Randomized Controlled Trial (RCT)

Scandcleft randomized trials of primary surgery for unilateral cleft lip and palate: dental anomalies in 8-year olds

Sara Rizell1,*, Haydn Bellardie2,3, Agneta Karsten4,*, Paul Sæle5, Jeanette Mooney2, Arja Heliovaara6, Annelise Küseler7, Eli Brinck8, Pål Skaare8, Kirsten Mølsted9, Midia Najar Chalien1, Agneta Marcusson10, Phil Eyres2, W. Shaw2 and Gunvor Semb2,8

1Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Sweden, 2Greater Manchester Cleft Lip and Palate Unit, Royal Manchester Children’s Hospital, UK, 3Department of Orthodontics and Paediatric Dentistry, The University of the Western Cape, Cape Town, South Africa, 4Stockholm Craniofacial Team, Section for Orthodontics, Division of Orthodontics and Pedodontics, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden, 5Oral Health Center of Expertise, Western Norway, Bergen, Norway, 6Cleft Palate and Craniofacial Center, Department of Plastic Surgery, Helsinki University Hospital, Finland, 7Cleft Palate Center and University Hospital Aarhus and University of Aarhus, Denmark, 8Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Rikshospitalet, Norway, 9Copenhagen Cleft Palate Center, University Hospital of Copenhagen, Denmark, 10Department of Dentofacial Orthopedics, Maxillofacial Unit, University Hospital, Linköping, Sweden

Correspondence to: Sara Rizell, Orthodontic Clinic, University Clinics of Odontology, P.O. Box 7163, SE-402 33 Gothenburg, Sweden. E-mail: sara.rizell@vgregion.se

Summary

Background: Children born with unilateral cleft lip and palate (UCLP) are reported to display several dental anomalies including agenesis, supernumeraries, as well as variations in dental size, shape, and path of eruption. The extensive sample of individuals with UCLP included in the Scandcleft randomized control trials offers the opportunity to study more rare conditions, which is seldom possible with limited samples.

Objectives: The aim was to study dental anomalies at 8 years of age in children born with UCLP included in the Scandcleft randomized control trials.

Methods: Panoramic and intraoral radiographs from 425 individuals (279 males and 146 females) with a mean age of 8.1 years were assessed by four orthodontists regarding dental anomalies.

Results: Agenesis was found in 52.5 per cent and supernumerary teeth in 16.9 per cent of the participants. The cleft lateral was missing in 43.8 per cent and was found peg shaped in 44.7 per cent. The distribution of ectopic eruption was 14.6 per cent, mainly affecting maxillary first molars, while transposition was found in 3.4 per cent of the individuals. In addition, infraocclusion of one or several primary molars was registered in 7.2 per cent of the participants.

Conclusion: We conclude that 8-year-old children born with UCLP display multiple dental anomalies. The Scandcleft sample allowed rarely studied conditions such as infraocclusion of primary molars and transposition to be studied in children born with UCLP.

Trial registration: ISRCTN29932826.
Introduction

It is well known that children born with non-syndromic unilateral cleft lip and palate (UCLP) have a markedly higher frequency of different dental anomalies compared to the general population (1–6). These anomalies affect the number of teeth as well as size, shape, position, and eruption, both in the primary and the permanent dentition (7). The traits are commonly described in the cleft area but also outside the cleft and in the mandible (8, 9). One of the more common anomalies is dental agenesis, which is reported in 40–61 per cent for children born with UCLP (2, 10–12). The most frequently described missing tooth is the cleft lateral, which is absent in 47–59 per cent (5, 9, 13–16). Examples of other frequently reported conditions are supernumeraries, atypical dental anatomy, and ectopic eruption (5, 10, 17–20).

The Scandcleft randomized trials were initiated in 1997 as three different trials for comparison between one common protocol for primary surgery and three local surgical protocols (21). The overall objectives for the trials were to test if variations in surgical technique and staging for children with UCLP were associated with outcome. Several reports have been published concerning the primary outcomes, speech, and dentofacial development (21–25). With the possibility to study secondary outcomes in a substantial and well-defined sample. To our knowledge, there are no other studies on dental anomalies in such an extensive group of individuals born with complete UCLP.

