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ABSTRACT
The data considered are event times (e.g. photon arrival times, or the occurrence of sharp
pulses). The source is multiperiodic, or the data could be multiperiodic because several unre-
solved sources contribute to the time series. Most events may be unobserved, either because
the source is intermittent, or because some events are below the detection limit. The data
may also be contaminated by spurious pulses. The problem considered is the determination
of the periods in the data. A two-step procedure is proposed: in the first, a likely period is
identified; in the second, events associated with this periodicity are removed from the time
series. The steps are repeated until the remaining events do not exhibit any periodicity. A
number of period-finding methods from the literature are reviewed, and a new maximum
likelihood statistic is also introduced. It is shown that the latter is competitive compared to
other techniques. The proposed methodology is tested on simulated data. Observations of two
rotating radio transients are discussed, but contrary to claims in the literature, no evidence for
multiperiodicity could be found.

Key words: methods: statistical – pulsars: general.

1 IN T RO D U C T I O N

Let Yt be a periodic point process, i.e. a delta function which is
non-zero at times t = 0, P, 2P, 3P, . . . , and zero at all other times.
Four extensions to this basic configuration are considered below: (i)
series made up of the superposition of several such processes, each
with a distinct period; (ii) processes allowed to be sparse, i.e. the
majority of pulses may be unobserved; (iii) admitting measurement
errors in the times of the pulses; and (iv) the presence of ‘noise’
pulses, i.e. non-periodic contaminating pulses. The problem is then
to deduce the number of independent periodic processes, and their
periods, from the train Yt of ‘noisy’ measurements.

For a single periodicity P,

Yj = Y0 + NjP + ej , j = 1, . . . , N, (1)

where Y0 is a time zero-point, the Nj are integers, and the ej are
measurement errors with mean zero and small variance σ 2. The
variance is assumed constant, but not necessarily known. ‘Small’
here means that σ � P. It therefore follows that each interval Yj −
Y0 is, to a good approximation, an integer multiple of P. The same
is true of the differenced sequence of time points:

�1Yj = Yj+1 − Yj , j = 1, 2, . . . , N − 1. (2)

It is perhaps worth making explicit the distinction between the
effects of the measurement errors ej and those of random ‘jitter’ in
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the period P. At first sight these are the same, but in fact equation (1)
implicitly assumes a completely stable period. Consider the case

Pi = P0 + εi,

where P0 is the mean period and εi is zero mean white noise with
variance σ 2

ε . It follows that the true pulse arrival times are

T1 = T0 + P1 = T0 + P0 + ε1

T2 = T1 + P2 = T0 + 2P0 + ε1 + ε2

· · · = · · ·

Tj = T0 + jP0 +
j∑

i=1

εi,

i.e. a random walk with drift. Note, in particular, that the variance of
Tj is proportional to j. For small σ ε white noise period jitter could
therefore be incorporated into (1) by replacing ej by

e′
j = ej +

Nj∑
i=1

εi

e′
j ∼ D(0, σ 2 + Njσ

2
ε ), (3)

where the last expression indicates that e′
j is distributed with zero

mean and variance σ 2 + Njσ
2
ε . For large jitter the determination

of Nj in (1) may become ambiguous. This can be circumvented by
working with intervals between pulses (as in equation 2), rather
than referring observations to the time zero-point Y0 in (1). See
Nishiguchi & Kobayashi (2000) for an extensive discussion of this
point. Zero jitter will be assumed below, although some of the
algorithms are resistant to moderate σ ε .
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If there are multiple periodicities, then different Yt correspond to
different processes, and some (or even all) of the �Yj will not be
multiples of any of the periods. This is a considerable complication.

The work in this paper was stimulated primarily by Palliyaguru
et al. (2011), who discuss multiperiodicities in pulse arrival times
of rotating radio transients (RRATs). A similar problem would be
posed by several weak unresolved sources lying in the same field of
view of a detector – see, for example, the paper by Chennamangalam
& Lorimer (2014), in which it is shown that there may be a very
large pulsar population in the direction of the Galactic centre. Two
other possible areas of application which come to mind are possible
periodicities in the onset of flares in UV Ceti stars and the detection
of regularities in period spacings in periodograms of pulsating stars
(see e.g. Reed et al. 2010). For references to engineering applica-
tions, see Ansari, Zhang & Mahlke (2009). There are other areas
in which these methods are used: for example, Le Bot et al. (2013)
discuss an application to the study of whale communications.

Pulse widths are not taken into account in what follows, i.e. the
time series is treated as a point process, and will be referred to as
such.

2 R E V I E W O F SO M E R E L E VA N T
L I T E R ATU R E

Several different approaches to the singly-periodic case can be found
in the literature.

(i) The periodogram of a train of delta functions located at the
times of pulse arrival times is

I (ω) = 1

N

∣∣∣∣∣∣
N∑

j=1

exp[−iωtj ]

∣∣∣∣∣∣
2

, (4)

where ω is a trial frequency (e.g. Fogel & Gavish 1988). Peaks are
observed at ω = 2π/P and its harmonics.

