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A B S T R A C T   

Study region: The Sanjiang Plain (SJP), located at the confluence reaches of the Heilong, Songhua, 
and Wusuli Rivers in Northeast China. 
Study focus: This study aimed to quantify the effects of varying climate and land-use/land-cover 
(LULC) dynamics on green water (GW) over the SJP during two distinctive periods (i.e., pre-2000 
and post-2000), when synergetic effects of increased precipitation and temperature and rapid 
development of agriculture occurred. This assessment used the distributed eco-hydrological 
model ESSI-3. Multivariable and multi-objective calibration approaches (i.e., discharge, evapo-
transpiration, and terrestrial water storage anomaly) were used to ensure the high accuracies of 
the model outputs. 
New hydrological insights for the region: This research concluded that GW flow and GW storage in 
the SJP evidently increased after 2000 compared with before. Across the SJP, GW flow and GW 
storage responded differently to climate changes and LULC dynamics during pre-2000 and post- 
2000 period. Our results demonstrated that GW storage changes were predominately affected by 
climatic changes, especially variations in precipitation, whose contribution accounted for more 
than 56% after 2000. However, GW flow changes were mainly governed by LULC changes, 
especially the influence of cropland transformation, whose contribution increased over 20% in 
the post-2000 period. This study posed a deep insight regarding impacts of regional climatic and 
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LULC changes on GW dynamics, which may benefit decision-making for planting structure 
optimization and adjustment over the region.   

1. Introduction 

Water is the most valuable resource on our Earth (Degano et al., 2021). Water resources can be divided into blue water (BW) and 
green water (GW) (Quinteiro et al., 2018). GW refers to the water infiltrated by precipitation and stored in unsaturated soil layers 
(green water storage), and also refers to the actual evapotranspiration (ET) released into the atmosphere by the combination of soil 
evaporation and vegetation transpiration (green water flow) (Fisher et al., 2017; Ma et al., 2021). BW is freely flowing liquid water at 
the surface and in the subsurface layers, i.e., water in rivers, streams, and groundwater (Falkenmark and Rockström, 2006). Pioneer 
studies have reported that GW contributes significantly more to the human water consumption than BW at a global scale, especially for 
agricultural products (~87%) (Xie et al., 2020). Furthermore, comparisons of different models such as hydrological model, agricul-
tural model and vegetation growth model reveal that GW utilization rate of global agricultural production is approximately four or five 
times higher than the BW utilization rate (Hoff et al., 2010). Thereby, GW is a vital water resource to support vegetation growth, 
especially in the rain-fed crop regions (Qiao et al., 2014; Velpuri et al., 2017). 

It is an indisputable fact that the global warming has brought great pressure on agriculture water resources worldwide (Luan et al., 
2018). Based on climate and socioeconomic changes, mid- and high-latitude regions will face greater agriculture water stresses in the 
21st century, including greater regional disparities in the distribution of agriculture water availability and increased agricultural water 
requirements (Fabre et al., 2015). Both the IPCC (Intergovernmental Panel on Climate Change) and the FAO (Food and Agriculture 
Organization of the United Nations) have ranked agriculture as one of the most vulnerable sectors to climate change, especially for 
developing countries (Veettil et al., 2022). The increase of temperature with the increase of CO2 and other greenhouse gas emissions as 
well as the frequent occurrence of extreme climate events under climate change pose a direct impact on the growth of crops, which will 
reduce the amount of agriculture water resources available and intensify the contradiction between crop water supply and demand 
(Azzam et al., 2022). Additionally, the transformation of LULC types, the adjustment of planting area and structure will also have a 
significant impact on agricultural water supply and water demand (Sivakumar, 2011; Mehrotra et al., 2013; Li et al., 2021). Thus, 
information regarding the quantity and spatial-temporal variations of regional and global GW and identification of its driving forces 
are fundamental needs for better understanding and managing regional ecosystem to ensure the safety of agricultural production, 
which have become emerging issues in the field of environmental studies (Jeyrani et al., 2021). 

Hydrological models are helpful to quantitatively understand dynamics of GW variations and using them in conjunction with 
analyses of climate and LULC changes can provide essential information about the impacts of these factors on GW dynamics (Kry-
sanova and White, 2015). The choice of model depends on the availability of data, the size of the problem, the characteristics of the 
study region, the desired spatial and temporal resolution, the degree of error allowed, the uncertainty of the simulation, and the 
robustness of the model (Faramarzi et al., 2017; Ma and Szilagyi, 2019; Ma and Zhang, 2022). Hydrological models such as SWAT (Soil 
and Water Assessment Tool) and VIC (Variable Infiltration Capacity) are usually used for such purposes. However, for the 
semi-distributed hydrological model SWAT, the hydrologic response unit (HRU) input approach of basic geographic data limits the 
comprehensive utilization of spatial distribution information of the driving data, such as the gridded meteorological data, and the 
gridded remotely sensed LULC and vegetation products (Liang et al., 1994; Chen et al., 2019b; Guiamel and Lee, 2020). As a fully 
distributed macroscale hydrological model, VIC predicts various temporal-spatial variations of surface processes at coarse resolutions 
in regional and continental scales but cannot simulate hydrological processes at high resolution (Zhang et al., 2021). In addition, the 
leaf area index (LAI) remains constant within one month and is kept stable for each month of a year, this oversimplification of crop 
growth constrains the VIC model in accurate simulations of vegetation transpiration and soil moisture estimations (Siad et al., 2019). 
Therefore, these hydrological models are not suitable for simulating the spatial distribution of hydrological components related to GW, 
and thus the simulated results can’t be used to estimate the temporal and spatial difference of GW under climate and underlying surface 
changes. 