Aim

The aim was, therefore, to study dental anomalies at eight years of age in children born with UCLP included in The Scandcleft randomized trials.

Subjects and methods

Four hundred and twenty-nine Caucasian individuals with non-syndromic complete UCLP from nine cleft centres in Scandinavia and Great Britain were included in the Scandcleft Trials (21). Those with a Simonart’s band of less than 5 mm were included. Out of this group, three individuals missed records and one was late diagnosed with a syndrome; therefore, 425 individuals finally were included in this part of the project (flow chart enclosed as Supplementary material). The participants consisted of 279 males and 146 females with a mean age of 8.1 and median age of 8.0 years (5.0–10.6 years). Digital or scanned panoramic radiographs, taken at 8 years of age, were collected from the participating centres. In addition, intraoral radiographs from the cleft area were available in the vast majority of the cases, while, in a minor portion, we instead had access to cone beam computed tomography (CBCT). The radiographs were obtained prior to orthodontic treatment and bone grafting. The assessments were made independently, by four experienced orthodontists, situated in different locations. However, in cases where the group disagreed, a consensus agreement was worked out. Variables as agenesis and supernumeraries of permanent teeth, shape and position of cleft lateral, ectopic eruption, transposition, and infraocclusion were assessed. Eventual third molars were excluded from any assessment. Since 8 years is considered early for a secure diagnosis of posterior agenesis, later available radiographs were used for confirmation. To ensure that no extractions were performed prior to the panoramic radiograph, the medical records were reviewed. For the variables ectopic eruption, transposition, and infraocclusion, only radiographs obtained at 8 years ± 6 months were used (n = 376). Infraocclusion was registered when a primary molar failed to reach the occlusal plane with ≥ 2 mm. Transposition was defined as a positional interchange of two adjacent teeth and especially their roots. The results will be presented for the total group, irrespective of the surgical protocol to which the individuals were allocated. The distribution of the variables between cleft side and gender were tested with Fisher’s exact test. The results were pooled for the remaining variables and will be presented with descriptive statistics as one group as no differences were found for either gender or cleft side, except for the variable infraocclusion.

The research protocol was approved by all centres and local ethical approvals were obtained (Denmark 1997/4121, Finland 4/9/97, Norway S-97152, Manchester 99/197, Sweden 97–372, and R257-97). Principles outlined in the Declaration of Helsinki were followed.

Results

Agnogenesis of one or several teeth was found in 52.5 per cent of the participants and the distribution of affected teeth is shown in Table 1. The majority of the individuals with agenesis were missing only one single tooth (36.0 per cent), but the number of missing teeth ranged from one to as many as 14 teeth (Figure 1). The most commonly affected tooth was the cleft lateral, which was missing in 43.8 per cent of the participants, while the non-cleft lateral was absent in only 4.5 per cent (Table 1). The second premolar was affected in 17.9 per cent of the individuals with a range of one to four maxillary and/or mandibular teeth being absent (Table 1 and 2).

Supernumerary teeth were found in 16.9 per cent of the participating individuals and the most commonly affected tooth was the cleft lateral (Table 1). In 14.3 per cent of the sample, the supernumerary lateral was located on the cleft side; in 0.7 per cent of the cases, it was found on the non-cleft side; and in another 0.5 per cent of the individuals, a supernumerary lateral was located bilaterally. A mesiodens was found in 1.2 per cent of the participants (Table 1).

