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Abstract. American put options on a zero-coupon bond problem is reformulated as a
linear complementarity problem of the option value and approximated by a nonlinear
partial differential equation. The equation is solved by an exponential time differencing
method combined with a barycentric Legendre interpolation and the Krylov projection
algorithm. Numerical examples shows the stability and good accuracy of the method.
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1. Introduction

A bond is a financial instrument which allows an investor to loan money to an entity
(a corporate or governmental) that borrows the funds for a period of time at a fixed in-
terest rate (the coupon) and agrees to pay a fixed amount (the principal) to the investor
at maturity. A zero-coupon bond is a bond that makes no periodic interest payments. A
bond option is a financial contract which gives the holder the right but not the obligation to
buy or sell a bond at a certain price on or before the option expiry date. A European bond
option is an option to buy or sell a bond at maturity for a fixed price. On the other hand, an
American bond option offers a possibility to buy or sell a bond for a predetermined price on
or before the maturity date. A buyer of a bond call option is expecting a decline in interest
rates and an increase in bond prices, while a buyer of a put bond option is expecting an
increase in interest rates and a decrease in bond prices.

Pricing interest rate contingent claims is a popular field of research in finance [20].
For European zero-coupon bonds the prices of these claims can be calculated as expected
terminal payoffs discounted by using the path of the instantaneous risk-free rate r under
a risk-adjusted or equivalent martingale measure [12, 25]. American options can be ex-
ercised at any time prior to the expiration date, which creates uncertainty and leads to
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substantial difficulties in analytical description of this problem. Nevertheless, the informa-
tion required can be obtained from an optimal exercise curve related to a free boundary
problem. Therefore, numerical or semi-analytical approximation methods have to be in-
volved in the pricing of American style contracts. The valuation of bonds with embedded
options have been studied by projective successive over relaxed (PSOR) methods [28], the
lattice method [4], explicit finite difference methods [6]. However, in spite of easy imple-
mentation, these methods have a slow convergence rate.

In this paper, a barycentric Legendre spectral collocation method is used for numerical
valuation of American bond pricing options. Penalising the partial differential complemen-
tary problem of American bond options similarly to Ref. [2], we obtain a nonlinear partial
differential equation (PDE) and derive its approximate solution in a fixed domain by the
collocation scheme mentioned. To discretise the PDE in time, we employ the exponen-
tial time differencing method (ETD) studied by Cox and Matthews [8]. A modification of
this scheme has been proposed by Kassman and Trefethen [13]. The class of explicit mul-
tistep exponential and explicit exponential Runge-Kutta methods have been discussed by
Hochbruck and Ostermann [11]. Tangman et al. [22] used ETD methods to study Euro-
pean barrier and butterfly spread options for the Black Scholes model and Merton’s jump-
diffusion model. American style barrier options have been discussed by Gondal [9] and
Rambeerich et al. [17], who compared the exponential integrators with traditional Crank-
Nicolson methods. Here we construct a Krylov subspace by the Arnoldi shift-and-invert
method [5] and use it in the evaluation of exponential integrators.

This paper is organized as follows. In Section 2, mathematical models of zero-coupon
bonds are presented and American put options on a bond for a short rate model is described.
Section 3 deals with a spectral collocation method for these models. In Section 4, we
discretise the corresponding systems by exponential time integrators. Numerical results
are reported in Section 5, and concluding remarks are in Section 6.

