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Vegetated coastal habitats play a large role in climate 
mitigation through the global capture and storage of carbon 
(Mcleod et al. 2011). Salt marshes have a high rate of 
below ground production and grow in anoxic sediments 
(Connor and Chmura 2000; Chmura et al. 2003; Barbier 
et al. 2011; Chmura 2013). Anoxic sediments allow for a 
slower rate of decay resulting in a long-term carbon sink 
(Ponnamperuma 1972; Chmura 2013). The below ground 
biomass of halophytic species accounts for more than half 
of the total plant biomass in salt marsh systems (Schubauer 
and Hopkinson 1984; Ouyang et al. 2017). 

South Africa has more than 300 estuaries unequally 
distributed along 3 400 km of coastline with approximately 
11 400 ha of intertidal and supratidal salt marsh (Van 
Niekerk and Turpie 2012). No studies to date have measured 
biomass for salt marsh species, such as Salicornia tegetaria 
(S Steffen, Mucina & G Kadereit) Piirainen & G Kadereit, 
2017, which is widely distributed in these systems. The 
species has recently undergone a name change. It was 
previously described as Sarcocornia tegetaria S Steffen, 
Mucina & G Kadereit, 2009 (Steffen et al. 2009). Salicornia 
tegetaria is a succulent, low-growing shrub endemic to 
South Africa, Namibia and Mozambique found in the lower to 
middle intertidal zone of estuaries.

Extensive literature describes the above ground biomass 
(AGB), below ground biomass (BGB) and biomass 

production of other salt marsh macrophytes from estuaries 
along the North American Atlantic coast (Schubauer and 
Hopkinson 1984; Gross et al. 1991; Connor and Chmura 
2000), tropical coast of the Gulf of Mexico (De La Cruz 
and Hackney 1977; Hackney and De La Cruz 1986) 
and the Mediterranean (Castellanos et al. 1994; Scarton 
and Rismondo 2002; Palomo and Niell 2009), but the 
measurement of physico-chemical variables are often lacking 
from these studies.

Salt marsh vegetation distribution is governed by a 
gradient of physico-chemical conditions that change with 
elevation (Veldkornet et al. 2016). In the lower intertidal 
environment, the most important variables determining 
physico-chemical conditions and plant growth are salinity 
and tidal inundation (Pennings and Callaway 1992; 
Bertness and Hacker 1994; Guo and Pennings 2012). It has 
been shown that low growing clonal plants from the lower 
marsh zone, where there is an increase in stress, because 
of marine salinity and waterlogging, had a high allocation to 
roots and rhizomes (Minden et al. 2012). 

Clay content in the sediment determines drainage and 
influences the nutrient, water and oxygen availability (Olff 
et al. 1997; Bai et al. 2005) and the ground water table 
additionally determines the oxygen status and therefore 
the redox potential of the sediment (Armstrong et al. 
1985). Well-drained and oxygenated soils have higher 
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pH and lower salinity, a higher rate of organic matter 
decomposition, higher nutrient availability and above 
ground production (Angiolini et al. 2013; Costa et al. 2003; 
Husson 2013). The redox potential and pH level of the 
soil is important in the rhizosphere. At +350 mV the root 
medium becomes oxygen deficient, which can reduce the 
rate of photosynthesis, cause energy deficiency in the 
roots and reduce water and nutrient uptake (Pezeshki 
and DeLaune 2012). Roots require a positive membrane 
potential and a transmembrane pH gradient for the 
transport of nutrients as H+-translocating ATPases drives 
the transmembrane flux of other ions (Braun et al. 1986). 

Salt marshes have shown responses consistent with 
Brouwer’s (1962) theory and Tilman’s (1988) allocation 
model in relation to a nutrient gradient, where allocation to 
below ground biomass was high in nutrient poor soils and 
allocation to above ground biomass was high in nutrient rich 
soils (Minden 2012).

The current study measured the standing above and 
below ground biomass of S. tegetaria in six estuaries 
along the coast of South Africa (Figure 1). Salicornia 
tegetaria displays a high degree of plasticity and grows in 
a wide range of physico-chemical conditions (Veldkornet 
et al. 2016). It is expected that the physico-chemical 
conditions could vary among individual estuaries and that 
these differences could influence resource allocation. The 
current study measured sediment pH, moisture content, 
organic matter content and electrical conductivity (EC), 
as well as pore water temperature, salinity, pH and depth. 
Relating the biomass allocation of these plants to physico-
chemical conditions might provide insights to the shifts that 
could occur as a result of anthropogenic impacts. 

