‖v
(1)

〉
Ω
. (57)

The most important thing about this term is that it nonzero because the null geodesics converge at the observer
position; −∇⊥iki⊥ = ∂⊥in

i
⊥ = 2/r. This is the where the coefficient 1/r which boosts the amplitude of the term

contained in the angle brackets comes from. It determines the effective amplitude of the correction to the background
area distance. Taking the zero redshift limit of equation (57) gives

lim
z→0

〈
ξ||

d̄A

〉
Ω
≈ lim
zs→0

5f2(zs)D2(zs)
r(zs)

`max∑
`=2

(2`+ 1)
∫

dk1

2π2 [k1Pm(k1)j′`(k1rs)j′′` (k1rs)]→
0
0 . (58)

The effective contribution from
〈
ξ‖/d̄A

〉
Ω is indeterminate. However, applying L’Hopital’s rule, we find that

〈
ξ||/d̄A

〉
Ω

is conditionally finite

lim
z→0

〈
ξ‖

d̄A

〉
Ω

= 5f2(0)
∫

dk1

2π2 k
2
1Pm(k1)j′′2 (0)j′′2 (0) ≈ 4

45f
2(0)σ2

R , (59)

where we made use of j′′2 (0) = 2/15. σ2
R is the variance in dark matter density field

σ2
R = 1

2π2

∫ kUV

0
dk k2Pm(k) = 1

2π2

∫ ∞
0

dk (kWTh(kR))2Pm(k) . (60)

In the second equality, we have introduced a top-hat window function, WTh, in lieu of a UV dependent momentum
integral. This means that

〈
ξ‖/d̄A

〉
Ω exists in the limit z → 0, provided that the smoothing scale, R, is non-zero.
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It is more informative to express equation (59) in the following form

lim
z→0

〈
ξ‖

d̄A

〉
Ω
≈ 4

45f
2(0)σ2

R = 2
15

〈
σijσ

ij

H2
0

〉
Ω
. (61)

In the last equality, we have introduced the shear tensor, σij . It is related to the peculiar velocity vi according
σij = ∂ivj−δij∂ivj/3. σij is symmetric and trace-free. It describes the cumulative effect of the tidal field(environment)
from the initial seed time to today [71]

σij(η0,x) ∼ −
∫ η0

τini

dη′Eij(η′,x′) , (62)

where Eij is the electric part of the Weyl tensor. Eij describes how nearby geodesics tear apart from each other [2,
3, 72]. Essentially, σij carries information about cumulative tidal deformation experienced by our local group due to
its gravitational interaction within itself and its nearest neighbours.

One key concern about the zero-redshift limit in equation (61) or the physical significance of the very low redshift
features in figure 3 is that redshift becomes multi-valued when a light beam passes through a collapsing region. Some
directions could be expanding while some will be collapsing [73, 74]. This kind of situation is usually associated with
the presence of a focal point, i.e a point where the area of the beam cross-section goes through zero [75]. In the
context of gravitational lensing, it is known as caustics [12, 14]. From the differential geometry point of view, it is
an indication of a breakdown of the global coordinates, i.e a bundle of light rays can no longer be described a single
family of null geodesics beyond a focal point [76]. This implies that below the focal point, the distance-cosmological
redshift relation breaks down or cannot be trusted, especially the mapping in equations (35) and (36).

Using the halo model, we showed in [77] that the physical boundary of halos(i.e the splashback radius [78–80]) are
usually located closer to the observer than the zero-velocity surface. Stated differently, the splashback radius of the
host halo is always less than the radius of the zero-velocity surface when measured with respect to an observer at
r = 0(see the right panel of figure 4). We define the radius of the zero-velocity surface as the comoving distance where
the divergence of the 4-velocity vector of the observer geodesic vanish

R ≥ − c

3H0

d ln ρ
d ln r , (63)

where c is the speed of light and ρ is the local matter density. It is possible to calculate equation (63) given some halo
profiles [81, 82] with the outer profile given by the mean matter density [83]. But there are observational constraints
for our local group which falls within the following range R ∼ (0.95−1.05)Mpc [84–86]. Therefore, the smoothing scale
in equation (61) must not be less than R. The features in figure 3 makes sense only when the distance between the
observer and the source is greater than R. Using the background FLRW distance redshift relation, this corresponds
to about zcut = 2.4× 10−4.

Finally, one of the key results we report here is that the area distance based on the background FLRW spacetime
is insufficient to describe distances in a lumpy universe at a very low redshift:

〈dA(z, n̂)〉Ω = d̄A(z)
[
1 +

〈
ξ‖

d̄A

〉
Ω

]
= deff

H (z)
(1 + z)

∫ z

zcut

dz′√
Ωm(1 + z′)3 + ΩΛ

, (64)

where Ωm is the matter energy density parameter, ΩΛ = 1−Ωm is the energy density due to the cosmological constant
and deff

H is the effective Hubble distance which captures the effect of the deformation to the observer spacetime

deff
H (z) = dH

[
1 +

〈
ξ‖

d̄A

〉
Ω

]
= dH + 5dH

r(z) (f(z)D(z))2
`max∑
`=2

(2`+ 1)
∫

dk1

2π2 k1Pm(k1)j′`(k1r(z))j′′` (k1r(z)) . (65)

Here dH = c/H0 is the global Hubble distance. The correction given in equation (64) is due to the the parallax effect,
it dominates in the very low redshift region.

III. COSMOGRAPHY IN THE PRESENCE OF STRUCTURES AND CONSEQUENCES FOR HUBBLE
RATE

From figure 3 and sub-section II.4, it is clear that inhomogeneity impacts the measurement of the area distance
at about the redshift of today. In this limit, the technique of cosmography is best suited for studying the area
distance [36, 87]. It allows estimating the Hubble without making any assumptions about the matter content of the
universe.
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III.1. Low redshift limit of the area distance and the decoupled region

Cosmography involves expanding the area distance in Taylor series around z = 0. Since dA is differentiable around
z = 0, it is straight-forward to expand equation (13) in Taylor series around z = 0

dT
A(z, n̂) = dA0) + ddA(z, n̂)

dz

∣∣∣∣
z=0

z + 1
2

d2dA(z, n̂)
dz2

∣∣∣∣
z=0

z2 +O (z)3
. (66)

where dT
A denotes the area distance in the low redshift limit. On the background, dA(z, n̂) ≈ d̄A(z) = r/(1 + z),

substituting in equation (66) gives

d̄T
A(z) = z

H0
− 1

2
(3 + q0)
H0

z2 +O(z)2 , (67)

where dA(0) = 0, H0 and q0 are the Hubble and the deceleration parameter evaluated at z = 0 respectively. We made
use of the FLRW spacetime expression for the comoving distance to introduce H0 and q0

dr
dz

∣∣∣∣
z=0

= 1
H0

,
d2r

dz2

∣∣∣∣
z=0

= −H
′(z)
H2

∣∣∣∣
z=0

= −q0 + 1
H0

. (68)

Putting equation (13) into equation (66) we find

dT
A(z, n̂) = 1

H0

[
1− dδz

dz + (2 + q0) δz
]
z (69)