2. Pricing Models of a Zero-Coupon Bond and Options

Let us consider the pricing of zero-coupon bonds and European bond options in the case
where a short term risk-free interest rate r is described by the generalized Chan-Karolyi-
Longstaff-Schwartz model

dr(t) = κ
�

θ − r(t)
�

d t +σr(t)γdW (t), (2.1)

where W (t) is a Wiener process, κ the mean-reversion speed, θ the long-term interest
rate, σ the volatility, and γ a parameter used for the nesting of term structure models
within the framework of the stochastic differential equation (2.1). The pricing equations
for zero-coupon bonds and European options on the bonds can be established by traditional
no-arbitrage arguments. The pricing equation for both financial products is the same but
the boundary conditions differ — cf. [18]. If τ∗ = T ∗ − t ∈ [0, T ∗] denotes the time of the
bond expiration, then the partial differential equation of the bond price B(r,τ∗) with the
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initial face value E is

∂ B

∂ τ∗
=

1

2
σ2r2γ ∂

2B

∂ r2
+ κ(θ − r)

∂ B

∂ r
− rB, B(r, 0) = E.

If γ= 0, the Vasicek model [24] and the analytic expression of zero-coupon bond price is

B(r,τ∗) = A(τ∗)e−D(τ∗)r , (2.2)

where

A(τ∗) = E exp

�

−θ [τ∗ − D(τ∗)]− σ
2

4κ

�

D2(τ∗)− 2

κ
(τ∗ − D(τ∗))

�
�

and

D(τ∗) = −1

κ
(e−κτ

∗ − 1).

If γ = 1/2, the equation (2.1) represents the Cox, Ingersoll and Ross (CIR) model [7] and
the straight bond value is

B(r,τ∗) = A(τ∗)e−D(τ∗)r , (2.3)

where

A(τ∗) = E

�

φ1eφ2τ
∗

φ2(e
φ1τ∗ − 1) +φ1

�φ3

, D(τ∗) =
eφ1τ

∗ − 1

φ2(e
φ1τ∗ − 1) +φ1

,

with
φ1 =

p

κ2 + 2σ2, φ2 = (κ+φ1)/2, φ3 = 2θ̄/σ2, θ̄ = κθ .

If τ = T − t ∈ [0, T ] (T < T ∗) denotes the time of expiry of a bond option, the European
put bond option V (r,τ) with maturity T and exercise K satisfies the pricing equation

∂ V

∂ τ
=

1

2
σ2r2γ ∂

2V

∂ r2
+ κ(θ − r)

∂ V

∂ r
− rV,

V (r, 0) =max
�

K − B(r, T ∗ − T ), 0
	

.

Let us now consider American put option V (r,τ) on a zero-coupon bond with strike price
K , where the holder can receive a fixed payoff g(r,τ) before the expiry date T . Denoting
by L the degenerate parabolic PDE operator

L V :=
∂ V

∂ τ
−
�

1

2
σ2r2γ ∂

2V

∂ r2
+ κ(θ − r)

∂ V

∂ r
− rV

�

,

one can reformulate the option pricing problem as a differential linear complementary
problem

L V (r,τ) ≥ 0, V (r,τ)− g(r,τ) ≥ 0,

L V (r,τ) · �V (r,τ)− g(r,τ)
�

= 0,

V (r, 0) = g(r, 0) =max
�

K − B(r, T ∗ − T ), 0
	

,

V (r,τ) = g(r,τ), r → 0,

V (r,τ) = g(r,τ), r →∞, (2.4)
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where g(r,τ) =max{K−B(r, T ∗−(T−τ)), 0}— cf. Ref. [28]. Further, let us add a smooth
penalty term suggested by Kovalov et. al [14] and consider the arising nonlinear problem
on a bounded fixed domain, so that

L Vε −
�

1

ε
[g− Vε]

+

�p

= 0, 0< r < R; 0≤ t ≤ T,

Vε(r, 0) =max
�

K − B(r, T ∗ − T ), 0
	

; 0< r < R,

Vε(0,τ) = g(0,τ); 0¶ τ ¶ T,

Vε(R,τ) = g(R,τ); 0¶ τ ¶ T, (2.5)

where 0 < ε ≪ 1 is the penalty constant, [g− Vε]
+ = max{g − Vε, 0}, p ≥ 1 the power

penalty term and R a sufficiently large number — cf. Ref. [28].

3. Barycentric Legendre Spectral Collocation Method

In this section, we present a fast and efficient interpolation algorithm based on Legen-
dre-Gauss-Lobatto points.