(ii) Minimization with respect to the trial period Pt of the least-
squares (LS) criterion∑

j

ε2
j , (5)

where the residuals are defined by

εj = mod(�Yj , Pt)/Pt . (6)

Sidiropoulos, Swami & Sadler (2005) consider three different forms
of the differences �Yj in equation (6). The first is the subtraction of
successive observation times, as defined in equation (2). Secondly,

�2Yj = Y2j − Y2j−1 j = 1, 2, . . . , N/2. (7)

The advantage of this over equation (2) is that the �2Yj are all un-
correlated. The disadvantage is that the number of data for analysis
is halved. Thirdly, all possible positive differences:

�3Yj = Yk − Yi k = 2, 3, . . . , N ;

i = 1, 2, . . . , k − 1; j = 1, 2, . . . , N (N − 1)/2. (8)

The disadvantages of working with the �3Yj are the lack of in-
dependence, and computational cost which increases with increas-
ing sample size as N2. Sidiropoulos et al. (2005) find that the LS
procedure using the �3Yj is superior to that based on the �1Yj,
which again outperforms LS using the �2Yj. Furthermore, in their
simulations the LS method is not as efficient as the periodogram,
particularly for large σ .

(iii) Clarkson (2008) introduced the time differences

�4Yj = YN/2+j − Yj j = 1, 2, . . . , N/2 (9)

into the LS methodology described in (ii). He showed that these
intervals give considerably more accurate estimates of P than those
based on �2Yj, while retaining the virtue of independence and low
computational cost.

(iv) Clarkson (2008) also considers maximum likelihood esti-
mation (MLE) of P, using a lattice search to obtain the unknown
Nj in equation (1). He demonstrates close similarities between this
methodology and the periodogram (4). We note in passing that
Clarkson implicitly assumes that the error variance σ 2 is known:
the implication is that MLE effectively reduces to sum of squares
minimization, i.e. LS.

(v) For moderate to small measurement errors in the pulse arrival
times (i.e. σ � P), the intervals �Yj are close to integer multiples of
the true period P. Put differently, P is close to the greatest common
denominator (GCD) of the collection of �Yj. Casey & Sadler (1996)
and Sadler & Casey (1998) presented a generalization of Euclid’s
method for integer GCD determination, to the case where the GCD
might be an arbitrary real number, and applied it to the present
problem. The method is computationally very fast, but requires
certain tuning parameters. These can be awkward to determine for
very sparse data in which very few (or none) of the �1Y ≈ P. The
algorithm is also adversely affected by ‘noise’ pulses: ‘These are,
in general, quite harmful to the estimation of the gcd’ (Casey &
Sadler 1996).

(vi) Many methods are based on folding the data with a choice
of trial periods, and studying the distributional properties of the
scaled residuals εj defined in equation (6). If Pt is far removed
from the correct period, then the ε will be distributed uniformly
over (0, 1), whereas if Pt = P all the ε will be close to zero or
unity. This suggests period determination by finding values of Pt

for which the distribution of the εj are strongly non-uniform. The
Kolmogorov–Smirnov (KS) statistic has been used for this purpose
in the astronomy literature (e.g. Kawaler 1988).

(vii) Phased data, such as those obtained by folding, are best seen
as being circular, i.e. the phase points zero and unity are the same.
Strictly speaking, uniformity should therefore be tested on the circle
with unit circumference, rather than on the line interval [0, 1]. This
lies at the basis of many algorithms which have been used in the
pulsar literature – see e.g. de Jager, Swanepoel & Raubenheimer
(1989), and references therein. The Rayleigh statistic

Z = 1

N

⎡
⎣

⎛
⎝ N∑

j=1

cos 2πεj

⎞
⎠

2

+
⎛
⎝ N∑

j=1

sin 2πεj

⎞
⎠

2⎤
⎦ (10)

is a typical form.

There is also a substantial body of work in the signal processing
literature which deals with the identification of multiple periodic-
ities in point processes. Techniques are often referred to as ‘de-
interleaving’. References to a host of different algorithms can be
found in Ansari et al. (2009). The methodology generally appears
to be aimed at cases with relatively few missing pulses, so that, for
example, histograms of the �j will reveal pulse periods directly.
A similar method is the ‘sequence search algorithm’ discussed by
Ansari et al. (2009): it essentially relies on finding numbers of close
repetitions amongst the �3Yj defined in equation (8). In symbolic
form,

C(τ ) =
∑

j

I(|τ − �3Yj | < δ), (11)
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where τ is a trial period, δ is a small positive number and I is
the indicator function (equal to unity if its argument is true, zero
otherwise). Clearly, if more than say 90 per cent of the pulses are
missing, this will not be a very effective technique.

Similar remarks apply to the statistic devised by Nishiguchi &
Kobayashi (2000):

D(τ ) =
∣∣∣∣∣

N∑
k=2

k−1∑
	=1

I(|τ − (Yk − Y	)| < δ) exp(2πiYk/τ )

∣∣∣∣∣ , (12)

which is related to both the periodogram (4) and the criterion (11).
As demonstrated by the authors, D(τ ) is efficient at discounting
multiples of the true period P.

By contrast to the applications reviewed above, this paper is
aimed at situations where very few, if any, values of the �Yj may
be repeated. Note that all the single-period algorithms discussed
above, with the exception of the GCD, could, in principle, be ap-
plied also to multiperiodic data, although the performance may be
degraded. Orsi, Moore & Mahoney (1999) studied the efficacy of
the periodogram in the mutiperiodic context, but only for complete
data, or allowing for a 1 per cent probability for individual pulses
to be missing. As will be shown below, it none the less still works
well even if a substantial fraction of pulses is missing.