Table 1. Prevalence of agenesis and supernumerary teeth in individuals with unilateral cleft lip and palate participating in the Scandcleft randomized control trials

<table>
<thead>
<tr>
<th>Numerary anomalies</th>
<th>Number of individuals</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=425</td>
<td></td>
</tr>
<tr>
<td>Agenesis</td>
<td>223</td>
<td>52.5</td>
</tr>
<tr>
<td>Cleft lateral</td>
<td>186</td>
<td>43.8</td>
</tr>
<tr>
<td>Non-cleft lateral</td>
<td>19</td>
<td>4.5</td>
</tr>
<tr>
<td>Bilateral maxillary laterals</td>
<td>14</td>
<td>3.3</td>
</tr>
<tr>
<td>Maxillary central</td>
<td>6</td>
<td>1.4</td>
</tr>
<tr>
<td>Maxillary/mandibular second premolar</td>
<td>76</td>
<td>17.9</td>
</tr>
<tr>
<td>Maxillary/mandibular molar</td>
<td>8</td>
<td>1.9</td>
</tr>
<tr>
<td>Mandibular agenesis</td>
<td>47</td>
<td>11.1</td>
</tr>
<tr>
<td>Lateral (only)</td>
<td>65</td>
<td>15.3</td>
</tr>
<tr>
<td>Mesiodens</td>
<td>5</td>
<td>1.2</td>
</tr>
<tr>
<td>Mandibular incisor</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Lateral + mesiodens + 44</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Total of individuals with supernumeraries</td>
<td>72</td>
<td>16.9</td>
</tr>
</tbody>
</table>

A portion of the included individuals expressed more than one of the described traits for agenesis, why the total sum exceeds 100%.
In our sample, the cleft lateral was judged to be peg shaped in 44.7 per cent of the individuals and additional 4.0 per cent showed other malformations (Table 3). The lateral was positioned distally to the cleft in 31.8 per cent, mesial to the cleft in 9.4 per cent, and on each side of the cleft (i.e., where a supernumerary lateral was present) in 15.0 per cent of the cases (Table 3).

The distribution of ectopic eruption was 14.6 per cent (Table 4). One or both of the maxillary first molars erupted ectopically in 10.3 per cent of the participants (Table 4). In addition, 6.9 per cent of the individuals in our sample showed signs of reversible ectopic eruption of the maxillary central (Table 4). A transposition was found in 3.4 per cent of the individuals, mainly affecting the maxillary canine and first premolar (Table 4). The frequency of infraocclusion of primary molars was 7.2 per cent and the number of affected teeth ranged from one to six (Table 4). Out of 27 individuals, who were diagnosed with infraocclusion, 20 exhibited infraoccluded mandibular primary molars and two exhibited maxillary primary molars, whilst five individuals had infraoccluded maxillary as well as mandibular primary molars. The total number of infraoccluded primary molars in the sample was 53 (37 first primary and 16 second primary molars). Eight out of these infraoccluded teeth displayed agenesis of the permanent successor. Infraocclusion was the only variable where a statistically significant gender difference was found and females exhibited a higher frequency than males (12.3 versus 4.4 per cent, \(P < 0.05 \)).

Atypical anatomy of the centrals was the most striking other anomaly detected in this sample, where underdeveloped crowns,
The etiology of hypodontia in UCLP is claimed to be multifactorial and is still under investigation. It has been suggested that the primary repair affects dental development and that disturbances in the intraoral environment, as defects in mesenchymal tissue or blood supply, could be other plausible factors (12, 28). However, familial studies have shown that siblings and parents to children with clefts have a significantly higher frequency of agenesis than non-cleft individuals and claim support for the hypothesis of a common genetic link between cleft and dental anomalies (29, 30). In addition, individuals born with UCLP in combination with agenesis of the cleft lateral exhibited a higher frequency of non-cleft agenesis compared to individuals with UCLP combined with a present cleft lateral (11). The group thereby draws the conclusion that absence of the cleft lateral is a result from a largely genetically controlled anomaly associated with cleft development rather than an environmental consequence. An association between tooth agenesis inside and outside the cleft and disturbances of the genes MSX1 as well as PAX9 has been stated (31, 32). Evidence has also been presented for IRF6, ANK6S6, and ERRB2 being common genetic factors associated with both oral clefts and dental anomalies (33–35).