3.1. A modified Lagrange formula

The classical Lagrange polynomials [15] interpolating a function u(x) at distinct points
x j, j = 0,1, · · · , N are defined by

pN (x) =

N
∑

j=0

u jℓ j(x), ℓ j(x) =

N
∏

k=0
k 6= j

x − xk

x j − xk

, (3.1)

such that ℓ j(xk) = δ jk, j, k = 0,1, · · ·N , where δ jk is the Kronecker delta. Although very
powerful, this approach requires O (N2) operations of addition and multiplication for each
evaluation of pN (x), and the whole process has to be performed over again if the data
(x j, f j) are changed. Therefore, a few modifications of the interpolation procedure have
been proposed — cf. Refs. [10, 26]. In what follows, we use the barycentric interpolation
developed in Ref. [3]. This approach requires only O (N ) operations for the evaluation of
pN (x). Following [3], we set ℓ(x) :=

∏N

j=0(x − x j) and define the barycentric weights λ j,

j = 0,1, · · · , N by λ j = 1/
∏N

k=0
k 6= j

(x j − xk). Then ℓ j(x) = λ jℓ(x)/(x − x j) and the Lagrange

formula (3.1) takes the form

pN (x) = ℓ(x)

N
∑

j=0

λ j

x − x j

u j.

Applying it to the function u(x) ≡ 1, one obtains

1=
N
∑

j=0

ℓ j(x) = ℓ(x)

N
∑

j=0

λ j

x − x j

,
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so that

pN (x) =

 

N
∑

j=0

λ j

x − x j

u j

!, 

N
∑

j=0

λ j

x − x j

!

.

This barycentric form of the Lagrange formula is frequently used in practical computations
and for certain particular sets of points the barycentric weights λ j can be computed ana-
lytically. For example, let {x j}Nj=0 be the Legendre-Gauss-Lobatto points — i.e. the zeros of

the polynomial (1− x2)P ′
N
(x), where PN (x) is the Legendre polynomial of the degree N .

Lemma 3.1 (cf. Wang & Huybrechs [27]). If {x j}Nj=0 are the Legendre-Gauss-Lobatto points,

then

λ j =
(−1) j
p

2
p

N (N + 1)

1

PN (x j)
, j = 0,1, · · · , N .

3.2. Differentiation matrices

An approximate solution u of the semi-discrete version of PDE (2.5) is sought in the
form

u(x) =

N
∑

j=0

u jℓ j(x),

so that the derivatives of u are

u′(x) =
N
∑

j=0

u jℓ
′
j(x), u′′(x) =

N
∑

j=0

u jℓ
′′
j (x).

The barycentric formula for ℓ j ,

ℓ j(x) =

�

λ j

x − x j

�
Â�

N
∑

k=0

λk

x − xk

�

, (3.2)

yields

ℓ j(x)

N
∑

k=0

λk

x − x i

x − xk

= λ j

x − x i

x − x j

, (3.3)

and if we denote by s the sum in the left-hand side of (3.3), then

ℓ′j(x)s(x) + ℓ j(x)s
′(x) = λ j

�

x − x i

x − x j

�′
,

ℓ′′j (x)s(x) + 2ℓ′j(x)s
′(x) + ℓ j(x)s

′′(x) = λ j

�

x − x i

x − x j

�′′
. (3.4)
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To find the entries of the differentiation matrices, we evaluate the expressions in (3.4) at
the points x = x i, obtaining systems of linear equations. The solutions of these systems are

s(x i) = λi, s′(x i) =

N
∑

k=0
k 6=i

λk/(x i − xk), s′′(x i) = −2
N
∑

k=0
k 6=i

λk/(x i − xk)
2,

or

ℓ j(x i) = 0, ℓ′j(x i) =
λ j/λi

x i − x j

, ℓ′′j (x i) = −2
λ j/λi

x i − x j







N
∑

k=0
k 6=i

λk/λi

x i − xk

− 1

x i − x j





 ,

if i 6= j and

ℓ j(x i) = 1, ℓ′
j
(x j) = −

N
∑

i 6= j

ℓ′
j
(x i), ℓ′′

j
(x j) = −

N
∑

i 6= j

ℓ′′
j
(x i),

if i = j. Thus the entries of the first and second order differentiation matrices D(1) and D(2)

have the form
D
(1)
i j
= ℓ′j(x i), D

(2)
i j
= ℓ′′j (x i). (3.5)