If the fraction p of observed pulses is small, less than about
10 per cent, then the number of pairs of consecutively observed
pulses is roughly binomially distributed if pulses are randomly cen-
sored. The expected number of instances of pulses separated by
time P (as opposed to multiples of P) is only ∼p2Ntot, where Ntot

is the total number of pulse periods spanned by the observations.
Thus, for example, if p = 0.03 and Ntot = 1000, on average there
will be a single pulse separation of length P. More generally, the
expected number of pulse pairs is p(Ntotp − 1), regardless of the
value of p.

A simple modification will improve the efficiency of C(τ ) and
D(τ ) (equations 11 and 12) in cases with many missing pulses:

C ′(τ ) =
∑

j

M(τ )∑
m=1

I(|mτ − �3Yj |/τ < δ)

D′(τ ) =
∣∣∣∣∣

N∑
k=2

k−1∑
	=1

M(τ )∑
m=1

I(|mτ − (Yk − Y	)|/τ < δ) exp(2iπYk/τ )

∣∣∣∣∣,
(13)

where M is chosen so that

Mτ ≤ YN − Y1 < (M + 1)τ.

Note that searching over a grid of trial values τ will be computation-
ally demanding: the required resolution is set by the largest value
YN − Y1 of �3Yj (see Section 4).

Fig. 1 contains an illustration, using simulated data with two peri-
ods, 2 and 3.13 time units. Pulse detection probabilities of p = 0.07
were assumed for both, giving 35 and 22 data points, respectively,
over a baseline T = 1000. Comparison of the two panels shows the
efficacy of D′ in suppressing subharmonics.

The de-interleaving approach below is similar to the standard
method used in multiperiodic asteroseismic data analysis: repeated
application of the two-step procedure of (i) identifying the most
promising candidate period, followed by (ii) prewhitening it from
the data. Step (i) is explored in the next three sections of the paper,
while a prewhitening algorithm is described in Section 8.

Figure 1. Illustrative simulation results for the equations (13) variants of
the statistics in equations (11) and (12). The fraction of observed pulses is
7 per cent, and the true periods are P = 2 and P = 3.13. Note that periods
P/2, P/3, . . . fit the data equally as well as the true periods.

3 CANDI DATE PERI OD-FI NDI NG STATI S TI CS

Below, period-finding is performed by testing for non-uniformity,
as in (vi) and (vii) above. This has the virtue that the necessary
calculations are simple, and that non-uniformity ‘periodograms’
can be constructed with relatively little computational effort for
many trial periods. Seven statistics were tried, five designed to test
for non-uniformity on the interval [0, 1], and two for testing for
circular non-uniformity.

(i) The KS statistic. This has been used in a number of previous
studies, e.g. Kawaler (1988), Winget et al. (1991), Silvotti et al.
(1999) and Provencal et al. (2012). The cumulative distribution of
the εj is tested against the null

F (x) = x , 0 ≤ x ≤ 1.

The εj are ordered from small to large to give the order statistics
ε(1), ε(2), . . . , ε(N). The KS statistic is

D =
√

N max
j

|ε(j ) − j/N |

and significance levels can be calculated from the well-known for-
mula

Pr(D ≤ x) =
√

2π

x

∞∑
k=1

exp

[
− (2k − 1)2π2

8x2

]
.

It is noted in passing that a circularized form of the KS statistic,
the Kuiper (1960) statistic, has been applied to X-ray count data
by Paltani (2004). Protheroe (1985) has shown that his circular
uniformity test [described in (vi) below] is more powerful than the
Kuiper test if deviations from uniformity are very localized, as in
the present case.

(ii) The Anderson–Darling (AD) statistic generally has better
power than the KS statistic (e.g. D’Agostino & Stephens 1986). In
the present context, the statistic is

AD = −N − 1

N

N∑
j=1

(2j − 1)[log(ε(j )) + log(1 − ε(n+1−j ))].

Percentage points for testing specifically for uniformity can be
found in Rahman, Pearson & Heien (2006); for convenience, these
are repeated in Table 1.
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Table 1. Percentiles of three of the statistics discussed in Section 3. Values
for the AD statistic are from Rahman et al. (2006); other results were
obtained by simulation. Means and standard deviations of the likelihood
ratio statistic were calculated from the results for a few different sample
sizes – see Fig. 2.

Percentage 90 95 97.5 99 99.5 99.9

AD
1.94 2.50 3.09 3.90 4.54 6.03

PR
N = 500 11.16 11.20 11.23 11.27 11.30 11.36
N = 1000 12.51 12.54 12.56 12.59 12.61 12.65

Likelihood ratio statistic 


(Mean) 3.35 4.78 6.24 8.16 9.60 12.82
(Std. dev.) 0.01 0.02 0.07 0.10 0.16 0.19

(iii) Degroote et al. (2009) proposed the ‘matrix test’, which
is based on counting the number of εj in the intervals [0, δ) and
(1 − δ, 1], where 0 < δ � 1. For trial periods, Pt very different
from the true period this number will be of the order of Nδ; for a
singly periodic point process with small timing errors (σ � δ) it
will be close to N if Pt is close to the true period.
It is instructive to compare the Degroote et al. (2009) statistic to the
modified sequence search form C′(τ ) in equation (13). Note that for
given τ and �Yj,

|mτ − �Yj | < δ

will be true for at most one integer m if δ � 1. It follows that

M(τ )∑
m=1

I(|mτ − �3Yj | < δ) ≡ I
(

min
m

|mτ − �3Yj | < δ
)

.