Supernumerary teeth

In 16.9 per cent of the individuals, one or several permanent supernumerary teeth were found, most commonly in the cleft area (Table 1). The frequencies of supernumeraries earlier reported in the literature range from 10 to 25 per cent (5, 10, 18, 19, 26). The wide range reported might reflect the difficulty of diagnosing supernumerary teeth in the cleft area. There are suggestions that the interrupted fusion of the medial nasal and maxillary processes results in a separation of the dental epithelia, which causes the formation of two laterals (36). In addition, a linkage between the aberrations on chromosome 1 and a cleft as well as supernumerary teeth has been discussed (37).

Shape and position of cleft lateral

The cleft lateral was recorded as peg shaped in almost 45 per cent of the individuals in the present sample. In an additional 4 per cent of cases, the lateral expressed other developmental anomalies (Table 3). These are commonly described phenomenon among children born with UCLP (36). Variability in how a 'peg-shaped' lateral is defined and differences in study design can account for the variation in reported frequencies. Some authors have assessed radiographs solely, whilst others have added cast models for the recordings. The cleft lateral was positioned distally to the cleft in a majority of the cases, confirming earlier results (Table 3) (9, 11, 18).

Ectopic eruption

The maxillary first molars, either unilateral or bilateral, were the most common ectopically erupting teeth, that is, 10.3 per cent among our sample (Table 4). Including molars with reversible ectopic eruption, the figure for ectopic first molar eruption is 17.2 per cent (Table 4). Reversible ectopic eruption of maxillary first molars has been described as a condition where the permanent molar fuses itself from the resorption cavity of the second primary molar (Figure 2) (38). Previous reports have shown ectopic maxillary molars in around 20 per cent for 6–8-year-old children with different kinds of cleft types and discuss both local and genetic factors as plausible etiology (17, 39). The maxillary length (pm-ss) has been found to correlate with ectopic maxillary molars in individuals with clefts (40) and, since a familial tendency was found in a non-cleft sample, a genetic influence has been discussed (41). Since we know that a portion of molars displaying ectopic eruption will correct spontaneously, it is important to highlight that the figures we present are representative only for 8 years.

Ectopic eruption of maxillary canines was only found in 1.1 per cent in our sample. This is evidently lower than previous reports with 15–20 times higher figures (5, 42, 43). However, the participants in our study were only 8 years of age with radiographs obtained before bone grafting, which might explain the distribution of a high number of ectopic maxillary molars and a lower number of ectopic canine eruption.

Transposition

We found a frequency of transposition of 3.4 per cent, mainly affecting maxillary canines and first premolars, while other studies have found higher figures (44–46). The younger age of the present sample might be a plausible explanation for the diverging rates. It is important to bear in mind that the figures we present are radiological.

Table 5. Prevalence of other dental anomalies in individuals with unilateral cleft lip and palate participating in the Scandcleft randomized control trials.

<table>
<thead>
<tr>
<th>Other anomalies</th>
<th>Number of individuals</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dental anatomy/development</td>
<td>n = 425</td>
<td></td>
</tr>
<tr>
<td>Cleft central malformed</td>
<td>11</td>
<td>2.6</td>
</tr>
<tr>
<td>Cleft central atypical crown-root angulation</td>
<td>8</td>
<td>1.9</td>
</tr>
<tr>
<td>Cleft central microdontia</td>
<td>5</td>
<td>1.2</td>
</tr>
<tr>
<td>Atypical tooth anatomy outside cleft area</td>
<td>7</td>
<td>1.6</td>
</tr>
<tr>
<td>Position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverted mesiodens or lateral</td>
<td>5</td>
<td>1.2</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condylar hypoplasia non-cleft side</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Cleft area odontoma</td>
<td>1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

extra cusps, as well as loss of hard tissue were seen (Table 5). In addition, disturbances of dental development, positional deviations, and more rare conditions such as condylar hypoplasia and cleft area odontoma occurred (Table 5).

Discussion

This study was undertaken to reveal the distribution of different dental anomalies in individuals born with UCLP, participating in the Scandcleft trials. The traits studied in this project were hypodontia, supernumeraries, atypical dental shape, lateral position, ectopic eruption, transposition, and infraocclusion. The sample of individuals born with UCLP showed a wide range of dental anomalies.