Eutrophication and water abstraction alters the lower 
intertidal zone with a resulting increase in nutrients, lower 
freshwater runoff and higher salinity (Van Niekerk and 
Turpie 2012). Major shifts in climate are expected over the 
next century (Stocker et al. 2013), which might affect the 
potential of wetlands to be valuable as global carbon and 
methane sinks (Bartlett et al. 1987; Chmura et al. 2003; 
Adams et al. 2012; Ouyang and Lee 2014). 

Estuaries will be affected by changes to freshwater 
supply, increased storm frequency and intensity, increased 
temperatures and increased inundation, because of 
sea-level rise (SLR) (Van Niekerk and Turpie 2012). Salt 
marshes adapt to SLR by trapping sediment or increasing 
below ground biomass (Larsen and Harvey 2010; Marani 
and D’Alpaos 2013; Bornman et al. 2016). 

In this study, we hypothesised that 1) higher salinity/EC 
would result in an increased allocation to below ground 
biomass and that 2) higher pH, redox potential, soil 
moisture and organic matter content would result in higher 
above ground allocation.

Materials and methods

Descriptions of the study sites
The study was conducted in six estuaries: Olifants, Berg, 
Langebaan, Heuningnes, Nahoon and Kwelerha (Figure 1). 
These estuaries were chosen for their large intertidal areas, 
where monospecific patches of S. tegetaria could be found. 
Olifants, Berg, Nahoon and Kwelerha are predominantly 

open estuaries. Four of the six estuaries (Olifants, Berg, 
Heuningnes and Nahoon) have been affected by flow 
modification and habitat loss (Van Niekerk and Turpie 
2012). Olifants and Berg estuaries maintain their open 
state through river flow, whereas Nahoon and Kwelerha 
estuaries are maintained in the open state by tidal currents 
(Allanson and Baird 2008). Both the Olifants Estuary and 
Berg Estuary are under high flow modification pressure, 
mainly as a result of large dams in their catchment. Hence, 
the Olifants Estuary remains marine dominated for most of 
the year (Lamberth et al. 2008). 

The Heuningnes Estuary is located on a stretch of 
coastline with extensive flood plains and vast mobile dune 
fields that, driven by strong winds, periodically blocked the 
river mouth leading to the flooding of farmland. Since the 
early 20th century the mouth has been kept artificially open 
most of the time by the introduction of Ammophila arenaria 
(L.) Link (European beach grass) to stabilise dunes and fix 
drift sand movement (Lubke and Hertling 2001). 

Langebaan is a unique estuarine system type in South 
Africa (estuarine lagoon). The body of water in the 
estuarine lagoon is fed by ground water in certain sections 
rather than receiving freshwater from river input. Typical 
estuarine species occur in the lagoon, including a large 
portion of South Africa’s total salt marsh vegetation 
(Whitfield 2005; Mucina et al. 2006). 

Olifants, Berg and Langebaan estuaries fall within the 
semiarid Mediterranean climate with winter rainfall of the 
cool temperate biogeographical region (Bickerton 1984). 
Heuningnes, Nahoon and Kwelerha estuaries fall within 
the warm-temperate biogeographical region where the 
rainfall pattern is highly variable throughout the year and 
is usually slightly higher during autumn (March) and spring 
(October/November) and at a minimum in winter (June) 
(Schulze 1965; Heydorn and Tinley 1980; Jury and Levey 
1993). Temperature and rainfall data were provided by the 
South African Weather Service (SAWS) (Supplementary 
Figure S1).

Sample collection
Biomass, pore water and sediment sampling were 
undertaken twice at each estuary during low tide, once 
during the winter of 2016 and once during the summer of 
2017. Monospecific patches of 100% S. tegetaria cover 
were identified in the lower intertidal zone of each estuary. 
Three permanent transects were demarcated and divided 
into a lower, middle and upper zone. A quadrat was 
identified in each zone containing 100% S. tegetaria cover, 
providing a total of 18 replicates per estuary.

Sediment cores were collected at the surface and at 
50 cm depth within each quadrat, giving 18 replicates 
each at 0 cm and 50 cm. Sediment pH (Black et al. 1965), 
moisture content, organic matter content (Briggs 1977; 
Heiri et al. 2001) and electrical conductivity (EC) (Barnard 
1990) were measured in the laboratory. Sediments were 
analysed for redox potential in situ with a HANNA redox/
pH metre by placing the probe into the sediment at each 
quadrat (Black et al. 1965). Sediment pH and redox 
potential were measured in summer when equipment 
became available, giving a total of nine replicates per 
estuary.
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Pore water was measured in the quadrats as water filled 
the wells in which biomass and sediment were collected, 
giving 18 replicates per estuary. In each augured well, pore 
water temperature, salinity and pH were measured using 
a YSI Professional Plus multimeter. Pore water depth was 
measured as the level to which water filled the wells at low 
tide. Wells were augured to a depth of 1 m, and recorded as 
>1 m if water did not enter the well.