As a physically-based distributed hydrological model that exploits spatially and temporally varying climate forcing and model- 
driven parameters on maximum, ESSI-3 (the third version of the infiltration Excess and Saturation excess Soil-water Integration 
model for hydrology) has demonstrated excellent performances in hydrological simulations of various watersheds with different 
catchment sizes under various climatic conditions (Zhang and Zhang, 2006; Xu et al., 2009; Chen et al., 2014; Liu et al., 2015; Chen and 
Zhang, 2019; Wang et al., 2022). It is worth emphasizing that preparation of reliable input model parameters is the essential step 
toward a dependable estimation of regional hydrology. The soil and vegetation parameterization methods commonly used in hy-
drological models are normally based on parameter lookup table. However, these static parameter values (e.g., LAI, soil hydraulic and 
thermal properties) determined by soil and LULC type data cannot adequately reflect the spatiotemporal heterogeneity, thus leading to 
additional uncertainties (Ma and Szilagyi, 2019; Ma et al., 2021). An advancement of the ESSI-3 model is that the soil- and 
vegetation-related parameters are typically based on globally or regionally oriented spatiotemporal soil characteristics and vegetation 
parameters products derived from several types of remotely sensed dataset. Based on the soil parameters (e.g., soil texture and bulk 
density) and pedotransfer functions (Dai et al., 2013), the grid-based soil hydraulic properties (e.g., saturated hydraulic conductivity, 
saturated water content, and permanent wilting point) can be obtained to ensure that the model simulation of evapotranspiration and 
soil moisture meets the accuracy requirements (Wang et al., 2022). In addition, considering the continuity of the vegetation growth 
process, a time dimensional approach is usually used to interpolate the long-term dynamic vegetation parameters like LAI to a daily 
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scale (Zhang and Zhang, 2006; Chen et al., 2018). Therefore, ESSI-3 model was adopted in this research to simulate the regional 
hydrological processes for better understanding the GW water resource partitioning and its dynamic changes. 

Due to the unique natural conditions (e.g., flat terrain, fertile soil, suitable climate, and abundant water sources), the Sanjiang Plain 
(SJP) is suitable for the development of agriculture (Jin et al., 2016). After years of development and construction, the SJP has become 
the most important commercial grain production base and the key edible oil production base ensuring country’s food security of China 
(Fu et al., 2020). However, rapid population growth and enhanced industrialization over the SJP in recent decades have led to 
enormous pressure in water resource partitioning for the key croplands and wetlands of the region (Hao et al., 2016). Owing to the 
excessive pursuit of economic benefits, the planting area of crops in the SJP has increased sharply, which makes the water resource 
shortage for agricultural purposes become severe day by day. Moreover, climate change has increased the occurrence frequency of 
extreme climate events, which pose serious impact on crop growth and alter the hydrological processes in the SJP region (Wang et al., 
2011). Thus, it is essential to understand the current hydrological regime by evaluating the impacts of climate and underlying surface 
changes on hydrological processes of the region for water resource management and regional sustainable development. 

As a microcosm of a water-scarce region, the water resource partitioning of the SJP is strongly influenced by climate and LULC 
changes, and the GW variations in response to these changes have drawn extensive attention due to the importance of GW in regional 
sustainability (Sun et al., 2022). Nevertheless, few knowledge about this issue is available from literature, especially regarding its 
insufficient and fragmented temporal and spatial information. Furthermore, some researches have addressed the influences of LULC 
changes on hydrology with focus mainly on the transition of land use from cropland to grassland due to its ecological function, while 
the influences of other LULC changes (i.e., wetland degradation) was ignored. Therefore, to quantitatively explore water resource 
partitioning for sustainable management policymaking across the SJP, a comprehensive study was conducted. Under the context of 
significant climatic change characterized by the increased precipitation and temperature as well as the enhanced anthropogenic ac-
tivities represented by rapid development of agriculture, the study period (1985–2018) was divided into two periods: 1985–1999 and 
2000–2018 (before and after 2000). This research mainly addressed the issues of the spatial-temporal variations of the GW dynamics at 
the whole region and pixel scale in the two distinctive periods. The isolated and combined impacts of climate and LULC changes on GW 
dynamics throughout the SJP and relative contributions of each LULC type and climate factor on GW variations were also system-
atically investigated. 

Fig. 1. The geographical location, geomorphology, river systems, and other relevant information of the SJP.  

C. Xu et al.                                                                                                                                                                                                              



Journal of Hydrology: Regional Studies 45 (2023) 101303

4

2. Materials and methods 

2.1. Study area 

Located in mid- and high-latitude region, the Sanjiang Plain (SJP) (43◦49′55′′− 48◦27′40′′N, 129◦11′20′′− 135◦05′26′′E) plays 
critical roles as a biodiversity region, a food production base, and an ecological security barrier in northeastern China (Fig. 1). The total 
area of this region is approximately 108,800 km2, which accounts for about 21.6% of Heilongjiang Province. The terrain characteristic 
of the SJP is high in the southwest and low in the northeast. Three river systems, namely the Heilong, Songhua, and Wusuli Rivers, flow 
through the region, which is renowned as “a land of plenty” (Shi et al., 2015). The climate in the region is temperate humid and 
semi-humid continental monsoon climate, characterized by a rainy and humid summer and a cold and dry winter. The annual average 
temperature and precipitation are between 1.4 and 3.6 ◦C and 500–650 mm, respectively (Fu et al., 2020; Sun et al., 2022). The rainy 
season is mainly concentrated in summer and autumn, accounting for approximately 80% of the annual rainfall, lasting from June to 
September of a year. Abundant sunshine hours throughout the year ranging from 2400 to 2500 h and the average temperature varying 
from 21 ◦C to 22 ◦C in July grant this region rich of sunshine, rain, and heat in the same season and is suitable for the agricultural 
development, especially for crop production of high-quality rice, maize, and soybeans (Jin et al., 2016). Large-scale reclamation began 
in the 1950 s, and many large state-owned farms were set up successively till approximately 2000, making this region the largest 
agricultural reclamation area and a vital commercial grain production base in China (Fu et al., 2020). 