However,

min
m

|mτ − �Yj | ≡ min(dj , 1 − dj ),

where

dj = mod(�Yj , τ ) = τεj

and hence an equivalent form of the modified sequence search statis-
tic is

C ′(τ ) =
∑

j

I[min(dj , 1 − dj ) < δ]. (14)

The Degroote et al. (2009) statistic is

G(τ ) =
∑

j

I[min(εj , 1 − εj ) < δ]

=
∑

j

I[min(dj , 1 − dj )/τ < δ]. (15)

The only difference between C′ and G is that the residuals are scaled
by the trial period τ in the latter.
In implementations, it is convenient to make the transformation (20)
below, shifting the origin to 0.5, so that

G(τ ) =
∑

j

I (|εj − 0.5| < δ
)
. (16)

The statistic has a binomial distribution with parameters 2δ and N.
The pth percentile is obtainable by solving

B(1 − 2δ; N − x, x + 1) = p

for x (B being the regularized incomplete beta function). Alterna-
tively, the significance level α corresponding to an observed x is
given by

α = 1 − B(1 − 2δ; N − x, x + 1).

For large N, the distribution of G(τ ) can be approximated by the
normal with mean and variance both equal to 2δN.

(iv) Rayner & Rayner (2001) performed a power study of the
Neyman (1937) test statistics for uniformity, and suggested that the
fourth-order statistic may be particularly useful. The statistics are
calculated as follows:

g1 = 2
√

3
∑

j

(εj − 0.5)

g2 =
√

5
∑

j

[6(εj − 0.5)2 − 0.5]

g3 =
√

7
∑

j

[20(εj − 0.5)3 − 3(εj − 0.5)]

g4 = 3
∑

j

[70(εj − 0.5)4 − 15(εj − 0.5)2 + 0.375]

and the statistic �r of the order of r is given by

�r = 1

N

r∑
k=1

g2
k .

For large samples �r is distributed as χ2
r .

(v) Swanepoel & de Beer (1990) developed a statistic to test for
narrow periodic pulses: calculate the absolute values of all M =
N(N − 1)/2 distinct phase differences, i.e.

Wij = |εi − εj |, i = 1, 2, . . . , N − 1; j = i + 1, . . . , N. (17)

Arrange the Wij in ascending order, giving the set of order statistics
W(1), W(2), . . . , W(M). Now define

β =
[

M

21/3N2/3

]
≈ [

(N/2)4/3
]
,

where the square brackets indicate rounding down to the nearest
integer (the ‘floor’ operation). Then, the Swanepoel & de Beer
(1990) statistic is

SB = 21/3N2/3W(β).

The statistic SB differs from all others discussed here in that de-
viations from uniformity lead to small values of the statistic. The
authors provided a table with percentiles for N ≤ 170. For larger
values of N, percentiles are given by

CN (p) = 0.5 + 2−1/3N−2/3[0.25 − �−1(p)],

where �−1 is the inverse standard Gaussian cumulative distribution
function. [For example, �−1(0.95) = 1.645.]

(vi) A second narrow-pulse statistic is due to Protheroe (1985):

PR = 2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

V −1
ij , (18)

where

Vij = 1

N
+ 1

2
−

∣∣∣∣Wij − 1

2

∣∣∣∣
with Wij defined as in equation (17). Note that Vij transforms the
spacing Wij between εi and εj to reflect the fact that these are
phases. Protheroe (1985) provides a table of percentiles, together
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with interpolation formulae, for N ≤ 200. Simulated percentiles for
N = 500 and N = 1000 are given in Table 1.

(vii) It is possible to tailor-make a statistic for the problem studied
in this paper. If the data are folded with respect to an incorrect
period, the scaled εj are uniformly distributed on [0, 1]. If the data
are folded with respect to a true period, then roughly half the εj

associated with the periodicity will be very close to zero, and the
other half very close to unity. The remainder of the ε (due to either
other periodicities, or to noise pulses) will be uniformly spread over
[0, 1]. This means that the distribution of the scaled residuals εj is
a mixture of three distributions, the two half-Gaussians

f1(ε) = 1√
2πσ

exp

[
−1

2

(
1 − ε

σ

)2
]

f2(ε) = 1√
2πσ

exp

[
−1

2

( ε

σ

)2
]

(19)

and a uniform distribution on [0, 1]. By making the transformation

ξj =
{

εj + 0.5 εj < 0.5

1 − εj εj > 0.5,
(20)

the ξ j follow a mixture of a uniform distribution on [0, 1] and a
single Gaussian with mean 0.5 and standard deviation σ . It will be
assumed below that this transformation has been made, and that the
distributions of the ε is of the mixture form

f (ε) = (1 − α) + α√
2πσ

exp

[
−1

2

(
ε − 0.5

σ

)2
]

, (21)

when folding is done with respect to a true period. In equation
(21), the factor α represents the fraction of the total data which are
associated with the folding period.
The proposed test quantity is the likelihood ratio statistic


 = 2{max[log L(H1)] − max[log L(H0)]},
where L(H0) and L(H1) are, respectively, the statistical likelihoods
under the null and alternative hypotheses. Under the null hypothesis,
the εj are uniformly distributed over the unit interval, and

L(H0) =
∏

j

1 = 1,

while equation (21) holds under the alternative. It follows that


 = 2 max
α,σ

∑
j

log f (εj ) (22)

with f(ε) given by equation (21).
In many settings likelihood ratio statistics have χ2 distributions with
known degrees of freedom. However, in the present case regularity
conditions are not satisfied – the null hypothesis is essentially

H0 : α = 0,

i.e. the ‘nuisance parameter’ σ is unspecified under the null hy-
pothesis. The distribution of 
 in such cases is often non-standard.
In the present instance, the distribution of 
 was determined by
simulation. Since the results for sample sizes in the range 50–1 000
differed little (see Fig. 2), only mean percentiles are reported in
Table 1.