+1
2

1
H0

[
− (q0 + 3) +H0

d2

dz2

(
d̄Aκ

)
− d2δz

dz2 + 2 (2 + q0) dδz
dz +

(
j0 − 3q2

0 − 5q0 − 5
)
δz

]
z2 +O(z3) ,

where we have introduced the jerk parameter through H ′′(z)/H
∣∣
z=0 ≡ j0 − q2

0 for completeness [88]. d̄Aγijγij and
d̄Aωijω

ij do not contribute at this order in redshift expansion when evaluated at the redshift of today. They will
obviously contribute when evaluated at different redshift position as describe in [89]. We convert redshift derivative
to radial derivative or derivative along the line of sight using Chain rule

dδz
dz

∣∣∣∣
z=0
≈ ∂δz

∂r

∂r

∂z

∣∣∣∣
z=0

= 1
H0

∂δz

∂r

∣∣∣∣
z=0

, (70)

d2δz

dz2

∣∣∣∣
z=0

=
[
∂2r

∂z2
∂δz

∂r
+ ∂2δz

∂r2

(
∂r

∂z

)2 ]
z=0

= − (q0 + 1)
H0

∂δz

∂r

∣∣∣∣
z=0

+ 1
H2

0

∂2δz

∂r2

∣∣∣∣
z=0

. (71)

Putting all these together, the leading order corrections to perturbed expression for the area distance becomes

dTr
A (z, n̂) ≈ 1

H0

[
1− 1

H

∂δz

∂r

]
0
z + 1

2
1
H0

[
− (q0 + 3) + 1

H

∂2 (d̄Aκ)
∂r2 + (3q0 + 5) 1

H

∂δz

∂r
− 1
H2

∂2δz

∂r2

]
0
z2 +O(z3) , (72)

In conformal Newtonian gauge, the redshift perturbation and the lensing convergence are given by

δz(rs, n̂) ≈ ∂‖v(1)
s −

1
H
∂‖v

(1)
s ∂2

‖v
(1)
s −∇⊥j∂‖v(1)

s

∫ rs

0
(r − rs)∇i⊥(Φ(1) + Ψ(1))dr , (73)

rκ(rs, n̂) ≈ −1
2∇Ωi

∫ rs

0

∫ r

0
∇i⊥ (Ψ(1) + Φ(1)) drdr . (74)

Details on the derivation of these expressions are given in the Appendix A. Since we are truncating the Taylor series
expansion at second order (see equation (66)), this implies that only terms with a maximum of two LoS integrals can
contribute to equation (66)

∂δz

∂r

∣∣∣∣
z=0

= ∂2
‖v

(1)
o −

1
Ho

(
∂2
‖v

(1)
o ∂2

‖v
(1)
o + ∂‖v

(1)
o ∂3

‖v
(1)
o

)
, (75)

∂2δz

∂r2

∣∣∣∣
z=0

= ∂3
‖v

(1)
o −∇⊥j∂‖v(1)

o ∇
j
⊥(Φ(1) + Ψ(1))o −

1
Ho

(
2∂2
‖v

(1)
o ∂3

‖v
(1)
o + ∂2

‖v
(1)
o ∂3

‖v
(1)
o + ∂‖v

(1)
o ∂4

‖v
(1)
o

)
, (76)

∂2 (d̄Aκ)
∂r2

∣∣∣∣
z=0

= −∇⊥i∇i⊥ (Ψ(1) + Φ(1))o . (77)
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It is important to understand how well the Taylor series expansion approximates the full expression for the area
distance. On the background FLRW spacetime level, cosmography at second order in redshift is valid up to z = 0.1.
When the inhomogeneities are added, the difference becomes〈

dT
A(z, n̂)

〉
Ω − d̄

T
A(z) = z

H0

[
lim
z→0

〈
ξ‖

d̄A

〉
Ω
− 1

2(3q0 + 5) lim
z→0

〈
ξ‖

d̄A

〉
Ω
z +O(z)2

]
. (78)

Again, to arrive at this, we assumed that the initial density field is Gaussian, which implies that the expectation
values of the following terms vanish 〈

∂2δz

∂r2

∣∣∣∣
0

〉
Ω

= 0 =
〈
∂2 (d̄Aκ)
∂r2

∣∣∣∣
z=0

〉
Ω

. (79)

Comparing equation (78) in this form to the full expression, i.e 〈dA(z, n̂)〉Ω − d̄A ≈ d̄A
〈
ξ‖/d̄A

〉
Ω allows to focus

precisely on the corrections since the convergence properties of the background is well known already. We show the
result of computing equation (78) for different smoothing scales and comparing it to the full expression (equation (42))
in figure 4. It is immediately clear that we need higher-order redshift corrections to achieve convergence to a significant

Hubble flow

cluster

host galaxy

dGL

dLgL
dL

FIG. 4. The left panel shows the difference between the cosmography for the area distance (equation (78)) at different
smoothing scales and the full expression (equation (42)). The unit of the smoothing scale is in Mpc/h. On the right panel,
we illustrate the geometry of the problem. The observer is at the barycentre of the host galaxy for simplicity. The observer
uses distance measurements to nearby structures with some of them within our local group as anchors to calibrate SNIa in
the Hubble flow. The model of distance within the galaxy dG

L and the local group, dLg
L , are not given by the background

FLRW metric. We know this because in the neighbourhood of our local group, we showed that the electric part of the Weyl
tensor is non-vanishing (see equation (61)). The distance within this region depends on the scalar invariant of the rate of shear
deformation. The dashed circumference indicates the start of the zero-velocity surface (red shaded area). However, the distance
in the Hubble flow dL − (dG

L + dLg
L ) can be determined using the FLRW metric.

accuracy at about z = 0.1. This an indication that the cosmography approach is less reliable at high redshift when
the effects of inhomogeneities is taken in consideration. It cannot be used for studying the expansion history of the
universe. The full expression will be needed for the expansion history. However, it is valuable for constraining the
Hubble rate provided the focal points in the neighbourhood of the observer are avoided, i.e set the smoothing scale
at or above thee radius of the zero-velocity surface. The SNIa, for example, only the information contained in the
intercept of the Hubble diagram is needed to determine the Hubble rate and not the entire history [10].

III.2. Supernova peak magnitude-redshift relation

The SNIa have a consistent peak luminosity that allows them to be used as standard candles to measure the distance
to their host galaxies. The apparent magnitude of any source, m, is related to the observed flux density FdL

in a
given spectral filter according to

m = −2.5 log10 [FdL
] , (80)



15

Similarly, the absolute magnitude, M , of the source is defined as the apparent magnitude of the same source but
measured at a distance DF

M = −2.5 log10 [FDF
] , (81)

where FDF
is called the reference flux or the zero-point of the filter [90]. The observed flux density is related to the

luminosity distance according to

FdL
=
[
DF

dL

]2
FDF

. (82)

This is the well-known inverse square law for the source brightness. The distance modulus is defined as the difference
between m and M

m−M = −2.5 log
[
FdL

FDF

]
= 5 log

[
dL
DF

]
= 5 log

[
dL
[pc]

]
− 5 . (83)

In the last equality, we set DF = 10 pc for historical reason. In this case, it means that the absolute magnitude is the
apparent magnitude if placed at a distance of 10 pc. In cosmology however, DF is set to DF = 1 Mpc leading to

µ(z, n̂) = m(z, n̂)−M = 5 log
[

dL
[Mpc]

]
+ 25 , (84)

where dL is in the units of Mpc. Again, this implies that absolute magnitude is the apparent magnitude of a source
if it were to be measured at 1Mpc.