2.2. Datasets 

To set up the hydrological model, the detailed information of model input data (e.g., the data type, the duration of the datasets, the 
spatial and temporal resolution, the accessible website to download the specific dataset, and references) were presented in Table 1. 

To calibrate and validate the hydrological model, datasets utilized from remote sensing, in-situ observations, and the Global Land 
Data Assimilation System land surface models were also obtained: (1) the observed discharge from four stations (as shown in Fig. 1) on 
three main tributaries were collected from the Hydrological yearbook of Heilongjiang and the Songhua River basin management 
organization for the period of 2007–2012; (2) three mascon-based GRACE (Gravity Recovery and Climate Experiment) products from 
the Jet Propulsion Laboratory (JPL-M), the Center for Space Research at University of Texas, Austin (CSR-M), and the Goddard Space 
Flight Center (GSFC-M) were provided by the GRACE Tellus website (please refer to Watkins et al., 2015, Save et al., 2016, and Loomis 
et al., 2019 for detailed descriptions of the JPL-M, CSR-M, and GSFC-M data, respectively, data available at https://grace.jpl.nasa. 
gov/); (3) gridded soil moisture storage (SMS), snow water equivalent (SWE), and total canopy water storage (CWS) simulations from 
GLDAS-2.1 two LSMs (Rodell et al., 2004), i.e., the VIC and Noah model were collected from https://disc.gsfc.nasa.gov/datasets/; (4) 
monthly remotely sensed MODIS evapotranspiration (MOD16A2) product (Mu et al., 2011) from 2000 to 2018 (data available at https: 
//ladsweb.modaps.eosdis.nasa.gov/search/). 

Table 1 
Summary of the datasets utilized in this study to drive the ESSI-3 model.  

Input Data Details Source Resolution and Time Reference 

Meteorology Wind speed China Meteorological Forcing Dataset (CMFD) (http://data. 
tpdc.ac.cn/) 

0.1º, daily, 1982–2018 He et al. (2020) 
Specific humidity 
Precipitation 
Air temperature 
Solar radiation 
Surface pressure 

Soil property Depth to bedrock SoilGrids250m (https://www.soilgrids.org/) 250 m, fixed Hengl et al. 
(2017) Sand content 

Silt content 
Clay content 
Bulk density 

Vegetation 
parameter 

Leaf area index (LAI) GLOBMAP-based (https://zenodo.org/) 8 km, 16-day, 1982–2000, 8- 
day, 2001–2018 

Liu et al. (2012) 

Land use and land 
cover (LULC) 

Resources and Environment Data Cloud Platform (http:// 
www.resdc.cn/) 

1 km, year of 1980/ 1990/ 
2000/2010/2018 

RESDC data 
products 

Tree cover fraction MODIS-based (https://lpdaac.usgs.gov/) 500 m, fixed Kobayashi et al. 
(2016) 

Normalized difference 
vegetation index 
(NDVI) 

GIMMS-based (http://ecocast.arc.nasa.gov/data/pub/ 
gimms/) MODIS-based (https://lpdaac.usgs.gov/) 

0.083◦, 
15-day, 1982–2000, 
500 m, 
8-day, 
2001–2018 

Tucker et al. 
(2005) 
MODIS data 
products 

Others DEM SRTMDEM (http://www.gscloud.cn/) 90 m, fixed Farr et al. (2007)  
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2.3. Methodology 

2.3.1. ESSI-3 model 
The distributed hydrological model ESSI-3 was set up to capture the spatial-temporal variability of hydrological processes of the 

SJP. Briefly, The ESSI-3 model, which is based on energy balance and water balance and constituted with various basic modules (e.g., a 
remote sensing-based ET module, a three-layer soil water balance module, and a groundwater module) and specific hydrological 
process modules (e.g., permafrost hydrology, snow melting, and wetland hydrology), can accurately characterize various hydrological 
fluxes (e.g., runoff and ET) and states (e.g., SWE, CWS, SMS, and groundwater storage) (Zhang and Zhang, 2006; Liu et al., 2015; Chen 
and Zhang, 2019; Wang et al., 2022). Especially for this study, based on a remote sensing-based two-leaf Jarvis-type canopy 
conductance model (RST-Gc), the actual ET is partitioned into four parts, including wet canopy evaporation (Ewet

c ), saturated soil 
surface evaporation (Esat

c ), wet soil evaporation (Emoi
c ), and dry canopy transpiration (Edry

c ). A three-layer soil water balance module 
incorporates the remote sensing-based ET module to simulate soil water content and water storage tension. Thus, the soil water storage 
of the ESSI-3 model is partitioned into three layers individual stores. The vertical root distribution information and oxygen stress of 
roots are also considered when the soil water content approaches saturation (Chen and Zhang, 2019). Mainly from the perspective of 
water balance, the groundwater component is integrated in the ESSI-3 model. The groundwater storage is considered based on a 
first-order linear reservoir approach and a simple groundwater model with recharge from the third soil layer, capillary rise, and 
discharge into streams (Wang et al., 2022). The groundwater consumption module (e.g., the groundwater withdrawal) is not 
considered in the model. As such, the groundwater component of ESSI-3 model is likely unsatisfactory due to the simplified gener-
alization of the groundwater module. Additionally, the ESSI-3 model integrates remotely sensed data (e.g., LAI, NDVI, and tree cover 
fraction) and gridded soil products (e.g., SoilGrids250m data) to calibrate the soil and vegetation parameters. In conclusion, the 
modeling architecture considerably improves the simulation accuracies of spatially heterogeneous hydrological processes with time by 
inhibiting uncertainties in model structure and physical parameterizations. 