4 PR AC T I C A L I T I E S

There are a number of issues which are of practical importance in
implementation of the theory above:

Figure 2. The likelihood ratio statistic 
 for various percentage points.
Values are shown for sample sizes 50 (plus signs), 200 (open circles), 500
(filled dots) and 1000 (squares).

(i) In the case of a single periodicity, the length of the shortest
interval �Yj (as defined in equation 2) provides an approximate
upper limit on the period. (In the absence of measurement errors
the limit would be exact). The situation is more complex if there is
multiperiodicity: since pulses at Yj + 1 and Yj may be from different
processes, �Yj is not necessarily a multiple of any of the periods.

(ii) If �Yj is a multiple of a specific period Pk, then the longer
�Yj, the more accurate the estimate of Pk:

Pk ≈ �Yj/Njk = Pk + (ej+1 − ej )/Njk, (23)

where Njk is the closest integer number of times Pk fits into the
interval �Yj. Clearly, the larger �Yj, the larger Njk, and the smaller
the error term in equation (23).

(iii) An implication of point (i) is that when working with in-
tervals between events, then it may be necessary to test the entire
collection of intervals

�3Yj = Yk − Yi , i = 1, 2, . . . , N − 1;

k = i + 1, i + 2, . . . , N

in order to ensure that all periodicities are detected.
(iv) Let

�Yj/P = nj + r,

where nj is an integer and 0 ≤ r < 1. Changing P by some small
amount δP generally changes the remainder r by

|δr| = �Yj

P 2
δP . (24)

Clearly, in a grid search through trial periods, ‘phase’ changes |δr|
should be small, less than say 0.05.

(vi) Equation (24) implies that δr increases with increasing �Yj,
and decreases with increasing P. This suggests that the period
resolution is determined by the largest value of �Y, and that it
improves with decreasing period.

(vii) For small P, computation time may be exorbitant at the
required resolution. Increasing δP, i.e. using a coarse resolution, is
not an option, as phases corresponding to large �Y will be randomly
spread over (0, 1) if the trial period differs slightly from the true
value. This suggests placing an upper limit on values of �Yj which
are used in the computations.
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(viii) Of course, using only smaller �Yj will compromise the
accuracy of the period determination, but this is easily remedied by
a second, more accurate, round of restricted period searches around
promising candidate values.

(ix) Equation (24) furthermore suggests that the period search
grid should not be regularly spaced, but that trial periods should be
calculated from

δP = P 2

�Ymax
δrmax, (25)

where δrmax is the maximal allowable phase change corresponding
to the maximum interval Ymax .

(x) The choice

�Ymax = nP , (26)

for some fixed n, seems reasonable: the maximum interval should
cover n cycles. In that case,

δP = kP , k = δrmax/n � 1,

and it follows that a grid of M trial period values would be

P0, (1 + k)P0, (1 + k)2P0, . . . , (1 + k)MP0.

If it is required to cover the interval [P0, Pe], then the number of
trial periods would be

M ≈ 1

k
log

Pe

P0
= n

rmax
log

Pe

P0
. (27)

As an example, M = 3000 trial periods are needed to cover the
interval [0.05, 1] with δrmax = 0.05 and n = 50; this increases to
M = 5300 if Pe = 10.

(xi) Only time intervals satisfying

�Yj ≥ P (28)

should of course be included in the analysis.
(xii) Since ν = 1/P implies that |δν| ≈ |δP|/P2, (25) implies a

regularly spaced frequency search grid with

δν = δrmax

�Ymax
. (29)

If the periodogram is used for period searching, the appropriate
frequency spacing is therefore δrmax/(YN − Y0).

(xiii) There is no natural lower limit for candidate periods. If there
is only one periodicity, and no noise pulses, then P ≤ min j�1Yj. In
general, if any period P fits the data, then so will P/n, for integer n.
This implies that if a sequence of spectral peaks of similar strength
are seen at multiples of frequency ν0, then the correct ‘alias’ is the
lowest value ν0.

5 POW E R O F T H E STAT I S T I C S

At a first glance, it may seem that there are numerous parameters
which need to be taken into account in a comparison of the various
test statistics. However, the problem can be considerably simplified.
First, it is assumed that the time points are folded with respect to a
period close to the true value: in practice this can be accomplished
by using a fine enough period search grid. There are then only three
relevant parameters – the number of data belonging to the periodic
process; the number of ‘noise’ data (including points belonging
to other periodicities); and the measurement error variance. (In
the applications below, it is convenient to replace the former two
numbers by the total number of data, and the fraction α belonging
to the periodic series.) Note that the effects of non-constant periods

can also be studied, at least for slight variability, by inflating the
measurement errors.