Let us now recall that the Legendre-Gauss-Lobatto collocation points yk, k = 0,1, · · · , N

are clustered at the ends of the interval [−1,1]. On the other hand, a better approximation
can be obtained, if the collocation points are located in the region of rapid change. In order
to relocate the collocation points to a new region, we will use the conformal map g,

x = g(y) = β +
1

α
sinh

�

λ̄(y −µ)� ,

where λ̄= (γ+δ)/2, µ = (γ−δ)/(γ+δ), γ= sinh−1(α(1+β)), δ = sinh−1(α(1−β)), and
α and β , respectively, determine the location and magnitude of the region of rapid change
— cf. Ref. [23].

3.3. American interest rate options on a zero-coupon bond

Let us now discretise our problem in the interest rate space by the barycentric Legendre
spectral collocation method. We consider any real numbers Rm and RM , RM > Rm, transfer
the points xk = g(yk) ∈ [−1,1], k = 0,1, · · · , N into interval [Rm,RM] by

xk→ r(xk) =
xk + 1

2
RM +

1− xk

2
Rm,

and compute the first and second differentiation matrices

D(1)
r
=

�

2

RM − Rm

�

D(1)
x

, D(2)
r
=

�

2

RM − Rm

�2

D(2)
x

.
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To simplify the notation, we write D(1) for D(1)r , D(2) for D(2)r and introduce the matrix
operators

V= [V1, V2 · · · , VN−1]
T ,

D(1) =
�

D
(1)
i j

�

; j, k = 1, · · · , N − 1,

D(2) =
�

D
(2)
i j

�

; j, k = 1, · · · , N − 1,

P =
1

2
σ2diag

�

r
2γ
j

	

, Q = diag
�

κ(θ − r j)
	

; j = 1, · · · , N − 1. (3.6)

Now we approximate the problem (2.5) as follows

V̇ = PD(2)V+QD(1)V− r IV+

�

1

ε
[g−V]+

�p

,

eV 0 =max
�

K − B(r, T ∗ − T ), 0
	

, 0< r < R, 1≤ j ≤ N − 1,

V0 = g(0,τ), VN = g(R,τ), (3.7)

and write it as

u̇ = Lu+N(u, t), (3.8)

where Lu and N(u, t) are, respectively, linear and nonlinear parts of the problem (3.7) with
the boundary conditions included. Note that the application of explicit time integrators to
system (3.8) is not efficient because of the stiffness issues while the corresponding mesh
is refined in the space direction. Therefore, for the time integration, an exponential time
differencing (ETD) method is used.

4. An Exponential Time Differencing Method

The exponential time differencing methods are based on the construction of multistep
integrators by using the method of variation of parameters. In this section, we follow
the scheme presented in Ref. [16] but use Lagrange interpolation polynomials instead of
Newton polynomials. If h > 0, the exact solution of the problem (3.8) in the interval
[tn, tn+1] = [tn, tn + h] is

u(tn+1) = eLhu(tn) + etnL

∫ tn+h

tn

e−τLN
�

τ,u(τ)
�

dτ

= eLhu(tn) +

∫ h

0

e(h−τ)LN
�

tn +τ,u(tn +τ)
�

dτ. (4.1)

For approximate solution, we will use a numerical method constructed similarly to Refs. [8,
16]. Taking into account the relation u j ≈ u(t j), we define a new approximation un+1 of
u(tn+1) by

un+1 = eLhun +

∫ h

0

e(h−τ)LPn,k−1(tn +τ)dτ, (4.2)
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where Pn,k−1 is the Lagrange polynomial with the interpolation points

�

tn−k+1,N(tn−k+1,un−k+1)
�

, · · · , �tn,N(tn,un)
�

.