GW flow, defined in this study, is the sum of actual evapotranspiration, and GW storage is defined as the ESSI-3 model output of 
water accumulated in the three soil moisture layers (including SWC1, SWC2, and SWC3) (Falkenmark and Rockström, 2006; Zhao et al., 
2016): 

GWflow = Ea = Ec
dry +Ec

Wet +Es
Sat +Es

Moi (1)  

GWstorage = SWC1 +SWC2 +SWC3 (2)  

where SWC1, SWC2, and SWC3 is the soil water content in first, second, and third layer, respectively; Ea is the actual 
evapotranspiration. 

In this study, ESSI-3 model simulations were conducted during the period 1982–2018, with the first three years serving as a warm- 
up period (the simulation results for the period of 1982–1984 is not considered in the following analysis) for balancing main hy-
drological component conditions such as soil and groundwater aquifers, and the remaining years being used for calibration and 
validation. Since the driving data input to the model had multiple spatial resolutions, the bilinear interpolation approach was used to 
generate grid datasets with a consistent spatial resolution (1 km) (Gao et al., 2018; Wang et al., 2022). 

2.3.2. Model validation 
The water yield of the SJP only accounts for a small part of the discharge through the mainstream of Heilong, Songhua, and Wusuli 

Rivers. Therefore, using the measured discharge from the mainstream is not appropriate for calibrating and validating the model (Wen 
et al., 2020). ESSI-3 model was calibrated and verified by using the measured discharge from four hydrologic stations on the repre-
sentative tributaries of the Songhua River and Wusuli River in the study area. The geolocation of these river basins and the corre-
sponding hydrological stations were presented in Fig. 1. Since daily observed discharge data were not available, the model calibration 
was performed at monthly scale. The main characteristics of these hydrometric stations and time periods of available streamflow data 
for model evaluation were shown in Table 2. 

To evaluate model performance in evapotranspiration simulations, the ETMOD16 product sequence was used as reference data of 
actual evapotranspiration in this study. The MODIS Terrestrial ET product uses the Penman-Monteith equation to estimate the sum of 
the evaporation from wet and dry soil layers, the evaporation from canopy water retention, and the transpiration from plant leaves and 
stems (Mu et al., 2011; Kisi, 2016). Therefore, the MOD16A2 ET product was adopted to evaluate the actual evapotranspiration 
simulated by the ESSI-3 model. 

SMS is a key state variable of the regional hydrological cycle. However, it is difficult to assess the accuracy of simulated SMS based 
on in-situ measurements owing to the scarcity of gauged stations (Gao et al., 2018). Thus, the terrestrial water storage (TWS) simulated 

Table 2 
Main characteristics of hydrometric stations and time periods of available streamflow data for model evaluation.  

Station name River Drainage area (km2) Calibration period Validation period 

Baoqing Naoli River  3689 2007–2009, monthly 2010–2012, monthly 
Caizuizi Naoli River  20556 2007–2009, monthly 2010–2012, monthly 
Hubeizha Muling River  16020 2007, 2009, monthly 2010–2012, monthly 
Baoquanling Wutong River  3633 2007–2009, monthly 2010–2012, monthly  
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in ESSI-3 model was evaluated as an alternative solution for SMS assessment. The GRACE-based TWS data were utilized to evaluate the 
performance of the ESSI-3 model in TWS simulations. 

TWS is defined as all phases of water stored above and below the Earth’s surface, including soil moisture, snow/ice, surface water, 
groundwater, and water contained in biomass (Chen et al., 2019b). In general, a change in TWS can be computed as: 

ΔTWS = ΔSMS+ΔGWS+ΔCWS+ΔSWE (3)  

where SMS is the soil moisture storage, SWE is the snow water equivalent, CWS is the total canopy water storage, GWS is the 
groundwater storage. ΔTWS simulated by ESSI-3 model can be computed as: 

ΔTWSESSI3 = ΔSWC1 +ΔSWC2 +ΔSWC3 +ΔGWS+ΔCWS+ΔSWE (4)  

where SWC1, SWC2, SWC3, SWE, CWS, and GWS represent the first, second, and third layer of soil moisture storage, snow water 
equivalent, plant canopy water, and groundwater storage from ESSI-3 model, respectively. ΔTWS of the study region was estimated 
with the GRACE-based TWS. Monthly changes of the GRACE-based TWS dataset was made available since April 2002 (Tapley et al., 
2004; Soni and Syed, 2015). Currently, different processing centers offer various ΔTWS series. However, no data series of ΔTWS was 
confirmed as the best in quality (Landerer et al., 2015). In the present study, JPL, CSR, and GSFC mascon solutions within the study 
region were extracted and compared to investigate ΔTWS from 2003 to 2016. In addition, the scaling factors were used to modify their 
corresponding mascon grids for better comparisons between the GRACE-based TWS and the ESSI-3 simulated ones. GRACE-based TWS 
were specifically computed relative to a timely mean baseline from Jan 2004 to Dec 2009 including every month of a year. For 
comparisons ESSI-3 simulated outputs against GRACE-based TWS, the baseline value over the 2004–2009 period of each simulated 
components was computed and subtracted from all time steps. 

Three common evaluation indicators, i.e., the correlation coefficient (R), the Nash-Sutcliff efficiency (NSE), and the determination 
coefficient (R2) (equations can be found in the study of Chen et al., 2019b) were calculated for model evaluation. 