The Etherington reciprocity theorem which holds in any metric theory of gravity in geometric optics limit allows
to obtain the luminosity distance from the area distance: dL = dA(1 + z)2:

dL(z, n̂) = ddA(z, n̂)
dz

∣∣∣∣
z=0

z

[
1 + 1

2

(
d2dA(z, n̂)

dz2

[
ddA(z, n̂)

dz

]−1
+ 4
)∣∣∣∣

z=0
z +O (z)2

]
. (85)

We have factored out the coefficient of order one redshift expansion. Having the luminosity distance in this form is
key to isolating the impact of the tidal field on the calibration of the SNIa using local distance anchors. Since we
have already calculated the full expression for the area distance in equation (72), it is straightforward to obtain the
luminosity distance on the FLRW background

d̄L(z) = z

H0
+ 1

2
(1− q0)
H0

z2 +O(z3) . (86)

And in the presence of perturbations it is given by

dL(z, n̂) = 1
H0

[
1− 1

H

∂δz

∂r

]
0
z

{
1 + 1

2

[
(1− q0) + 1

H

∂2 (d̄Aκ)
∂r2 − 1

H2
∂2δz

∂r2 + 1
H2

∂δz

∂r

∂2 (d̄Aκ)
∂r2 (87)

− 1
H3

∂δz

∂r

∂2δz

∂r2

]
0
z +O (z)2

}
.

The monopole of the distance modulus(equation (84) ) with dL given by the perturbed expression for the luminosity
distance (i.e equation (87))) is given by

〈µ〉Ω = 〈m〉Ω − 〈M〉Ω = 25 + 5 〈log10 dL〉Ω . (88)

The key job here is to evaluate the monopole of the logarithm of dL, i.e 〈log10 dL〉Ω. We start this process by takin
the logarithm of dL

log10 [dL(z, n̂)] = − log10H0 + log10

[
1− 1

H

∂δz

∂r

∣∣∣∣
z=0

]
+ log10 d̂L(z, n̂) . (89)

We have introduced the Hubble rate normalised luminosity distance

d̂L(z, n̂) = cz

{
1 + 1

2

[
(1− q) + 1

H

∂2 (d̄Aκ)
∂r2 − 1

H2
∂2δz

∂r2 + 1
H2

∂δz

∂r

∂2 (d̄Aκ)
∂r2 −

(
1
H

)3
∂δz

∂r

∂2δz

∂r2

]
0
z +O (z)2

}
.(90)

Now, we take the monopole of equation (89)

〈log10 [dL(z, n̂)]〉Ω = − log10H0 +
〈

log10

[
1− 1

H

∂δz

∂r
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z=0

]〉
Ω

+
〈

log10 d̂L(z, n̂)
〉

Ω
. (91)
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In the limit ∂δz/(H0∂r)� 1, we can evaluate the monopole of the second term by expanding in Taylor series. This is
equivalent to assuming that the contribution of the anisotropic part is very small when compared to the contribution
of the monopole part. After a little algebra we find〈

log10

[
1− 1

H0

∂δz

∂r

∣∣∣∣
z=0

]〉
Ω
≈ log10

[
1 + 1

15

〈
σijσ

ij

H2

∣∣∣∣
z=0

〉
Ω

]
. (92)

In the second equality, we have made use of equation (61) to express the result in terms of the scalar invariant of the
shear tensor. Within the limit of our perturbation theory approximation we find that the monopole of the Hubble
rate normalised luminosity distance is given by〈

log10 d̂L(z, n̂)
〉

Ω
= log10

[
cz

{
1 + 1

2(1− q0)z +O (z)2
}]

. (93)

In general, there could be corrections to the FLRW approximation especially at at second order in redshift. W e
neglected terms such as ∂||v(1)

s ∂||v
(1)
s and ∂||Φ(1)

s ∂||v
(1)
s /H s which contributes at second order in redshift expansion

(see equation (66)). These terms will come from the second order radial perturbation and sub-dominant post-Born
corrections. Some more details about this and how it is derived may be found in [19, 21, 28]. We provide a general
coordinate independent derivations of these equations in [77], see also [91, 92] for an alternative presentation. Putting
all these back into equation (88) gives a smooth distance modulus

〈µ〉Ω (z,H0, q0) = 〈m〉Ω − 〈M〉
R
Ω = 5 log10

[
cz

H0

(
1 + 1

2(1− q0)z +O(z2)
]

+ 25 , (94)

where we have introduced a renormalised absolute magnitude 〈M〉RΩ

〈M〉RΩ = 〈M〉Ω + 5 log10

[
1 + 1

15

〈
σijσ

ij

H2

∣∣∣∣
z=0

〉
Ω

]
. (95)

The scalar invariant of tidal deformation tensors has now been absorbed into the definition of the absolute magnitude.
The right-hand side of equation (94) corresponds to the background FLRW model. The effects of the inhomogeneities
on the area distance at very low redshift we described in sub-section II.3 or equation (64) impacts the calibration of
the absolute magnitude. The difference between the renormalised absolute magnitude 〈M〉RΩ and the intrinsic absolute
〈M〉Ω is given by

〈M〉RΩ − 〈M〉Ω = 5 log10

[
1 + 1

15

〈
σijσ

ij

H2

∣∣∣∣
z=0

〉
Ω

]
≈ 2

9 log 10f
2(0)σ2

R ≈ 0.12[mag] . (96)

To evaluate this difference, we set R = DF = 1Mpc.

III.3. Calibration of the SNIa using local distance anchors

SHoES collaboration’s estimates of H0 relies mainly on the constraint on the intercept of the distance modulus [6]

ab = −1
5 (Mb + 25− 5 log10H0) , (97)

where Mb is called standardisable absolute luminosity for the SNIa. It is calibrated using the measurement of the
distance modulus to cepheids that lives in the same galaxy host with at least one SNIa

Mb = mb,SNIa − µ0,ceph , (98)

where mb,SNIa is the apparent magnitude of a nearby Supernova with cepheids within the same host as the cepheids
and µ0,ceph is an independent distance modulus to the cepheids. The SHoES collaboration uses parallax methods to
estimate the distance to the Milky Way Cepheids [56]. From this distance, the absolute magnitude of cepheids is
determined. The collaboration has since made use of different geometrical distance estimates such as the distance to
the NGC 4258 obtained by modelling of the water masers in the nucleus of the galaxy orbit about its supermassive
black hole [93] and the distance to the Large Magellanic Cloud obtained from the dynamics of the detached eclipsing
binary systems [94] to calibrate Mb.