Agenesis

The number of individuals in this project exhibiting agenesis of one single or multiple teeth was 52.5 per cent (Table 1). This figure corresponds well with previous published results for individuals with UCLP (2, 10–13, 26). The cleft lateral is reported to be the most commonly missing tooth and the frequency of 43.7 per cent missing cleft laterals confirms earlier findings (Table 1) (5, 9, 11–16, 18, 19, 27). In addition, agenesis of premolars was recorded in 17.9 per cent of the participants in The Scandcleft Trials, which is within the range of previously reported results of 15–20 per cent for individuals born with UCLP (Tables 1 and 2) (8, 27).

The etiology of hypodontia in UCLP is claimed to be multifactorial and is still under investigation. It has been suggested that the primary repair affects dental development and that disturbances in the intraoral environment, as defects in mesenchymal tissue or blood supply, could be other plausible factors (12, 28). However, familial studies have shown that siblings and parents to children with clefts have a significantly higher frequency of agenesis than non-cleft individuals and claim support for the hypothesis of a common genetic link between cleft and dental anomalies (29, 30). In addition, individuals born with UCLP in combination with agenesis of the cleft lateral exhibited a higher frequency of non-cleft agenesis compared to individuals with UCLP combined with a present cleft lateral (11). The group thereby draws the conclusion that absence of the cleft lateral is a result from a largely genetically controlled anomaly associated with cleft development rather than an environmental consequence. An association between tooth agenesis inside and outside the cleft and disturbances of the genes MSX1 as well as PAX9 has been stated (31, 32). Evidence has also been presented for IRF6, ANK6S6, and ERRB2 being common genetic factors associated with both oral clefts and dental anomalies (33–35).

Supernumerary teeth

In 16.9 per cent of the individuals, one or several permanent supernumerary teeth were found, most commonly in the cleft area (Table 1). The frequencies of supernumeraries earlier reported in the literature range from 10 to 25 per cent (5, 10, 18, 19, 26). The wide range reported might reflect the difficulty of diagnosing supernumerary teeth in the cleft area. There are suggestions that the interrupted fusion of the medial nasal and maxillary processes results in a separation of the dental epithelia, which causes the formation of two laterals (36). In addition, a linkage between the aberrations on chromosome 1 and a cleft as well as supernumerary teeth has been discussed (37).

Shape and position of cleft lateral

The cleft lateral was recorded as peg shaped in almost 45 per cent of the individuals in the present sample. In an additional 4 per cent of cases, the lateral expressed other developmental anomalies (Table 3). These are commonly described phenomenon among children born with UCLP (36). Variability in how a ‘peg-shaped’ lateral is defined and differences in study design can account for the variation in reported frequencies. Some authors have assessed radiographs solely, whilst others have added cast models for the recordings. The cleft lateral was positioned distally to the cleft in a majority of the cases, confirming earlier results (Table 3) (9, 11, 18).

Ectopic eruption

The maxillary first molars, either unilateral or bilateral, were the most common ectopically erupting teeth, that is, 10.3 per cent among our sample (Table 4). Including molars with reversible ectopic eruption, the figure for ectopic first molar eruption is 17.2 per cent (Table 4). Reversible ectopic eruption of maxillary first molars has been described as a condition where the permanent molar fuses itself from the resorption cavity of the second primary molar (Figure 2) (38). Previous reports have shown ectopic maxillary molars in around 20 per cent for 6–8-year-old children with different kinds of cleft types and discuss both local and genetic factors as plausible etiology (17, 39). The maxillary length (pm-ss) has been found to correlate with ectopic maxillary molars in individuals with clefts (40) and, since a familial tendency was found in a non-cleft sample, a genetic influence has been discussed (41). Since we know that a portion of molars displaying ectopic eruption will correct spontaneously, it is important to highlight that the figures we present are representative only for 8 years.

Ectopic eruption of maxillary canines was only found in 1.1 per cent in our sample. This is evidently lower than previous reports with 15–20 times higher figures (5, 42, 43). However, the participants in our study were only 8 years of age with radiographs obtained before bone grafting, which might explain the distribution of a high number of ectopic maxillary molars and a lower number of ectopic canine eruption.