2.3.3. Establishment of climate and LULC scenarios 
In order to quantitatively assess the green water response to climate and LULC changes, three scenarios were established by 

combining different climate periods and LULC conditions. Based on the changing tendency of climate and LULC (as shown in Section 
3.2), the meteorological data were divided into two periods: the period of 1982–1999 and the period of 2000–2018, and the LULC map 
of 1980 and 2018 were selected to represent the LULC conditions during two periods (as shown in Fig. 2). By comparing the simulation 
results under different scenarios, the isolated and combined influences of climate change and LULC change on GW were quantitatively 
analyzed (as shown in Table 3). Based on the simulated results under these scenarios, the contributions of climate change and LULC 
change was estimated as follows: 

ContributionC lim ate =
|S2 − S1|

|S2 − S1| + |S3 − S2|
× 100% (5)  

ContributionLULC =
|S3 − S2|

|S2 − S1| + |S3 − S2|
× 100% (6) 

Fig. 2. Land use/cover distribution of year1980 (a) and 2018 (b) in SJP.  
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2.3.4. Relative contributions of single climatic factor and LULC type 
To explore the relative contribution of different LULC types, the contribution index proposed by Ahlström et al. (2015) was used to 

partition the contribution of each LULC class to the GW (Musavi et al., 2017). The contribution index (fj) was expressed as: 

fj =

∑
t
xjt |Xt |

Xt∑
t|Xt|

(7)  

Xt =
∑

j
xjt (8)  

where xjt is the anomaly value for GW of grid j at time t (in years), and Xt is the anomaly value of GW in the whole region. The value of fj 
ranges from − 1–1. Grid with higher and positive score means a greater contribution in governing GW. 

To estimate the relative importance of different climatic factors (i.e., wind speed, pressure, relative humidity, precipitation, 
temperature and solar radiation) to GW changes, the LMG method was used. The LMG method identifies the direct contributions of a 
variable and its combined contributions with all other predictors (Fernández-Martínez et al., 2014). This measure has the important 
advantage that the results do not depend on the order of predictors in the model, as it clearly identifies nonlinear relationships between 
dependent and explanatory variables (Lee and Biggs, 2015). For details see Groemping (2006) and the R package "relaimpo_2.2–3" was 
us to calculate the LMG indicator (Groemping, 2006). 

3. Results and discussions 

3.1. Evaluation of model performance 

Model calibration and verification for ESSI-3 model at four hydrological stations were shown in Table 4. The model performances 
for every selected subbasin were evaluated by NSE and R2. The observed and simulated discharge at representative Caizuizi Station on 
the Naoli River, a tributary of the Wusuli River, and Baoquanling hydrological station on the Wutong River, a tributary of the Songhua 
River, are plotted in Fig. 3 for comparisons. For calibration and validation periods, model performance with R2 of 0.82–0.92, and 
0.81–0.83, and NSE of 0.77–0.89, and 0.74–0.83, respectively, suggested excellence of the ESSI-3 model in hydrological simulations in 
SJP. 

Fig. 4 presents the spatial distribution of the correlation between ETESSI3 and ETMOD16 from 2000 to 2018. It can be observed that 
correlation coefficients over larger than 96% of the study region were greater than 0.8. For those with relatively low correlation 
coefficients (0.9 ≥R≥0.8), cropland took the predominant land use type. MOD16 did not distinguish and parameterize C3 and C4 crops, 
which may result in a relatively low correlation between ETESSI3 and ETMOD16 for those regions. In contrast, the different parame-
terization schemes for evapotranspiration estimation from C3 and C4 crops in the ESSI-3 model were specifically designed. Therefore, 
the evapotranspiration simulated by the ESSI-3 model was more refined and close to the actual conditions. For these grids shown in 
blue with low correlation coefficients (R≤0.5), the underlying surface type is mainly rivers. There is no doubt that water surface 
evaporation based on remote sensing estimation and model simulation will have large errors. The blank grids are due to the special 
treatment of some special areas (e.g., cities, ice and snow, and water bodies) in the MOD16 dataset. 

Fig. 5 shows the monthly TWSA derived from the three mascon solutions, the ESSI-3 model and two LSM models (VIC model and 
Noah model). The simulated result of ESSI-3 model exhibited a high consistency over the period of 2003–2016 with those GRACE- 
based solutions. As shown in Table 5, for the TWSA simulated by the ESSI-3 and GRACE-derived, the results indicated a high 
agreement with R ranging from 0.65 to 0.69 (p＜0.01) for the period of 2003–2016. GRACE-derived TWSA and monthly scale VIC and 
Noah model simulation also showed a similar trends in terrestrial water storage, with the correlation coefficients of 0.65–0.70, and 

Table 3 
The settings of different simulated scenarios.  

Scenarios Climate LULC 

S1 1982–1999  1980 
S2 2000–2018  1980 
S3 2000–2018  2018  

Table 4 
Statistics of NSE and R2 at four hydrological stations in the calibration (2007–2009) and validation (2010–2012) periods.  

Hydrological stations R2 NSE 

Calibration Validation Calibration Validation 

Baoqing  0.82  0.81  0.77  0.74 
Caizuizi  0.87  0.81  0.83  0.80 
Hubeizha  0.85  0.82  0.79  0.75 
Baoquanling  0.92  0.83  0.89  0.83  
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from 0.71 to 0.75 (p＜0.01), respectively. Although the long-term trend agreement between GRACE-derived TWSA and ESSI-3, NOAH, 
and VIC model simulations was at a high level, the differences appeared mostly in amplitude. It can be observed that the ESSI-3 model 
presented the better fit with GRACE observations with the smaller variation difference amplitude of TWSA. The performance of VIC, 
NOAH, and ESSI-3 model was measured by NSE ranging − 0.96–0.05, − 2.64 to − 0.49, and 0.33–0.47, respectively. The primary 
reason for this phenomenon was that anthropogenic activities were not considered in the VIC, NOAH, and ESSI-3 model, and the 
intensive agriculture irrigation and groundwater extraction in SJP put enormous pressure on TWS, especially the groundwater. 
Additionally, water storage components provided by Noah and VIC just included SWE, CWS, and SMS. NOAH and VIC models belong 
to LSMs, thus the groundwater storage component is not included (Chen et al., 2019b). However, the groundwater storage component 
is included in ESSI-3 model to better characterize the water balance. With respect to the monthly amplitude, this difference highlighted 
that the NOAH and VIC model was obviously underestimated or overestimated of TWSA relative to ESSI-3 model owing to the lack of 
groundwater storage component. Thus, variations in various hydrological states (e.g., soil moisture storage component) obtained from 
ESSI-3 model can better describe the dynamic characteristics of water storage components, although the ESSI-3 model doesn’t take 
terrestrial water storage changes caused by anthropogenic factors such as groundwater extraction into account. 