It can be written in the form

Pn,k−1(tn + θh) =

k−1
∑

j=0

(−1) j
� −θ

j

�

∇ jN j , N j = N(t j ,u j), (4.3)

where ∇ is the backward difference operator,

∇0Nn = Nn, ∇ jNn =∇ j−1Nn −∇ j−1Nn−1, j = 1,2 · · · .
Substitute the polynomial (4.3) into Eq. (4.2) and obtain

un+1 = eLhun + h

k−1
∑

j=0

γ j(Lh)∇ jNn, (4.4)

with the coefficients

γ j(z) = (−1) j
∫ 1

0

e(1−θ )z
� −θ

j

�

dθ . (4.5)

The weight function (4.5) can be also represented via ϕ-function — viz.

ϕ j(z) =
1

( j − 1)!

∫ 1

0

e(1−θ )zθ j−1dθ , j ≥ 0. (4.6)

Proceeding similarly to Ref. [16], we write Eq. (4.4) as

un+1 = eLhun + h

k
∑

j=0

β̄ jNn− j , (4.7)

where the coefficients β̄ j are linear combinations of the weight functions ϕ j . Note that,
according to Ref. [16, Page 8], the first four coefficients for ETD Adams-Bashforth and
Adams-Moulton methods are









β̄1

β̄2

β̄3

β̄4









=







1 11/6 2 1
0 −3 −5 −3
0 3/2 4 3
0 −1/3 −1 −1













ϕ1(Lh)

ϕ2(Lh)

ϕ3(Lh)

ϕ4(Lh)





 , (4.8)

and








β̄0

β̄1

β̄2

β̄3









=







0 1/3 1 1
1 1/2 −2 −3
0 −1 1 3
0 −1/6 0 −1













ϕ1(Lh)

ϕ2(Lh)

ϕ3(Lh)

ϕ4(Lh)





 , (4.9)



134 E. Pindza and K. C. Patidar

respectively. The ϕ-functions in (4.6) can be computed by the recursive formula

ϕ0(z) = ez , ϕ j(z) =
ϕ j−1(z)−ϕ j−1(0)

z
, j ≥ 1. (4.10)

In order to overcome computational problems caused by formulas (4.10), we employ the
Krylov projection algorithm [19]. More precisely, if A is N × N matrix, then for any vector
v the element ϕ(A)v is approximated by its projection onto Krylov subspace Km(A, v) :=
span{v,Av, · · · ,Am−1v}. The orthonormal basis {v1, v2, · · · , vm} of Km(A, v) is constructed
according to the modified Arnoldi iteration [1,19]. Hence, we have

AVm = VmHm + h̄m+1,mvm+1eT
m, (4.11)

where em = (0, · · · , 0,1,0, · · · , 0)T is the unit vector with 1 as the m-th coordinate, Vm =

[v1v2 · · · vm] ∈ RN×m and h̄m+1,m is an entry of the upper Hessenberg matrix Hm,

Hm = V T
m AVm. (4.12)

As the result, the element ϕ(A)v is approximated as

ϕ(A)v ≈ VmV T
mϕ(A)VmV T

m v,

so that the relations v1 = v/‖v‖2 and (4.12) yield

ϕ(A)v ≈ ‖v‖2Vmϕ(Hm)e1.

Now the computations can be performed with the matrices of order m significantly lower
than the initial order N .