Plant height was measured for ten S. tegetaria stems from 
tip to ground/lateral branch in each quadrat (180 replicates 
per estuary). All the AGB was harvested from the sediment 
surface within a 0.15 m × 0.15 m area in each quadrat. The 
AGB was rinsed with water and any attached litter removed 
by hand (Schubauer and Hopkinson 1984; Gross et al. 
1991). Following the removal of AGB, BGB was collected 
by removing the sediment containing the roots to a depth of 
10 cm in the same 0.15 m × 0.15 m area as above ground 
biomass. Most of the roots were found down to a depth of 
10 cm (Curcó et al. 2002; Palomo and Niell 2009). 

The below ground biomass was washed by hand with 
water to remove the bulk of sediment using a 1 mm sieve to 
collect fine roots. The water was passed through the sieve 
until all the roots in each sample were recovered. A second 
wash with 10 g sodium polyphosphate in water removed 
the rest of the sediment. The above and below ground 
biomass was dried for 48 h at 60 °C and then weighed as 
per Hopkinson and Dunn (1984).

Statistical analysis
Statistical analyses were performed using R Statistical 
Software (R Core Team 2013). Data were tested 
for normality using Shapiro–Wilk normality test and 

non-parametric tests were used when data were not 
distributed normally. A t-test of sediment variables between 
samples collected at 0 cm and 50 cm did not show a 
significant difference and the data were pooled for additional 
analyses. The number of replicates (N) was 108 for 
biomass, sediment EC, moisture and organic content, 54 for 
sediment pH and redox and 89 (excluding wells where water 
was >1 m deep) for pore water temperature, pH and salinity. 

Values are reported as means (± SE). A Kruskal–Wallis 
non-parametric analysis of variance (ANOVA) was used 
to test the variance of biological and physico-chemical 
variables between estuaries. A Dunn’s test was used 
to perform post hoc analyses when the ANOVA found 
variables to be significantly different between estuaries, 
and p-values were adjusted with the Benjamini–Hochberg 
method using the R package FSA version 0.8.24 (Ogle et 
al. 2019) and rcompanion version 2.2.1 (Mangiafico 2019). 
Spearman’s correlation tests were used to test the relation-
ship between physico-chemical and biological variables 
within each individual estuary. Statistical significance was 
determined at p < 0.05.

Results

Olifants and Berg estuaries had significantly higher 
sediment moisture content, Berg Estuary had significantly 
higher sediment EC and Heuningnes Estuary had 
significantly lower sediment EC. Heuningnes Estuary 
also had significantly higher pore water pH than found at 
the other estuaries (Table 1). Plants at Berg Estuary and 
Nahoon Estuary were significantly taller than those at the 
Langebaan and Heuningnes estuaries were (Figure 2). The 
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AGB at Berg, Heuningnes, Nahoon and Kwelerha estuaries 
were similar. The AGB at Olifants Estuary was significantly 
higher than at Langebaan, Heuningnes and Kwelerha 
estuaries. Langebaan Lagoon had the lowest AGB of 
0.86 ± 0.09 kg m–2 and the lowest recovered in winter 2016 
(0.59 ± 0.08 kg m–2), but the AGB at Langebaan Estuary 
was not significantly different from Heuningnes or Kwelerha 
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estuaries. Although washing the roots from the different 
estuaries it was evident that S. tegetaria in Heuningnes 
Estuary grew in sandier, coarser-grained sediment 
compared with the other estuaries, and had visibly fewer 
roots. Heuningnes Estuary had significantly lower BGB 
than found at the other estuaries (1.51 ± 0.24 kg m–2), but 
overall the BGB was not significantly different between 
the other estuaries. The root/shoot ratio was significantly 
lower at Heuningnes Estuary (1.36) than at the other five 
estuaries sampled.