In summary, despite some uncertainties existed in hydrological simulations for specific seasons, the ET, SMS, TWS, and runoff were 
all simulated with satisfactory precision. This demonstrated the superiority of model simulations in producing various hydrological 
fluxes and states and laid the foundation for further estimating hydrological processes and investigating their variations and potential 
influencing factors. 

Fig. 3. Comparison of the measured and simulated discharge during the calibration (2007–2009) and validation (2010–2012) periods at two gauge 
stations: (a) the Baoquanling Station, and (b) the Caizuizi Station. 
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Fig. 4. Correlation coefficient between ETESSI3 and ETMOD16 during 2000–2018.  

Fig. 5. Monthly TWSA series derived from the three GRACE solutions, and the simulations with two LSM models (VIC model and Noah model), as 
well as with ESSI-3 during the period of 2003–2016. Anomalies refer to the period 2004–2009. 

Table 5 
Correlation analysis of TWSA between three mascon solutions derived and the estimated from the simulations with different models for the period of 
2003–2016.   

Nash-Sutcliff efficiency Correlation Coefficient  

CSR GSFZ JPL CSR GSFZ JPL 

VIC  -0.96  0.05  -0.34  0.69  0.7  0.65 
NOAH  -2.64  -0.49  -1.01  0.71  0.71  0.75 
ESSI-3  0.47  0.33  0.39  0.69  0.65  0.65  
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3.2. Climate and LULC changes analysis 

To detect the temporal variations of climate factors in the SJP, the Mann–Kendall test was employed to examine the trends and 
abrupt changes of the temperature, and precipitation from 1985 to 2018 at the confidence level of 95%. Fig. 6a-d presented the area- 
averaged annual climate factors and Mann–Kendall Z value over the study region. The mean annual temperature and precipitation over 
the SJP varied with an increased rate during the study period. The sequential Mann–Kendall tests for the annual precipitation, as 
illustrated in Fig. 6c, indicated an apparent abrupt change in 2005, meanwhile several abrupt changes occurred from 2000 to 2005 in 
temperature, which suggested a significant abrupt change of climate factors took place around 2000–2005 over the SJP. 

Fig. 7 exhibits the areas and ratios of seven primary land use/cover types from 1980 to 2018 over the SJP. In the year 1980, 
cropland, forest, and wetland took the predominant land use/cover types, accounting for approximately 36.05%, 34.93%, and 14.32% 
of the total area of the SJP, respectively. To the year 2018, land use/cover types changed dramatically with approximately 50.76% of 
the SJP changed to cropland, 31.98% forest and 6.68% the wetland. The agricultural land increased rapidly from 1980 to 2018, 
primarily due to the conversion of wetland and grassland. 

To quantitatively investigate the change trend and LULC transformation among preliminary LULC types in the SJP, the LULC 
transformations during 5 specific periods (i.e., the period of 1980–1990, 1990–2000, 2000–2010, 2010–2018 and 1980–2018) were 
calculated, and the results are shown in Fig. 8. For the period from 1980 to 2018, the most significant area changes in the positive 
direction (increasing trend) were cropland, while the opposite cases were grassland and wetland. In the period of 1980–1990, the 
fastest area decreasing rate occurred in wetland, followed by grassland, with a decreasing rate of − 28.10% and − 13.51%, respec-
tively. From 1990–2000, the fastest area decreasing took place in grassland, followed by wetland, with a decreasing rate of − 44.06% 
and − 21.69% respectively. The area increasing rate for cropland in these two periods was approximately15.80%, and 16.05%, 
respectively. For the two periods of 2000–2010 and 2010–2018, less area changes were found for all LULC types except for wetlands. 
These results also suggested that the 2000 can be taken as a turning year subject to the abrupt changes in LULC over the SJP. 

In summary, to reasonably explain the dynamic influences of the climate change and LULC change across the SJP, scenarios studies 
between pre- and post-2000 were conducted for the purpose. 

Fig. 6. Temporal changes of the area-averaged annual precipitation (a), temperature (b), and sequential Mann–Kendall tests for the annual pre-
cipitation (c) and temperature (d) with the forward-trend UFk and backward-trend UBk in the SJP during 1985–2018. 
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3.3. The spatial-temporal variations of the GW flow and storage in the SJP 

Fig. 9 plots the area-averaged annual GW flow and GW storage estimated from the simulated hydrological processes with ESSI-3 
model over the SJP from 1985 to 2018. Generally, relative higher GW flow and GW storage can be observed for the post-2000 period 
compared with the pre-2000 period. The averaged GW flow and GW storage were 319.8 mm and 479.3 mm in pre-2000 period but 
slightly increased to 323.9 mm and 485.9 mm in post-2000 period, respectively. 

Fig. 10 shows the spatial patterns of the trend significance computed at the 95% significance level for time series GW flow and GW 
storage images under the influence of climate change and LULC change. As exhibited in Fig. 10 a-b, apparent spatial heterogeneity for 
the changes of GW flow and GW storage from 1985 to 2018 over the SJP was carefully investigated. The results indicated that about 
50.84% of the study region showed an increasing tendency in terms of GW flow, in which approximately 23.13% tended to increase 
significantly (p < 0.05), where the most obvious increasing trend occurred in the southeast and northeast region of the SJP. On the 

Fig. 7. The proportions of each LULC types during 1980–2018 over the SJP.  

Fig. 8. Areal change rate (%) per 10 years for each LULC types over the SJP for study period.  
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contrary, a decreasing trend in GW flow was significant over about 10.16% of the SJP area, where the most significant reductions in 
GW flow were mainly distributed in the southwestern SJP area. Over past 34 years in the SJP, 91.25% of the total study area had 
exhibited an increasing trend in GW storage, and pixels with a significant increasing trend accounted for about 55.21%. 