The Hubble rate is obtained from equation (97)

log10H0 = Mb + 25 + 5ab
5 , (99)
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where ab is found from fitting the intercept of the distance modulus of the SNIa which constrains Mb + 5ab

ab = log10

{
cz

[
1 + 1

2(1− q0)z
]}
− 0.2Mb ≈ log10 cz − 0.2Mb . (100)

Starting from equation (94) for a smoothed inhomogeneous model for the luminosity distance we find that the monopole
of the intercept is given by

〈ab〉Ω = −1
5

[
〈M〉RΩ + 25− 5 log10H0

]
, (101)

where 〈M〉RΩ is given in equation (95). The Hubble rate and the intercept are the same as in equation (99) and (100)
respectively with Mb replaced by 〈M〉RΩ .

The Carnegie-Chicago Hubble Program, CCHP, uses TRGB to calibrate local SNIa samples.

Mi = mi − µTRGB
0i , (102)

where mi is the apparent magnitude of the peak of the SNIa light curve from a given subsample that contains at least
one TRBG, µTRGB

0 is the true calibrator distance modulus. Once the SNIa absolute magnitude is calibrated using a
subsample of the very nearby supernova according to equation (102), then magnitude-redshift relation based on the
background FLRW spacetime is used for the rest of the samples (0.03 ≤ z ≤ 0.4) to perform a likelihood inference for
H0 using equation (94). CCHP sets q0 = −0.53 to determine the Hubble rate to be H0 = 69.6± 1.9 km/sec/Mpc .

III.4. The Supernova absolute magnitude tension

The inverse distance ladder technique could be used to estimate the absolute magnitude of SNIa samples. It assumes
the FLRW model for distances and uses the sound horizon scale at the surface of last scattering, r? as an anchor.
The CMB constraint on r? is used to calibrate the SNIA samples [34, 35]. For the Pantheon SNIa peak magnitudes
with Planck constraint on r?, the absolute magnitude is found to be MP18 = −19.387 ± 0.021 mag [34, 36]. Using
the parallax measurements of Milky Way Cepheids provided by the SHoES collaboration, [36] estimates the absolute
magnitude of the Pantheon SNIa peak magnitudes and found ME21 = −19.214± 0.037 mag. The difference between
MP18 and ME21 gives the so-called supernova absolute magnitude tension

ME21 −MP18 = 0.173± 0.04 mag . (103)

Given that the inverse distance ladder technique assumes a model which does not include the tidal term we describe

FIG. 5. The difference between 〈M〉RΩ the intrinsic absolute magnitude as function of the smoothing scale. The vertical grey
area is about 5% constraint on the radius of the surface of the zero-velocity that separates our local group from the Hubble
flow [84–86].

here, we associate the absolute magnitude it determines with 〈M〉Ω. The local cosmic distance ladder technique does
not assume any spacetime model. It essentially ensures the consistency in the use of the distance modulus formula
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(µ = m−M), hence, we associate the absolute magnitude that arises from this process to 〈M〉RΩ . Therefore, for the
Pantheon SNIa sample, we have

ME21 −MP18 = 〈M〉RΩ − 〈M〉Ω = 1
3 log 10

σijσ
ij

H2

∣∣∣∣
z=0

= 2
9 log 10f

2(0)σ2
R . (104)

We show in figure 5 the difference between the absolute magnitudes calculated using equation (104). With the
smoothing scale of R = DF = 1.0Mpc, we find about 0.12[mag] difference between the inverse distance ladder
predication and the local measurements.

III.5. Standard ruler: Baryon acoustic oscillation

Baryon acoustic oscillation (BAO) is sensitive to the Hubble rate and the area distance through the parallel and
orthogonal distortions in the separation between galaxies α‖ and α⊥ respectively. α‖ and α⊥ are known as the
Alcock-Paczynski parameters [37]. The connection between Alcock-Paczynski parameters and the Hubble rate/area
distance depends on a model. Assuming exact cosmological principle, a set of possible models reduces to the FLRW
models

ᾱ‖ = Hfid

H
, ᾱ⊥ = d̄A

dfid
A

. (105)

whereHfid and dfid
A are the fiducial Hubble rate and area distance respectively. They are used to estimate the separation

between galaxies before H and d̄A are adjusted to obtain the best-fit to the observed data. The monopole of the two-
point correlation function constrains α = α

2/3
⊥ α‖

1/3 = DV (z) =
[
zD2

M (z)/H(z)
]1/3 [95, 96], whereDM is the comoving

distance. The quadrupole moment is most sensitive to the Alcock-Paczynski ratio ε = α⊥/α‖ [97]. It is possible to
generalise equation (105) beyond the exact cosmological principle limit to allow for stochastic inhomogeneities. In
this case, the radial and orthogonal distance can be written as: r‖ = r̄‖ + δr = r̄‖ + δz/H and rA⊥ = r̄A⊥ + δrA⊥, then
the modified Alcock-Paczynski parameters become

α‖ =
∂r‖

∂rfid
‖

=
∂r‖

∂z

∂z

∂rfid
‖

≈ Hfid

H

[
1 + 1

H

∂δz

∂r
+O(δz)

]
, (106)

α⊥ = ∂rA⊥
∂θ

∂θ

∂Brfid
⊥
≈ dA
dfid
A

. (107)

We can take the direction average of equations (106) and (107) and set the result equal to equation (105)〈
α‖

〉
Ω = ᾱ‖ and 〈α⊥〉Ω = ᾱ⊥ . (108)

Keeping the fiducial cosmology fixed in both equations (106) and (107) and equation (105) and evaluating the all sky
average, we find the effective Hubble rate

Heff = H

[
1− 2

15

〈
σijσ

ij

H2

〉
Ω

]
. (109)

and the area distance is given in equation (64). By setting the all sky average of equations (106) and (107) to equation
(105), we are asking what will be the inferred Hubble rate and the area distance to a source at a fixed redshift if the
inhomogeneous universe described by the metric given in equation (17) is interpreted using the background FLRW
background spacetime. The fractional change in the area distance has already been discussed in sub-section II.3 and
the key results shown in figure 3, hence we focus on the fractional difference between the effective and the global
Hubble rate:

Heff
0 −H0

H0
= − 4

45f
2(0)σ2

R . (110)

We plot equation (110) in figure 6 as a function of the smoothing scale. Note that H0 is the Hubble rate measured
by the local distance ladder technique. We find about (8 − 12)% change to the Hubble rate when the tidal field is
smoothed at the zero-velocity surface of our local group.
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FIG. 6. We show the dependence of the fractional difference between the effective and global Hubble rates. Again the vertical
grey area is a constraint on the radius of the zero-velocity surface that separates our local group from the Hubble flow [84–86].
The vertical axis is an absolute value of the difference.