In order to compare the performance of the different statistics it
is therefore sufficient to consider a variety of values of N, α and σ ,
and to compare the efficiency with which the different statistics can
detect deviations from the null hypothesis

H0 : α = 0

with α defined as in equation (21). This can be done by (i) assuming
a particular parameter combination; (ii) generating N data elements
in accordance with the mixture model (21); (iii) calculating each of
the statistics; (iv) testing at (say) the 5 per cent level whether H0

is accepted, and noting the result; (v) applying steps (ii)–(iv) many
(typically a few tens of thousands) times and (vi) comparing the
rejection rates of the different statistics.

It is interesting that the periodogram can be treated in the same
way as the uniformity test statistics: note that, from equations (4)
and (10),

I (ω) ≡ Z(ω),

i.e. each periodogram ordinate is just the Rayleigh statistic calcu-
lated for that particular frequency. Large values of I(ω) correspond
to frequencies for which the εj in (10) are not uniformly distributed.
The Rayleigh statistic is therefore added to the list of statistics for
which power properties will be studied below. Significance levels
are given by

Pr(Z ≥ x) ≈ exp(−x)

provided N
>∼ 50 (e.g. Fisher 1993), i.e. under the null hypothesis

of uniform εj the Rayleigh statistic is exponentially distributed with
unit mean. It is noteworthy that Z has good power against unimodal
alternatives, i.e. exactly the situation studied in this paper.

In general, the Degroote G and likelihood ratio 
 statistics greatly
outperform the other statistics considered. It is not difficult to see
why: G and 
 contrast the distribution of points in very narrow
intervals (2δ and a few times σ , respectively) centred on 0.5, with the
distribution over the remainder of the (0, 1) interval. By contrast, the
precise location of deviations from uniformity remains unspecified
by the other statistics. Next best are PR and SB, both devised to
detect narrow-pulse deviations from uniformity. The �4 statistic is
indeed superior to �1 − �3, and has power quite similar to that of
the Rayleigh statistic. The KS statistic is slightly inferior to �4 and
Z, while the AD has least power by some margin.

The statistics G and 
, and to a lesser extent PR, really come
into their own for small σ , i.e. if the concentration of points at
(transformed) phase 0.5 is very narrow. This is easily seen for the
Degroote statistic. As an illustration, consider a situation in which
only 5 per cent of points are associated with the periodicity. Provided
σ � δ � 1, then the mean value of G will be (0.05 + 0.95 × 2δ)N;
if e.g. δ = 0.005, then G will be about six times the null hypothesis
value of 0.02N. As a corollary, provided σ is small, very small
fractions of periodic points can give highly significant detections.

The advantage of 
 over G is, of course, that the effective bin size
parameter (σ ) in the former is estimated from the data, rather than
having to be specified (δ). Of course, if there is extraneous infor-
mation about the measurement errors, δ can be chosen accordingly,
rather than having to rely on guesswork.

6 R ECOMMENDED STATI STI CS

It may seem obvious from the discussion in the preceding section
that the test statistics of choice should be Degroote G and/or the
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3018 C. Koen

likelihood ratio statistic 
. Both have drawbacks, though. An inju-
dicious choice of the free parameter δ used in the calculation of G
can lead to periodicities being missed – see e.g. Fig. 13. This can
be avoided by evaluating G for a few different values of δ, although
establishing significance levels is then not as straightforward as de-
scribed in Section 7. Use of 
, on the other hand, does not require
specification of any parameters – the analogue of δ, namely σ in
equation (21), is derived from the data. However, calculation of
equation (22) is currently computationally expensive.

In practice, the frequency interval searched, and the frequency
resolution, will determine the total computational load. If these
are moderate, then 
 should be favoured. The statistic G could be
calculated as a matter of course. The Rayleigh statistic, although
not as powerful, is useful for graphically displaying the quality of
the model fits, as will be demonstrated below.

7 SI G N I F I C A N C E L E V E L S O F S P E C T R A

Although the distributions of most of the statistics discussed in
Section 3 are known, a spectrum consists of many evaluations of
the chosen statistic, and these are not independent. Simulation is
therefore the easiest way of determining the significance of the
most extreme value in a spectrum. The recipe is the following:

(i) Determine the height of the highest spectrum peak (or the
depth of the deepest minimum, in the case of the SB statistic).

(ii) Generate an artificial data set by randomly ‘jittering’ each
of the time points. (In the implementations in the next section of
the paper, points were shifted randomly in time by amounts which
were distributed as zero-mean Gaussians with standard deviations
of order unity.)

(iii) Calculate the spectrum of the data generated in (ii) and de-
termine the maximum value over all frequencies (or minimum, for
the SB statistic).

(iv) Repeat steps (ii) and (iii) many times (10 000 in the applica-
tions below).

(v) Determine the percentage of simulated values which are more
extreme than the value from (i); this is the estimated significance
level.

8 PR E W H I T E N I N G A N ID E N T I F I E D PE R I O D

Procedures described in this section of the paper are illustrated by
analysing a simulated data set with four periodicities (P1 = 2.222,
P2 = 3.456, P3 = 4.765 43 and P4 = 5.1). The time baseline is
T = 3 000; only 6 per cent of the pulses in this interval are detected,
giving n1 = 81, n2 = 50, n3 = 37 and n4 = 32 in the particu-
lar simulation analysed. The assumed Gaussian measurement error
standard deviation is 0.004. 50 noise pulses are distributed randomly
throughout the observation interval; these constitute 20 per cent of
the ‘observations’.