Fig. 9. Temporal changes of area-averaged annual GW flow and GW storage in the SJP during 1985–2018.  

Fig. 10. Spatial patterns of the significance of changes for the annual GW flow (a), and GW storage (b) from 1985 to 2018 in the SJP.  

Fig. 11. The isolated and combined influences of climate change and LULC change, on GW flow and GW storage across the whole SJP during the 
period pre-2000 and post-2000. 
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3.4. Impacts of climate and LULC changes on GW flow and GW storage 

3.4.1. Across the SJP 
Fig. 11 demonstrates GW changes under the individual impact of climate change and LULC change, as well as their combined effects 

for the whole SJP during the period of pre-2000 and post-2000. GW flow increased by 4.4 mm considering the combined impacts of 
climate change and LULC change. This increase was predominantly attributable to LULC changes, which resulted in a 7 mm increase of 
GW flow, while climate change contributed − 2.6 mm decrease of GW flow in the opposite direction. The GW storage also increased by 
6.3 mm under the combined influences of climate and LULC changes. A 7.2 mm increase of the GW storage was donated from the 
climate change, while a − 0.9 mm decrease of the GW storage was attributed to LULC change. The results revealed that the GW flow 
and GW storage changes responding to climate and LULC changes differed considerably during the period of pre-2000 and post-2000 
throughout the SJP. The GW flow increased with a principal contribution from the LULC change, while the increase in GW storage was 
mainly influenced by climate change. Moreover, opposite responses of GW flow to climate changes as well as the GW storage to LULC 
changes were found during the period of pre-2000 and post-2000. The influence of climate change on GW flow was negative and 
climate change had a positive influence on GW storage, which was opposed to the influence of LULC change. 

The isolated influence of climate change and LULC change to GW flow and storage changes at pixel scale were also estimated. To 
clarify, if the contribution of either climate or LULC exceeded 50% to a single pixel, this factor would be considered as the dominant 
factor governing the responses of either the GW flow or the GW storage for this pixel. 

As illustrated in Fig. 12, 53% of the GW flow changes at pixel scale was attributed to climate change during the periods of pre-2000 
and post-2000, which emphasized that the GW flow change had a high sensitivity to climate change. It also should be emphasized that 
in the majority (33%) of these pixels, the GW flow response to climate change were negative. For the remaining pixels, 46% of the GW 
flow variations were largely due to LULC change. Moreover, the spatial distribution of dominant factor that governed the GW flow 
change exhibited highly scale-dependent as observed in the whole SJP. Although more than half of these pixels (54%) were affected by 
climate change, LULC change still took the positive and predominant effect on the GW flow change in general, which implied that the 
positive and negative impacts induced by the climate change could offset each other and weakened their impacts at the whole SJP 
scale. 

For the responses of GW storage to either climate or LULC change and their joint effect, the climate change contributed about 95% 
GW storage change at pixel scale (with 89% positively and 6% negatively), while LULC change contributed only 5% to the GW storage 
change over the remaining regions, suggesting that climate change was the main factor controlling GW storage changes in SJP. 

A noteworthy point was that GW flow under climate warming showed a decreasing during the period of pre-2000 and post-2000 (as 
shown in Fig. 11). Climate warming undoubtedly increased the rate of soil moisture evaporation and vegetation transpiration (Azzam 
et al., 2022). However, due to the general weakening of solar radiation and wind speed, the measured water surface evaporation at 
most meteorological and hydrological stations in China was decreasing, which also inhibited vegetation transpiration (Wang et al., 
2018). The increase of CO2 concentration also reduced the opening of leaf stomata and increased the resistance, which was also an 
important factor to curb vegetation transpiration. Besides, related studies showed that the calculated potential evapotranspiration of 
crop was also decreasing for the SJP (Ren et al., 2019). On the other hand, the prolongation of plant growth period and the increase of 
biomass caused by climate warming would also increase water consumption (Zhou et al., 2021). However, the plant growth period set 
in ESSI-3 model for this study was constant. Therefore, GW flow (i.e., actual evapotranspiration) of farmland and ecosystem simulated 
by ESSI-3 model decreased after climate warming. This founding also emphasized that whether the actual evapotranspiration of 
different regions and different crops increased or decreased after climate warming still needed to be measured and studied. 

3.4.2. Dominant factors governing the GW flow and GW storage changes 
Since LULC changes took the predominant role governing the GW flow changes over the SJP, the impact of each LULC type on GW 

flow were further assessed in spite of the climate change effects. Using the contribution of land use/cover change to GW flow as an 
indicator to reveal the relationship between the land use/cover changes and the GW flow at different geographical locations and time. 
According to statistics of LULC changes in the SJP in different time of study period in Section 3.2, the significant land use conversion 
took place around 2000 with rapid area expansion of cropland and the shrinkage of forest, grassland and wetland. So the contributions 
of these four main land use types (i.e., cropland, forest, grassland, and wetland) were distinguished. The relative contribution rates for 
the remaining LULC types, such as water, settlement, and bare soil, were not shown due to the small proportion of the study region. 

Fig. 13 presents each land use type and corresponding ratio to GW flow change during the period of pre-2000 and post-2000 across 
the SJP. Before 2000, cropland contributed 37.64% to the GW flow change of the entire SJP, followed by forest (31.79%), wetland 
(17.67%) and grassland (9.92%). After 2000, the contribution of cropland exerted significantly to 58.84%, while contributions of both 
wetland and grassland dropped to 5.85% and 4.16%, respectively, but the forest remained stable. This result was similar to the his-
torical LULC conversion patterns occurred in SJP, where the majority of wetland and grassland was replaced by cropland during the 
period of pre-2000 and post-2000. 