IV. CONCLUSION

We showed how to derive a very concise expression for the area distance in a lumpy universe. This approach makes it
easier and straightforward to analytically isolate and estimate the impact of the general relativistic corrections to the
multipole moments of the area distance when compared to the perturbation of the full null focusing equation [19, 21]
To obtain this simplified view-point, we made use of the general coordinate transformation to derive a relationship
between the source position and the image position. The relative difference between these positions can also be
expressed in terms of the deviation vector when the image position is identified as the position of the central ray. We
showed how to perform an irreducible decomposition of the Jacobian of the transformation with respect to the line
of sight direction of the observer. This decomposition scheme follows the “Cosmic Ruler” decomposition approach
introduced in [41]. The orthogonal component of the deviation vector leads to the traditional Weak gravitational
lensing parameters while the contribution of radial component in the Jacobian projected unto the screen space leads
to the radial lensing correction/effect that we studied further. On the surface of constant redshift, the radial component
is sourced by the perturbation in the observed source redshift. On the constant redshift surface, the radial lensing
effects is known as the Doppler lensing effects and we showed that the leading order part is the parallax effect. That
is the displacement in the background source position due to the relative velocity of the observer. We showed how
to evaluate the impact of the parallax effect on the monopole of the area distance and the distance modulus.

In order to calculate correctly the impact of the parallax effect on the monopole of the area distance, we needed
a model of the heliocentric peculiar velocity. The heliocentric peculiar velocity cannot be calculated within our
cosmological perturbation theory scheme [98]. Therefore, to maintain consistency, we positioned the observer at the
barycenter of our local group, this allows us to use the techniques developed in the study of the CMB temperature
anisotropies to perform a full sky spherical harmonic decomposition of the correction to the area distance. We
discussed how to perform this calculation in greater detail in Appendix C. The benefit of this approach is that the
contribution of the heliocentric peculiar velocity can easily be included by boosting to the heliocentric frame when the
correct heliocentric peculiar velocity is determined. The impact of the heliocentric peculiar velocity on the luminosity
distance was studied in [48].

Similarly, when calculating the area distance using the general coordinate transformation approach or using the
focusing equation (Sachs equation or the geodesic deviation equation of the Jacobi equation) we are in principle
assuming that the observer and the source are connected by a one-parameter family geodesics. This does not hold in
our universe because there exists a conjugate point at the boundary of our local group [74, 99]. The focusing equation
or the coordinate system induced by a one-parameter family of geodesics breaks down at a conjugate point [76].
Therefore to go beyond the conjugate point, another set of coordinate systems needs to the introduced. In order to
avoid these complications, we analytically continued the monopole of the area distance as a function of the cosmological
redshift beyond the conjugate point and then use a top-hat window function to smooth over divergent modes at the
scale R. We showed that the smoothing scale R is given by the radius of the zero-velocity surface. What this means
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is that we can trust the perturbation theory prediction up the scale R. Using the constraint on the cosmological
parameters given by the Planck’s experiment [8], we showed that the contribution of the inhomogeneities to the
background area distance(or the the luminosity distance) at low redshift (zcut ≤ z ≤ 0.001) could range from (4-12)%.
Here the zcut is determined by the radius of the zero-velocity surface(see equation (63) for details).

In addition, we studied the consequences of the modification to the monopole of the area distance in the low redshift
limit on the cosmic distance ladder or the first rung of the distance ladder. We showed that the distance to nearby
sources are impacted by the tidal deformation. The distance to the anchors used for the calibration of the absolute
magnitude of the SNIa are located in the region where the impact of the tidal deformation cannot be neglected. Also,
since distance is a two-point function, even sources far away in the Hubble flow are affected via the calibration of
the absolute magnitude. We showed how the impact of the tidal deformation could bias the calibration of the SNIa
absolute magnitude and we argue that it provides a natural explanation to the SNIa absolute magnitude tension.
That is it explains the difference between the SNIa absolute magnitude determined using local distance anchors and
the absolute magnitude obtained by inverse distance ladder with the proper length of the sound horizon at the last
scattering surface as an anchor. Using the Alcock-Paczynski parameters as observables we showed that the inferred
Hubble rate from the BAO measurement under-estimates the Hubble rate of an expanding universe by about (8-12)%.
This is exactly the amount required to resolve the Hubble tension [100].

Finally, we neglected the impact of the heliocentric peculiar velocity on the luminosity distance or the apparent
magnitude. It is important to note that including this coordinate dependent correction will not impact our result on
the supernova absolute magnitude tension or the Hubble tension. We expect that the heliocentric peculiar velocity
will impact the position of the intercept of the Hubble diagram. We shall study this in detail elsewhere.
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Appendix A: Physical Position from perturbed background

We derive the full expression for the source position by solving the photon geodesic equation

k̂b∇̂bk̂a = 0 . (A1)

Following Sachs and Wolfe [103], the conformal transformation ĝab → gab maps the null geodesic equation associated
with the physical metric ĝab (perturbed FLRW metric) to a null geodesic equation derived from a perturbed Minkowski
metric gab. Both metrics are related according to gab = a−2ĝab. The contravariant photon 4-vector transforms as
k̂b = a−2kb while the covariant photon 4-vector transforms as k̂a = ka. The affine parameters transform as dλ̂ →
dλ = a−2dλ̂. A given time-like 4-velocity, ûa on the physical spacetime, it transforms as ûa = a−1ua ⇔ ûa = aua.
The photon energy transforms as Ê = −ûbk̂b = −a−1 ubk

b = a−1E.
This implies that we can compute the photon energy on a perturbed Minkowski space-time and simply multiply

the conformal factor to obtain the corresponding expression in the physical spacetime. Similarly, we can compute
the source position using the perturbations of the Minkowski metric, then multiply by the scale factor to obtain the
equivalent in an expanding spacetime. The solution to the geodesic equation on a perturbed Minkowski metric is
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given by [19]

δ(1)k0 = −2(Φ(1)
s − Φ(1)

o ) + 2
∫ λs

λo

Φ(1)′dλ , (A2)

δ(1)k‖ = −2
∫ λs

λo

Φ(1)′dλ , (A3)

δ(1)ki⊥ = −2
∫ λs

λo

∇i⊥Φ(1)dλ . (A4)

At second order we considered only the dominant terms.

δ(2)k0 ≈ −2Φ(2)
s +

∫ λs

λo

(
Φ(2)′ + Ψ(2)′

)
dλ+ 8

∫ ∫ (λo − λ̃)
(λo − λ)∇

i
⊥Φ(1)′(λ̃)

∫
∇⊥iΦ(1)(λ̃) , (A5)

δ(2)k‖ ≈ −
∫ λs

λo

(
Φ(2)′ + Ψ(2)′

)
dλ+ 8

∫
∇i⊥Φ(1)

∫
∇⊥iΦ(1)(λ̃)−

∫ ∫ (λo − λ̃)
(λo − λ)∇

i
⊥Φ(1)′(λ̃)

∫
∇⊥iΦ(1)(λ̃) (A6)

δ(2)ki⊥ ' −
∫ λs

λo

∇i⊥ (Φ(2) + Ψ(2)) dλ (A7)

+2
∫ λs

λo

[∫ λ

λo

∇j⊥
(
Φ(1)(λ̃) + Ψ(1)(λ̃)

)
dλ̃
∫ λ

λo

r̃

r
∇⊥j∇i⊥

(
Φ(1)(λ̃) + Ψ(1)(λ̃)

)
dλ̃
]

dλ . (A8)

The full expression is given in [19]. The perturbed photon trajectory is obtain by integrating equations (A5) and (A8)

δ(1)η(η̄s, n̂) = 2
∫ rs

0
(rs − r)Φ(1)′dr (A9)

δ(1)x‖(η̄s, n̂) ≈ −2
∫ rs

0
Φ(1)dr , (A10)

δ(1)xi⊥(η̄s, n̂) =
∫ rs

0
(r − rs)∇i⊥(Φ(1) + Ψ(1))dr , (A11)

where we have defined r = ηo − η̄. At second order, we need only the radial component

δ(2)x‖(λs, n̂) = −
∫ rs

0
(Φ(2) + Ψ(2)) dr + 8

∫ rs

0
dr′
∫ r′

0
dr′′(rs − r′)∇⊥iΦ(1)(r′n̂)∇i⊥Φ(1)(r′′n̂) (A12)

+8
∫ rs

0
dr
∫ r

0
dr′
∫ r

0
dr′′ r

′′

r
∇⊥iΦ(1)(r′n̂)∇i⊥Φ(1)(r′′n̂) .