At Olifants, Langebaan and Heuningnes estuaries, 
sediment pH was negatively correlated to BGB and at 
Langebaan and Heuningnes estuaries it was negatively 
correlated to AGB. In the Olifants, Nahoon and Kwelerha 
estuaries, the AGB was higher in quadrats where the pore 
water depth was shallower. At Langebaan Lagoon (where 
pore water was often found at the surface and it did not 
exceed 60 cm during sampling), the AGB was lower where 
the pore water depth was shallower. At Berg Estuary the 
depth to water level exceeded 1 m in six quadrats during 
summer and at Heuningnes Estuary water level depth 
exceeded 1 m in all nine quadrats in winter. The sediment 
redox potential was strongly positively correlated to AGB 
at Langebaan Lagoon and BGB at Kwelerha Estuary. 
Kwelerha Estuary had a higher BGB/AGB ratio during 
winter sampling and resulted in a negative correlation 
to pore water temperature. At Heuningnes Estuary the 
AGB was higher in quadrats with higher sediment organic 
content (Table 2).

Discussion

The current study represents the first quantification 
of biomass allocation and the standing biomass of 
S. tegetaria in estuaries in South Africa. The AGB of 
S. tegetaria (1.31 kg m–2) was within the range reported 
for other Salicornia species (0.53–3.40 kg m–2) (Mahall 
and Park 1976; Castellanos et al. 1994; Curcó et al. 2002; 
Scarton and Rismondo 2002; Palomo and Niell 2009) 
(Figure 2). The high AGB (3.40 kg m–2) and low root/shoot 
ratio (0.68) of S. perennis subsp. alpini reported by Palomo 
and Niell (2009) was likely because of nutrient enrichment 
of the system studied in Spain, whereby an increase in a 
limiting nutrient resulted in an increase in AGB (Darby and 
Turner 2008). 

The BGB of S. tegetaria (3.66 kg m–2) was higher 
than that of Salicornia perennis (approximately 1.67– 
2.33 kg m–2), which is found at a similar elevation in the 
lower intertidal zones of the Mediterranean salt marshes 
(Castellanos et al. 1994; Davy et al. 2006; Palomo and Niell 
2009). The higher BGB found in the current study might 
be because of the variation at the species level, but might 
also indicate an environment that promotes below ground 
production (Schubauer and Hopkinson 1984; Colmer and 
Voesenek 2009; Minden and Kleyer 2011).

Veldkornet et al. (2016) recorded similar values for 
ground water depth, sediment EC and sediment pH 
compared with the current study, whereas the sediment 
moisture and organic content found in the current study 
was higher than recorded by Veldkornet et al. (2016) and 
Geldenhuys et al. (2016). The importance of sediment 

particle size on below ground processes was evident when 
individual estuaries were compared. The sediment at the 
historically river-dominated Olifants and Berg estuaries was 
finer than at the other estuaries with a clay/silt loam texture 
and had higher moisture content (Bornman et al. 2002). 
The higher surface tension of soils with higher organic 
and clay/silt content, result in a higher water and nutrient 
holding capacity than sandy soils (Barko and Smart 1986; 
Gómez-Plaza et al. 2001; Bai et al. 2005). 

Nahoon and Kwelerha estuaries had similar sediment 
profiles, measured at 50% sand, 35% clay and 15% silt in 
the lower salt marsh of Nahoon Estuary (Reddering 1987; 
Geldenhuys et al. 2016). The sandy nature of the sediment 
near to the mouth of Heuningnes Estuary where samples 
were collected, was most likely the result of an influx of 
sand from the sea (Bickerton 1984). A decrease in pH with 
an increase in salinity (Redondo-Gómez et al. 2007; Arslan 
and Demir 2013) and a decrease in pH with an increase 
in soil moisture (Rogel et al. 2000) have been reported in 
other salt marsh studies. The roots at Langebaan Lagoon 
were highly condensed in the top layer (± 2–3 cm), which 
trapped fine sediment, with a coarse sandy layer and little 
roots continuing beneath. This is probably because no river 
flows into the estuarine lagoon and sediment input to the 
salt marsh is of marine or aeolian origin (Flemming 1977).

A decrease in sediment redox potential is expected 
with an increase in tidal inundation period and frequency 
over the long term in the lower intertidal zone (Seybold et 
al. 2002). Shallower ground water tables had a positive 
effect on AGB in Olifants, Nahoon and Kwelerha estuaries, 
though this was not the case at Langebaan Lagoon. At 
Langebaan, an increase in the depth of the ground water 
level had a strong positive correlation to AGB, which 
affected the BGB/AGB ratio. 