Perhaps the simplest prewhitening algorithm can be based on
the periodogram. For a given frequency ω, the exponential term
in equation (4) effectively assigns a phase angle in complex space
to each observations. Maxima of I(ω) occur at those frequencies
where many phase angles are aligned. This allows the particular
observations contributing to a periodogram maximum to be easily
identified, and hence to be removed from the data set.

The details of the procedure are illustrated by using the example
data set. Fig. 3 shows the spectrum (4) of the data: it is dominated
by the three peaks at frequencies 0.449 99, 0.9001 and 1.3501.
Although the latter peak is marginally the highest, ν1 = 0.4500 is

Figure 3. The periodogram of an example data set of 250 points. The
‘signal’ part of the simulated data set consists of four different periodic
sequences, each only 6 per cent complete. 20 per cent of the data points are
randomly distributed ‘noise’.

Figure 4. Top panel: the phase angles of each of the 250 data points, calcu-
lated with respect to a periodogram peak frequency, and plotted against the
time of the ‘observation’ Note the overdensity of points, consisting primar-
ily of points belonging to the periodicity responsible for the periodogram
peak. Bottom panel: as in the top panel, but after adjusting the frequency
used to calculate the phase angles in such a way that a robust regression fit
(red line) has a zero slope.

selected in accordance with remark (xiii) of Section 4. The top panel
of Fig. 4 displays the phase angles of each of the data points. There
is a slight slope to the overdensity of points with phase angles near
zero; this indicates that the correct period is slightly different from
1/0.459 99 = 2.2223 (see Appendix A).

A refinement of the period can be obtained by adjustment of the
frequency so that the slope of the overdensity of points is zero. This
can be accomplished by fitting a straight line to the phase angle
versus timing plot, and changing ν until the slope is zero. This
task is aided by two devices: first, data points with phase angles
far from the angles making up the overdensity are excluded from
the regression. [In the bottom panel of Fig. 4 only points with
angles in the range ( − 1, 1) are taken into account.] Secondly, in
order to downweight the influence of remaining points not overtly
associated with the overdensity, robust regression is used. The line
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Multiple periodicities in photon events 3019

Figure 5. The phase angles of each of the 250 data points, calculated with
respect to the frequency determined as in the bottom panel of Fig. 4. Filled
dots are points belonging to the periodic sequence with frequency close to
that used to calculate phase angles; open circles denote the remainder of the
points. The detail in the lower panel also shows the ±2σ̂ area associated
with timing measurement errors.

plotted in the bottom panel of Fig. 4 was calculated using iteratively
reweighted LS, with a bisquare weighting function – it corresponds
to the improved frequency 0.450 045 (P = 2.222 001).

The slope of fitted lines will also be close to zero for frequencies ν

far from ν1 [i.e. phase angles uniformly distributed over (−π,π)].
When refining ν1, this can be guarded against by restricting the
search to a relatively narrow interval around the value ν1 at which
the periodogram reaches a maximum. Furthermore, it is expected
that the residual scatter will be larger in such cases, hence it can
also be required that the scatter remains within a specified bound
during the frequency refinement.

Phase angles calculated using the refined frequency are plotted
in the top panel of Fig. 5, with an expanded view of the central
portion in the bottom panel. There is clearly a very good separation
between points with P1 = 2.222 (solid dots) and the remainder
(open circles). In order to decide exactly which data to prewhiten,
a mixture model is fitted to the data in the restricted phase angle
interval ( − 0.5, +0.5). It is assumed that the distribution of phase
angles has two components: a Gaussian with mean μ and variance
σ 2, and a uniform distribution over ( − 0.5, 0.5). Assuming that
a fraction α of angles belongs to the former distribution, the full
probability density function of phase angles is

f (x) = α√
2πσ

exp

[
−1

2

(
x − μ

σ

)2
]

+ (1 − α). (30)

Estimates of μ, σ and α can be found by numerical maximization
of the log likelihood function

L =
∑

j

log f (xj ). (31)

[Note the close similarity to the mixture model (21) used to derive
the 
 statistic of Section 3; in the case of equation (30) though, the
mean is not known, and must be estimated.]

In the present case, μ̂ = −0.024, σ̂ = 0.012 and α̂ = 0.76 are
obtained. The parallel lines in the bottom panel of Fig. 5 enclose
those angles in the interval (μ̂ − 2σ̂ , μ̂ + 2σ̂ ): it includes 79 of
the 81 points with P = P1, and no points from either the other
periodicities, or the 50 noise points.

Figure 6. Top panel: the periodogram of the 89 points left after prewhiten-
ing three periods from the simulated example data set. Bottom panel: the
periodogram of the 58 points left after prewhitening four periods from the
data.

The 79 points can now be removed from the data set, and the
analysis repeated afresh. The largest periodogram peak for the re-
maining points is at ν = 1.4468 (P = 0.6912), with the second and
third ranked peaks at frequencies 0.2894 and 0.8681, correspond-
ing to periods 3.457 and 1.152. The ratio of the three frequencies
is very close to 1:3:5, so that the lowest is adopted as the correct
‘alias’. This is refined to 0.289 352 (P = 3.456 00). In this instance,
σ̂ = 0.006, and the interval (μ̂ − 2σ̂ , μ̂ + 2σ̂ ) contains 48 of the
50 phase angles belonging to the series with P = P2 = 3.4560.