Together, we find that the source position as function of the Minkowski background spacetime is given by

xi(η̄, x̄) = x̄i(η̄) + δ(1)xi(η̄, x̄) + 1
2δ

(2)xi(η̄, x̄) +O(ε3) , (A13)

where η̄ and x̄i are the background conformal time and spatial coordinate position respectively. Up to this point, the
perturbations live on the background spacetime, but, light rays travel on physical spacetime, not on the background
spacetime. Firstly, we need to express equation (A13) in terms of the affine parameter of the full spacetime. On the
background spacetime, we have

dη̄
dλ̄

= 1 , dx̄i

dλ̄
= −ni . (A14)

Again ni is the LoS direction vector. Integrating these two equations from the observer to the source give: x̄i =
−ni(λ̄s − λo) = nir with r = (λo − λ̄s) = (ηo − η̄s). Given that λ = λ̄ + δ(1)λ + δ(2)λ/2 we re-map x̄i to the affine
parameter associated with the perturbed Minkowski spacetime

x̄i(η̄)→ x̄i(λ)− δ(1)λ
dxi

dλ

∣∣∣∣
s

− 1
2

(
(δ(1)λ)2 d2xi

dλ2

∣∣∣∣
s

+ δ(2)λ
dxi

dλ

∣∣∣∣
s

)
+O(ε3) . (A15)

Since ni is constant on the background, its acceleration vanishes d2xi/dλ2|s = 0, therefore

x̄i(η̄)→ rni + δ(1)λni + 1
2δ

(2)λni +O(ε3) . (A16)
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This implies that the perturbed position given in equation (A13) may be written in terms of λs by replacing x̄i(η)

xi(λ, n̂) = x̄i(λ) +
[
δ(1)xi + nisδ

(1)λ
]

+ 1
2
[
δ(2)xi + nisδ

(2)λ
]
. (A17)

Similarly, at first order, we re-map the conformal time and position

δ(1)λ(η̄, x̄) ≈ δ(1)λ(λ, n̂)−∆(1)x‖(η̄, x̄)∂‖δ
(1)λ(η̄, x̄)− δ(1)xi⊥(η̄, x̄)∇⊥iδ(1)λ(η̄, n̂) , (A18)

δ(1)x‖(η̄, x̄) ≈ δ(1)x‖(λ, n̂)−∆(1)x‖(η̄, x̄)∂‖δ
(1)x‖(η̄, x̄)− δ(1)xi⊥(η̄, x̄)∇⊥iδ(1)x‖(η̄, n̂) , (A19)

δ(1)xi⊥(η̄, x̄) ≈ δ(1)xi⊥(λ, n̂)− δ(1)xi⊥(η̄, n̂)∇⊥iδ(1)xi⊥(η̄, n̂) . (A20)

Again, we focused on the dominant terms only. Substituting these terms in equation (A17) gives

xi(λ, n̂) = x̄i(λ) +
[
δ(1)xi⊥ + nis

(
δ(1)x‖ + δ(1)λ

)]
+ 1

2

[
δ(2)xi⊥ − 2δ(1)xi⊥∇⊥iδ(1)xi⊥ (A21)

+nis
(
δ(2)x‖ + δ(2)λ− 2∆(1)x‖

(
∂‖δ

(1)λ+ ∂‖δ
(1)x‖

)
− 2δ(1)xi⊥ (∇⊥iδ(1)λ+∇⊥iδ(1)λ)

) ]
.

where ∆(1)x‖ = δ(1)x‖+δ(1)λ . The corresponding position on the perturbed FLRW spacetime is given by xiFLRW(λ, n̂) =
a(η̄)xi(λ, n̂). Therefore, we need to re-map the conformal factor

a(η̄) = a(λs)
[
1−H sδ

(1)λ− 1
2H s

(
δ(2)λ− 2∆(1)x‖∂‖δ

(1)λ− 2δ(1)xi⊥∇⊥iδ(1)λ+
(
H ′

H s
+H s

)
(δ(1)λ)2

)]
,(A22)

Putting equation (A22) into xiFLRW(λ, n̂) = a(η̄)xi(λ, n̂) and using equation (A21) we find

xiFLRW(λs, n̂) ≈ a(λs)rs
{
ni +

[
δ(1)xi⊥
rs

+
[
δ(1)x‖

rs
−
(

1− 1
rsH s

)
H δ(1)λ

]
ni
]

(A23)

+1
2

[
δ(2)xi⊥
rs

− 2
rs

∆(1)xj⊥∇⊥jδ
(1)xi⊥ +

(
δ(2)x‖

rs
− 2
rs

∆(1)x‖∂‖δ
(1)x‖

− 2
rs
δ(1)xi⊥∇⊥iδ(1)δx‖ −

(
1− 1

rsH s

)
H
(
δ(2)λ− 2∆(1)x‖∂‖δ

(1)λ− 2δ(1)xj⊥∇⊥jδ
(1)λ
))

ni
]}

,

At this point, we can define the deviation vector

ξi(λs, rn̂)
a(λs)rs

= xiFLRW(λs, rn̂)− x̄iFLRW(λs)
a(λ)rs

= xiFLRW(λs, rn̂)− x̄iFLRW(λs)
d̄A(λ)

. (A24)

We measure the redshift and angles and not the affine parameter. Therefore, we have to express the deviation vector
in terms of the cosmological redshift. This implies that the contributions to the observed redshift due to Doppler
effects, Sachs-Wolfe effect, integrated Sachs-Wolfe effects, etc are interpreted as displacements in the position of the
source due to a local over-density. The distance to a source falling into a local over-density along the line of sight
direction may appear shorter while sources moving away from the local over-density may appear stretched [57]. The
perturbation of the observed redshift is given by

(1 + zobs) = Es
Eo

= a(η̄o)
a(η̄s)

[
1 + δ(1)z + 1

2δ
(2)z

]
. (A25)

where δ(1)z and δ(2)z denotes the first and second order perturbations in redshift respectively. Using equation (A22),
we write equation (A25) as

1
(1 + zobs)

= a(λs)
a(λo)

[
1 + (−H δ(1)λ− δ(1)z) (A26)

+1
2

(
−H δ(2)λ− δ(2)z + 2(δ(1)z)2 + 2H δ(1)zδ(1)λ+

(
dH
dλs

+H 2
)

(δ(1)λ)2
)

+O(ε3
]
.