A phosphate-mining license has been granted in the 
Langebaan area above the aquifer that supplies ground 
water to the salt marsh vegetation as its only source of 

Estuary Biological 
variable

Physico-chemical
variable

r

Olifants BGB Sediment pH −0.54*
AGB Pore water Depth −0.56*

Berg AGB Sediment moisture −0.55*
Ratio Sediment moisture 0.49*

Langebaan AGB Sediment redox 0.73**
AGB Sediment pH −0.63*
BGB Sediment pH −0.50*
AGB Pore water depth 0.77***
Ratio Pore water depth −0.65*

Heuningnes AGB Sediment organic 0.52*
AGB Sediment pH −0.53*
BGB Sediment pH −0.53*

Nahoon AGB Pore water depth −0.51*
Kwelerha BGB Sediment redox 0.71**

Ratio Sediment redox 0.70**
BGB Pore water temperature −0.51*
Ratio Pore water temperature −0.54*

Table 2: Spearman’s correlations of physico-chemical variables 
with AGB, BGB and the BGB/AGB ratio, for each estuary. 
Significant values are given as *p < 0.05; **p < 0.001; ***p < 0.0001
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freshwater (Whitfield 2005). Phosphate mining affects the 
hydrology and water quality of the environment (Reta et 
al. 2018) and could have an impact on vegetation in the 
estuarine lagoon and reduce the BGB/AGB ratio. 

Following submergence, the redox potential in the 
sediment becomes lower as oxygen is depleted in the 
sediment by roots, microorganisms and soil reductants 
that are formed when oxidised compounds are used 
as electron acceptors and carbon dioxide accumulates 
(Pezeshki and DeLaune 2012). Sediment redox potentials 
were positively correlated to BGB and the BGB/AGB 
ratio (Table 2) at Langebaan Lagoon. The top layer of 
fine sediment and dense roots could have impeded the 
drainage of water and had a strong effect on the redox 
potential and BGB/AGB ratio.

Heuningnes Estuary is a sand-dominated estuary. 
The resulting high availability of oxygen and low salinity 
increases organic matter decomposition and above ground 
growth (Valiela et al. 1976; Poluektov and Topazh 2005; 
Darby and Turner 2008; Husson 2013; Ouyang et al. 2017). 
This is supported by the significantly lower BGB recorded. 
Other salt marsh species, including Spartina alterniflora 
Loisel., S. patens and S. perennis subsp. alpini have shown 
a decrease in BGB with higher nutrient availability (Valiela 
et al. 1976; Gross et al. 1991; Palomo and Niell 2009). 

Geldenhuys et al. (2016) found that sediment pH was 
an important determinant in salt marsh species distribution 
at Nahoon Estuary. Studies have shown that nutrients 
become more soluble at lower pH levels, promoting plant 
growth (Ponnamperuma 1972; Peterson and Graves 2009; 
Husson 2013). H+ translocating activity in saline conditions 
was found to be optimum at pH 6.2 in the halophyte 
Atriplex nummularia Lindl. (Braun et al. 1986). At higher 
pH, S. tegetaria showed a decrease in both BGB and 
AGB. The optimum pH at which plants grow best in the 
natural environment do not necessarily reflect the optimum 
pH for plant growth (Peterson and Graves 2009), which is 
additionally complicated by salinity (Braun et al. 1986) and 
waterlogging (Adams and Bate 1994) in the salt marsh 
environment.

The different sediment sources and quantities of 
sediment delivered to estuaries could have implications on 
BGB production. Inappropriate development, such as dams 
and bridges, reduces the inflow from rivers and reduces 
the scouring of marine sediments in the lower reaches of 
estuaries (Schumann 2003). An increase in sea storms 
could cause an increase in wave height and an increase 
in marine sediment along areas of sediment-rich coastline, 
which could affect the biomass of salt marsh macrophytes 
near the mouth of estuaries, e.g. Heuningnes (Van Niekerk 
and Turpie 2012).

Salt marshes are classified as blue carbon ecosystems 
that sequester carbon within the sediment over the long 
term, and AGB and BGB over the short term, at a higher 
rate than terrestrial ecosystems (Chmura et al. 2003; 
Mcleod et al. 2011). The accumulation of organic matter is 
linked to the production of AGB import or export and the 
production and decomposition of BGB. Measuring the BGB 
and organic matter in salt marshes will aid estimates of the 
amount of carbon they store (Ouyang et al. 2017), which in 
turn affects the response of salt marshes to sea-level rise 

that depends on sediment supply and accretion (Lovelock 
et al. 2015). Salicornia tegetaria is a common species 
endemic to southern African estuaries where it forms large 
monospecific stands in the lower intertidal zone that will 
be vulnerable to SLR. Biomass allocation is an important 
mechanism by which plants respond to resource based and 
non-resource-based environmental stress (Bazzaz et al. 
1987; Minden et al. 2012) and long-term monitoring could 
identify processes that could affect the patterns of biomass 
allocation in this species.
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