5. Numerical Results and Discussion

In this section, we discuss the efficiency and accuracy of the barycentric Legendre spec-
tral collocation (SC) method on the example of Vasicek [24] and CIR [7] models. Analytic
solutions of these problems are not known, so an approximate solution computed on the
grid with N = 500 points, serves as the benchmark solution Vbenchmark. In order to guaranty
the space discretisation dominance in the error, the penalty parameters are set to ε = 10−4,
p = 3 and the time step is h = 10−4. The relative error of the method is evaluated in L2

and uniform norms — i.e.

R.L2 :=

√

√

√

√

∑n

j=1(V (r j)− Vbenchmark(r j))
2

∑n

j=1(Vbenchmark(r j))
2

,

and

R.Error :=
|V (r j)− Vbenchmark(r j)|
|Vbenchmark(r j)|

,
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Table 1: Ameri
an put option on zero-
oupon bond.

N Vasicek Model CIR Model
Price R.Error R.L2 CPU Price R.Error R.L2 CPU

20 4.80290303 1.6463(-2) 3.0396(-1) 0.085 1.71387480 2.0038(-2) 3.1138(-1) 0.086
40 4.88861445 1.0885(-3) 4.3153(-2) 0.141 1.74690615 1.1516(-3) 4.3216(-2) 0.142
80 4.88321504 1.7230(-5) 4.4141(-4) 0.282 1.74885763 3.5763(-5) 8.5012(-4) 0.283

160 4.88329981 1.2948(-7) 1.3228(-5) 0.817 1.74892032 8.0918(-8) 3.4340(-6) 0.818
Benchmark price: 4.88329918 Benchmark price:1.74892018
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Figure 1: Ameri
an put option on zero-
oupon bond, N = 80, T = 2. Top: Vasi
ek model. Bottom:

CIR model.

where V (r j) and Vbenchmark(r j) are the computed and benchmark solutions at a point r j .

The method has been tested for various sets of parameters. Thus we set κ = 0.1, θ =
0.08, σ = 0.1, E = 100, K = 60, T = 0.5, T ∗ = 5 and restrict r to the computational
domain Ī = [0,0.5]. The grid stretching parameter α is 104 and “R.Error” is determined
at the singularity point K = B(r, T ∗ − T ), i.e. for r = − log(K/A(T ∗ − T ))/D(T ∗ − T ).
Fig. 1 shows the value of American put options on a zero coupon-bond. The approximate
solutions are quantitatively excellent. The plot show that our numerical scheme is stable.

Table 1 contains the option price, L2 and uniform relative errors, and CPU time for the
ETD method combined with spectral collocation method for Vasicek and CIR models. Com-
putations performed on a dual-core 64-bit computer in MATLAB environment, demonstrate
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Figure 2: Absolute errors of the Ameri
an put option on zero-
oupon bond, N = 80, T = 0.5. Left:

Vasi
ek model. Right: CIR model.
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Figure 3: Value of ∆ (left) and Γ (right) of the Ameri
an put option on zero-
oupon bond for Vasi
ek

(red) and CIR (blue) models, N = 80, T = 0.5.

the exponential convergence of the spectral collocation scheme. The CPU time, measured
in seconds, indicates the efficiency of both models. Fig. 2 shows absolute error of the Amer-
ican put option on a zero-coupon bond. Fig 3 displays the Greeks (∆ and Γ ) of American
put option on a zero-coupon bond. They measure the sensitivity of the option value with
respect to the variations in the asset price and parameters associated with a model. In fact,
∆ and Γ show the changes of the option value V and, correspondingly, ∆ with respect to
the asset price. We find these results fairly convincing. In contrast to the Crank-Nicolson
method, Fig. 3 does not show any oscillation so that the above approach is robust.

6. Concluding Remarks

We applied the barycentric Legendre spectral collocation method to Vasicek and CIR
models of American put options on a zero-coupon bond. The original problem is approxi-
mated by a nonlinear PDE with the subsequent use of an ETD method relaying on barycen-



Robust Spectral Method for Pricing of American Put Options on Zero-Coupon Bonds 137

tric Legendre interpolation and a Krylov subspace. Numerical examples shows the stability
and a good accuracy of the method.
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