Imposing that the redshift is entirely due to Hubble flow(constant redshift surface) implies that

δ(1)λ = −δ
(1)z

H
, (A27)

δ(2)λ = − 1
H

[
δ(2)z − (δ(1)z)2

(
1 + 1
H 2

dH
dλs

)]
. (A28)
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Putting equations equations (A27) and (A28) in equation (A23) gives

ξ(1)
‖(zs, rn̂)
d̄A

=
δ(1)x‖

rs
+
(

1− 1
rsH s

)
δ(1)z , (A29)

ξ(2)
‖(zs, rn̂)
d̄A

=
δ(2)x‖

rs
− 2
rs
δ(1)xi⊥∇⊥iδ(1)δx‖ +

(
1− 1

rsH s

)(
δ(2)z − 2δ

(1)z

H
∂‖δ

(1)z − 2δ(1)xj⊥∇⊥jδ
(1)z

)
. (A30)

The perturbed redshift in conformal Newtonian gauge is given by

δz =
(
∂‖vs − ∂‖vo

)
− (Φs − Φo)−

∫ rs

0
(Φ′ + Ψ′) dr. (A31)

Using equation (A31) we find that the line of sight component of the deviation vector is given by

ξ(1)
‖(zs, n̂)
a(z)rs

=
(
∂‖v

(1)
s − ∂‖v(1)

o

)(
1− 1

rsH s

)
, (A32)

ξ(2)
‖(zs, n̂)
a(z)rs

=
[ (
∂‖v

(2)
s − ∂‖v(2)

o

)
− 2
H s

(
∂‖v

(1)
s − ∂‖v(1)

o

)
∂‖∂‖v

(1)
s (A33)

−2∇⊥j∂‖v(1)
s

∫ rs

0
(r − rs)∇i⊥(Φ(1) + Ψ(1))dr

](
1− 1

rsH s

)
.

Note that we have expanded the peculiar velocity up to second order v = v(1) + v(2)/2. The orthogonal component
up to second order becomes

ξi⊥(zs, n̂)
a(z)rs

= δ(1)xi⊥
rs

+ 1
2

[
δ(2)xi⊥
rs

− 2
rs

∆(1)xj⊥∇⊥jδ
(1)xi⊥

]
, (A34)

where

δ(1)xi⊥(zs, n̂) =
∫ rs

0
(r − rs)∇i⊥(Φ(1) + Ψ(1))dr , (A35)

The weak gravitational lensing convergence at first order is given by

κ(1)(zs, n̂) = −1
2∇ΩAξ

A
⊥ = 1

2

∫ rs

0

(r − rs)r
rs

∇2
⊥(Φ(1) + Ψ(1))dr , (A36)

where ∇2
⊥ = ∇⊥i∇i⊥, we will not need the explicit form of κ(2) for our calculation, hence no need to give it here. The

twist vanishes ωij = 0 at linear order. The shear at first order is given by

γ(1)
ij (zs, n̂) = ∇Ω〈i∆(1)x⊥j〉 =

∫ rs

0

(r̃ − rs)r̃
rs

∇⊥〈i∇⊥j〉(Φ(1) + Ψ(1))dr̃ . (A37)

Appendix B: Area distance from the null focusing equations

The focusing equation for the area distance is given by [19]

d2dA
dλ2 = −

[
1
2Rabk

akb + ΣabΣab
]
dA , (B1)

where Rab is the Ricci tensor, Σab is the null shear associated with ka. Equation (B1) may be solved perturbatively
with the following initial conditions

δndA

∣∣∣∣
o

= 0 and dδndA

dλ

∣∣∣∣
o

= −δnEo , (B2)

where the perturbations in the photon energy at the observer location is given by

δEo = Φ(1)
o , δ2Eo = Φ(2)

o − Φ(1)2
o . (B3)
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Using these initial conditions, the solution to equation (B1) becomes

δ(1)dA

d̄A
= −

∫ λs

λo

dλ (λs − λ)(λo − λ)
(λo − λs)

∇2
⊥Φ(1) , (B4)

δ(2)dA

d̄A
= −2

∫ λs

λo

dλ (λs − λ)
(λo − λs)

∇2
⊥Φ(1)

∫ λ

λo

dλ̃(λ− λ̃)(λo − λ̃)∇2
⊥Φ(1)(λ̃)

−8
∫ λs

λo

dλ (λs − λ)
(λo − λs)

∫ λ

λs

dλ̃∇⊥iΦ(1)(λ̃)
∫ λ

λo

dλ̃ (λo − λ̃)2

(λo − λ) ∇
i
⊥∇2Φ(1)(λ̃)

−4
∫ λs

λo

dλ (λs − λ)
(λo − λs)

∇⊥iΦ(1)

∫ λ

λo

dλ̃ (λs − λ̃)(λo − λ̃)2

(λo − λ) ∇i⊥∇2
⊥Φ(1)(λ̃)

−4
∫ λs

λo

dλ (λs − λ)(λo − λ)
(λo − λs)

∫ λ

λo

dλ̃∇⊥〈i∇⊥j〉Φ(1)(λ̃)
∫ λ

λo

dλ̃∇〈i⊥∇
j〉
⊥Φ(1)(λ̃) . (B5)

where we have focused on the dominant terms only. On the constant redshift surface, the area distance becomes[21]

dA(z, n̂) = d̄A(zs)
{

1 +
[
δ(1)dA

d̄A
+
(

1− 1
H sr

)
δ(1)z

]
+ 1

2

[
δ(2)dA

d̄A
+ 2δ

(1)dA

d̄A
δ(1)z

(
1− 1
H sr

)
+ (δ(1)z)2

H rs

(
H ′s
H 2 − 1

)
+ 2
H s

δ(1)z

(
δ(1)dA

d̄A

)′
+ 2∆(1)x‖∂‖

(
δ(1)dA

d̄A

)
+ 2∆(1)xi⊥∇⊥i

(
δ(1)dA

d̄A

)
+2
(
δ(2)z + 1

H s
δ(1)zδ(1)z′ −∆(1)x‖∂‖δ

(1)z −∆(1)xi⊥∇⊥iδ(1)z

)(
1− 1
H sr

)]}
. (B6)

The leading order part is given by

dA(z, n̂) ≈ d̄A(zs)
{

1 +
(

1− 1
H sr

)
δ(1)z + 1

2
δdA

d̄A
+ 1

2
(
δ(2)z − 2∆(1)x‖∂‖δ

(1)z − 2∆(1)xi⊥∇⊥iδ(1)z
)(

1− 1
H sr

)}
.(B7)

Appendix C: Spherical Harmonic decomposition of the key term

We use the Poisson equations to express the velocity potential in terms of the matter density contrast δm

v(k, η) = H
k2 f(η)δm(k, η) . (C1)