Since climate change was the main factor controlling GW storage change, the impacts of each climatic factor and corresponding 
ratio to GW storage change during the period of pre-2000 and post-2000 across the SJP were investigated as presented in Fig. 14. 
Before 2000, the relative contribution of precipitation to GW storage variation across the SJP was 42.42%, followed by solar radiation 
(22.09%), relative humidity (11.39%), and wind speed (10.13%). After 2000, the contribution of precipitation significantly increased 
to 56.80%, followed by temperature (11.39%) and relative humidity (10.13%). The results indicated that precipitation remained the 
most important factor dominating GW storage change. In addition, because of the processes that simulated fluxes and water storage 
change occurred in soil aquifer, climatic factors such as relative humidity and radiation, which dominated changes in 
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Fig. 12. The leading factor controlling the GW flow change (a) and GW storage change (b) at the pixel scale in SJP. + /− indicated the positive/ 
negative effects on GW flow and storage changes. The pie chart showed dominant factor types and corresponding ratios. 

Fig. 13. The relative contributions of different LULC to the GW flow changes at pixel scale for the whole SJP.  

Fig. 14. The impacts of each climatic factor and corresponding ratio to GW storage change for the whole SJP in the studied period. Abbreviations: 
Wind, wind speed; Pr, pressure; Hurs, relative humidity; Pre, precipitation; Tas, temperature; Rsds, solar radiation. 
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evapotranspiration and runoff components, also affected soil hydrological processes. Therefore, this study also highlighted the 
importance of these factors to GW storage. 

3.5. Hydrological modelling uncertainty and limitations 

Traditionally, the hydrological models commonly use the single streamflow data for the model calibration and validation. Though 
this single evaluation approach is still being widely used around hydrological assessment, more efforts have emphasized that a 
comprehensive calibration strategy (e.g., intermediate gauges, checking for additional variables and considering their spatial distri-
bution, not just at a specific point, etc.) can achieve a better model performance (Puertes et al., 2019; Wen et al., 2020). 

In this study, two other water balance terms were selected for model validation. Firstly, GW flow, which represented actual 
evapotranspiration, was carefully investigated. The ETMOD16 product series were used as a reference to evaluate the model’s per-
formance in evapotranspiration simulation. The MOD16A2 product provides actual evapotranspiration estimates from the land surface 
which can be useful to evaluate the actual evapotranspiration simulated by the model. Additionally, for GW storage representing soil 
moisture, the model performance in the terrestrial soil moisture components simulations was carefully checked by comparing the 
results from the GRACE solutions, the LSMs and ESSI-3 model outputs, and the results suggested that ESSI-3 model could effectively 
simulate the composition of GW. 

Yet, ample space remained to improve some limitations that should be considered in the future in present study. First, because of 
the existing multi-spatial resolutions input gridded datasets, there was only a simplest method, the bilinear interpolation method, was 
used to downscale the coarse resolution climatic forecasts to fine resolution. More advanced spatial downscaling approaches (e.g., 
multilinear regression method, random forests method, artificial neural network method) are suggested to be employed in the future 
studies for spatial performance improvement (Gao et al., 2018). Fortunately, the satisfactory performance of the ESSI-3 simulations of 
various hydrological processes over the SJP ensured the present studies on the GW flow and storage. Second, only five LULC maps that 
represented the underline condition of the SJP for specific periods were applied for simulations and the followed studies in the present 
study. Since LULC change is a dynamic process rather than abrupt change (Chen et al., 2019a), it is recommended to use more land-use 
maps for better characterization of LULC dynamics in further studies. Thirdly, this study did not consider the effects of other 
anthropogenic activities (e.g., irrigation withdrawals, reservoir regulation) and topographic changes (e.g., terrain and slope), which 
were also significant driving factors in governing hydrological response to LULC changes (Wang et al., 2022). 

4. Conclusions 

In this study, the ESSI-3 model was set up to assess the influences of climate and LULC changes on GW in the SJP of China. The 
excellent capability of ESSI-3 model was confirmed by the strong correlations between the observed and simulated discharges, the 
MODIS-based and simulated evaporation, the GRACE-based and simulated TWSA. Simulations showed that the combined effects of 
climate and LULC changes increased GW flow by 4.4 mm and increased GW storage by 6.3 mm during the period of pre-2000 and post- 
2000, whereas GW flow and GW storage responded differently to climate and LULC changes. Climate change decreased GW flow by 
− 2.6 mm and increased GW storage by 7.2 mm, while LULC change had an opposite effect on GW flow (increased by 7 mm) and GW 
storage (decreased by − 0.9 mm). Although LULC change had a greater impact on GW flow than climate change for the whole SJP, 
climate change altered GW flow to a greater extent than LULC change for the pixel scale, accounting for 54% of the region. Moreover, 
climate change played a more important role in GW storage for across the region and at pixel scale. Further analysis suggested that the 
contribution of cropland on GW flow exerted significantly from 37.64% to 58.84% during the period of pre-2000 and post-2000, and 
the contribution of precipitation on GW storage increased from 42.42% before 2000–56.80% after 2000. 

Although the hydrological modeling process in this study seems well represent the spatiotemporal distribution of green water, there 
are some limitations associated with the study remain to be solved in future study, especially for the uncertainty from input data (e.g., 
precipitation and temperature). The original spatial resolution of CMFD dataset is still coarse (0.1◦) for regional study, and the data 
downscaling process from coarse resolution to fine resolution (1 km) are unsatisfactory without combining various environmental 
variables to improve the accuracy and enhance the spatial information. This implies that additional downscaling methods (e.g., 
statistical downscaling methods) need to be applied to obtain accurate high spatiotemporal gridded data. 

This study can be used as a useful guideline for similar research to investigate the temporal and spatial pattern change and trend on 
green water under climate and LULC changes. The findings of this study combined with related researches on crop water requirements 
can provides a scientific basis for suitable cultivation planning program and agricultural water management for crop production in 
SJP, especially for rain-fed crops. 
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