Transposition

We found a frequency of transposition of 3.4 per cent, mainly affecting maxillary canines and first premolars, while other studies have found higher figures (44–46). The younger age of the present sample might be a plausible explanation for the diverging rates. It is important to bear in mind that the figures we present are radiological.
signs of a transposition at 8 years and do not implicate that these teeth finally erupted in a clinical transposition.

Infraocclusion

Infraocclusion of primary molars is judged to reach a maximum at around 8–9 years of age in non-cleft children, with a wide range from 5 to 22 per cent reported (47–49). Infraocclusion of one or more primary molars occurred in 7.2 per cent in the 8-year Scandcleft sample (Table 4). To our knowledge, no results concerning this condition in children with cleft lip and palate has been reported. The association between infraocclusion of primary molars and other dental anomalies in non-cleft individuals has been highlighted and common causal genetic factors have been discussed (48, 50). It is suggested that infraocclusion of primary molars is an early marker for later appearing dental anomalies as tooth agenesis and palatally displaced canines (50). However, only 8 out of 53 infraoccluded primary molars were associated with agenesis of the permanent successor the present sample.

Other anomalies

Malformed central incisors, including microdontia, or deviating crown-root angulation were recorded in 5.7 per cent of the participants (Table 5). This is supported by previous reports of different kinds of cleft central malformations (51–53). Rare conditions as agenesis of the cleft side condyle or odontoma in the cleft area was also noted (Table 5).

In comparison with non-cleft individuals, several of the studied variables are more frequently found in children born with UCLP. Agenesis has been reported in 4.5–7.4 per cent in Scandinavian school children, while we found 52.5 per cent in our sample of UCLP (4, 54, 55). The occurrence of agenesis is found to be increased for different types of clefts but seem to be more pronounced in complete unilateral clefts (56). In addition, traits as supernumeraries, microdontia, impaction, and transposition occur more commonly in individuals with different types of clefts compared to individuals without cleft (56).

The individuals in the present study were 8 years of age and it is well known that, at this early age, diagnosis of late-developing premolars and second molars is not reliable. To minimize bias from a false diagnosis of agenesis, missing premolars and molars were ensured by adding assessment from later radiographs. In addition, to exclude bias from early extractions of permanent teeth, information from patient files was obtained in cases with missing centrals and/or molars. One of the participants was found to have had both mandibular first molars extracted, and one case lost a maxillary central incisor due to trauma. Accurate diagnosis of dental anomalies in the cleft area can be demanding due to atypical tooth anatomy and presence of supernumerary teeth. The assessments were made by four orthodontists with more than 10 years experience of collaboration in a cleft team. Despite the aggregated experience, the assessments diverged in particular cases. However, we interpret the preparation of a consensus agreement to have decreased the risk of false results since mistakes due to inattention have been avoided.

Assessment of dental shape by using 2D radiographs might be considered hazardous. More ideal methods would have been using 3D radiology as CBCT or clinical assessment after eruption. However, the use of CBCT has disadvantages, such as the radiation dose, but might be an alternative for future research. The results describing lateral shape should, therefore, be interpreted with caution but gives an indication about the condition.

The prospective multicenter design of the project meant that a substantial sample could be collected within a reasonable time period and that a controlled inclusion of participants could be secured. In addition, an extended group of participants allowed assessment of conditions that normally are too rare to be studied in limited samples. Examples such as the variables infraocclusion and transposition in individuals born with UCLP are rare anomalies, present only in a limited group of patients and, therefore, seldom studied.

Conclusion

In this prospective sample of children born with UCLP included in the Scandcleft randomized control trials, a large number of dental anomalies were found. The results confirm earlier findings and we conclude that 8-year-old children born with UCLP display multiple dental anomalies. The multicenter design resulted in a substantial sample with a limited age span, which allowed rare conditions such as infraocclusion of primary molars and transposition to be studied.

Supplementary material

Supplementary data are available at the European Journal of Orthodontics online.
Conflicts of interest
The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this paper.

References