The most important term in our analysis is〈
ξ‖

d̄A

〉A
Ω
≈ −

(
1− 1

rsH s

)〈
1
H s

(
∂‖v

(1)
s − ∂‖v(1)

o

)
∂2

‖v
(1)
s

〉
Ω
, (C2)

= −
(

1− 1
rsH s

)
1
H s

[ 〈
∂‖v

(1)
s ∂2

‖v
(1)
s

〉
Ω −

〈
∂‖v

(1)
o ∂2

‖v
(1)
s

〉
Ω

]
. (C3)

Expanding each of the terms in
〈
∂||v

(1)
s ∂2
||v

(1)
s

〉
Ω

in Fourier space we find

〈
∂||v

(1)
s ∂2
||v

(1)
s

〉
Ω

= −i (D(z)H (z)f(z))2
∫

dn̂
∫ d3k1

(2π)3

∫ d3k2

(2π)3
1
2

[
µ1µ

2
2

k1
+ µ2µ

2
1

k2

]
eik1·xeik2·xδm(k1)δm(k2) , (C4)

where µi = k̂i · n̂ and i = 1, 2. We made use of equation (C1) to express the velocity field in terms of the density
field. If we take the ensemble average of

〈
∂||v

(1)
s ∂2
||v

(1)
s

〉
Ω

at this stage using

δ(1)
m (k1)δ(1)

m (k2) = (2π)3Pm(k1)δ(D) (k1 + k2) (C5)

equation (C4) vanishes. We go beyond this to decompose eik1·x in a linear combination of spherical waves,

eik·x = 4π
∑
`m

i`j`(kr)Y ∗`m(n̂)Y`m(k̂) . (C6)
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It allows to expand the angles in spherical harmonics are well

iµeikr = ni∂ie
ikr = 4π

∑
`m

i`j′`(kr)Y ∗`m(n̂)Y`m(k̂) , (C7)

−µ2eikr = ∂2
‖
eikr = 4π

∑
`m

i`j′′` (kr)Y ∗`m(n̂)Y`m(k̂) . (C8)

Substituting this into equation (C4) leads to〈
∂||v

(1)
s ∂2
||v

(1)
s

〉
Ω

= (4π)2 (D(z)H (z)f(z))2 ∑
`1m1

∑
`2m2

i(`1+`2)
∫

dn̂
∫ d3k1

(2π)3

∫ d3k2

(2π)3 δm(k1)δm(k2) (C9)

×1
2

[
j′`(k1r)j′′` (k2r)

k1
+ j′`(k2r)j′′` (k1r)

k2

]
Y ∗`1m1

(n̂)Y ∗`2m2
(n̂)Y`1m1(k̂1)Y`2m2(k̂′2) ,

At this point. we can take the ensemble average using equation (C5)〈
∂||v

(1)
s ∂2
||v

(1)
s

〉
Ω

= (4π)2 (D(z)H (z)f(z))2 ∑
`1m1

∑
`2m2

i(`1+`2)(−1)`2

∫
dn̂
∫ d3k1

(2π)3Pm(k1) (C10)

×
[
j′`(k1r)j′′` (k1r)

k1

]
Y ∗`1m1

(n̂)Y ∗`2m2
(n̂)Y`1m1(k̂1)Y`2m2(k̂1) .

We have made use of the Parity symmetry of the spherical harmonics: Y`m(−k̂) = (−1)`Y`m(k̂). We can use the
spherical harmonics addition rule to switch the position of the conjugation

L`(n̂ · k̂1) = 4π
(2`1 + 1)

`1∑
m1=−`1

Y ∗`1m1
(n̂)Y`1m1(k̂1) = 4π

(2`1 + 1)

`1∑
m1=−`1

Y`1m1(n̂)Y ∗`1m1
(k̂1) , (C11)

where L` is the Legendre polynomial. This allows to perform the angular k-integral using the orthogonality condition∫
dΩk2Y`2m2(k̂1)Y ∗`1m1

(k̂1) = δ`2`1δm2m1 . (C12)

Then we can perform `2 and m2 sums. Using the addition theorem, we sum over the remaining m1 using

∑̀
m=−`

Y ∗`m(n̂)Y`m(n̂) = 2`+ 1
4π (C13)

leading to 〈
∂||v

(1)
s ∂2
||v

(1)
s

〉
Ω

= (D(z)H (z)f(z))2
`max∑
`=0

(2`+ 1)
∫ dk

2π2 kPm(k)j′`(kr)j′′` (kr) . (C14)

In the body of the paper, we dropped the overbar(ensemble average) to reduce clutter.
Similarly,

〈
∂‖v

(1)
o ∂2

‖v
(1)
s

〉
Ω = (D(z)H (z)f(z))(D(zo)H (zo)f(zo))

`max∑
`=0

(2`+ 1)
∫ dk

2π2 kPm(k)j′`(kro)j′′` (kr) . (C15)

We use this correspondence for efficiency (see figure 7)〈
∂||v

(1)
s ∂2
||v

(1)
s

〉
Ω
−
〈
∂‖v

(1)
o ∂2

‖v
(1)
s

〉
Ω ≈

〈
∂||v

(1)
s ∂2
||v

(1)
s

〉
Ω
, with `min = 2. (C16)

= (D(z)H (z)f(z))2
`max∑
`=2

(2`+ 1)
∫ dk

2π2 kPm(k)j′`(kr)j′′` (kr) . (C17)

Using the following relationships for the derivatives of th spherical Bessel functions

j′`(x) = −j`+1 + `

x
j`(x) for ` = 0, 1, 2 · · · (C18)

j′′` (x) = 1
x2

[(
`2 − `− x2) j`(x) + 2xj`+1(x)

]
, for ` = 0, 1, 2 · · · (C19)
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FIG. 7. We show the correspondence employed to calculate
〈
ξ‖/d̄A

〉A

Ω
in the body of the paper. The definitions of the legend

is given in equations (C20)-(C22). We summed from ` = 2 to ` = 20 for Z1 and Z2 establishing the approximation used in
the body of the paper that Z1 = Z2 with the contribution of ` = 0 and ` = 1 removed. Z3 gives the total contribution for an
observer positioned in the barycenter of our local group.

We show the correspondence in equation (C16) in figure 7.

Z1 = −
(

1− 1
rsH s

)[
H (zs)(f(zs)D(zs))2

`max∑
`=2

(2`+ 1)
∫

dk1

2π2 k1Pm(k1)j′`(k1rs)j′′` (k1rs) (C20)

−(D(z)H (z)f(z))(D(zo)H (zo)f(zo))
`max∑
`=2

(2`+ 1)
∫ dk

2π2 kPm(k)j′`(kro)j′′` (kr)
]
,

Z2 = −
(

1− 1
rsH s

)
H (zs)(f(zs)D(zs))2

`max∑
`=2

(2`+ 1)
∫

dk1

2π2 k1Pm(k1)j′`(k1rs)j′′` (k1rs) , (C21)

Z3 =
(

1− 1
rsH s

)
(D(z)H (z)f(z))(D(zo)H (zo)f(zo))

`max∑
`=0

(2`+ 1)
∫ dk

2π2 kPm(k)j′`(kro)j′′` (kr) .. (C22)
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