The largest periodogram peak of the remaining 123 data points
is at ν = 1.5686 (corresponding to P4/8), but the pattern of peaks is
otherwise dominated by multiples of ν = 0.2098 (P = 4.7664), so
this is the frequency focused on. The refined value is ν = 0.209 8444
(P = 4.765436); σ̂ = 0.0052, with an estimated 71 per cent of the
phase angles in the interval ( − 1, 1) belonging to the Gaussian
distribution (as opposed to the uniform distribution). Of the 37 data
elements forming the sequence with P3 = 4.765 43, 34 lie within
2σ̂ of μ̂, and are prewhitened from the data set.

The periodogram of the residuals is dominated by peaks at mul-
tiples of ν = 0.196 09 (P = 5.0996), with the largest at ν = 1.5686
≈ 8 × 0.1961 (top panel of Fig. 6). The peak height is significant
at the 0.3 per cent level, as established from 10 000 simulations, as
outlined in Section 7. The improved frequency of 0.196 0788 cor-
responds to a period P = 5.099 99, which can be compared to P5 =
5.100 00. Of the 32 points associated with this periodicity, 31 are
in the interval μ̂ ± 2σ̂ = −0.016 ± 2 × 0.0055. The periodogram
of the 50 noise pulses, and the 8 misidentified data points from the
four periodic sequences, is plotted in the bottom panel of Fig. 6.
There are no large peaks in the latter plot, and the large reduction in
power compared to the upper panel of the figure is noteworthy. The
significance level of the largest peak is 75 per cent (from 10 000
simulations of 58 points of similar time spacing).

Clearly, superior results would have been obtained by using
a slightly more liberal interval for the selection of points to be
prewhitened, e.g. μ̂ ± 2.5σ̂ . Another, more general lesson learned
is that periodograms need to be carefully searched for the lowest
frequency in a sequence of peaks induced by the same periodicity.
The latter point will be particularly important if very many data sets
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3020 C. Koen

Figure 7. Uniform distribution test statistics, over a range of trial folding
periods, for timing for the RRAT PSR J0847−4316. From top to bottom:
AD, KS, Neyman (fourth order), Degroote and the likelihood ratio statistic
(22). Statistics were calculated for the intervals �1Y between detection
times, including only those intervals up to n = 100 times the trial period
[see point (x) in Section 4].

are to be processed, i.e. if operation of the algorithm will not be
supervised.

A final remark: if a spurious pulse does arrive at a time very
close to that associated with a particular periodicity, then within the
framework of the point processes it will be impossible to tell that it
does not belong to that periodicity.

9 A P P L I C ATI O N S TO R R AT S DATA

Fig. 7 demonstrates the application of five of the test statistics dis-
cussed in Section 3, to observations of the RRAT PSR J0847−4316.
The number of detections of the object was 151, spanning 6.8 years.
With such a long time baseline the frequency resolution is ∼4.05
× 10−4 d−1 (4.6 × 10−9 Hz). In order to cover the period range of
0.1–10 s, i.e. frequency range 8640–864 000 d−1, at an adequate
resolution, the data would need to be folded with respect to at least
∼2 × 109 trial periods, and preferably a factor of 10 or so more (i.e.
δrmax < 0.1 in equation 29). This computing time demand is easily
sidestepped by initially working only with the differenced data �1Y,
and for any given trial period P using only those intervals �1Y ≤
100P: for δrmax = 0.04, only 11 520 trial periods are required.

The only free parameter associated with any of the statistics in
Fig. 7 is the width 2δ of the interval used to calculate the Degroote
statistic G: the value δ = 0.01 was used throughout the results which
follow. Inspection of the figure very clearly supports the presence
of an ∼6 s periodicity in the data, The statistic 
 is a maximum
at P∗ = 5.978 66 s; other parameters of interest are σ = 0.018,
α = 0.71 (i.e. 71 per cent of the intervals are associated with the
period P∗). The test statistics can now be calculated at a much
finer period resolution, centred on P∗. This is done in two rounds:
first, the statistics are calculated for 1001 trail periods, at a spacing
of δP = 6.8 × 10−10 d (59 μs). This gives P∗ = 5.977 4816 s,
σ = 0.0024, α = 0.78. Decreasing δP by a further factor of 40 leads
to closely similar results – P∗ = 5.977 4890 s, σ = 0.0025 and
α = 0.81. The statistics as calculated for the second refinement are
plotted in Fig. 8. Interestingly, the more conventional AD and KS
statistics show local minima near the periods where the other three
statistics reach maxima. The superior resolution of the 
 statistic is
evident.

Figure 8. As in Fig. 7, but focusing on a small period range around the
‘best’ period extracted from Fig. 7, and including all intervals �1Y between
successive detections.

Figure 9. The scaled residuals ε = modulus(�1Y , P∗)/P∗ for the intervals
�1Y and optimal periods P∗ corresponding to, respectively, Fig. 7 (top panel)
and Fig. 8 (bottom panel). Open circles denote residuals corresponding to
�1Y ≤ 100P∗ (top panel) or �1Y ≤ 10 000P∗ (bottom panel); dots denote
the residuals corresponding to larger intervals �1Y. Estimated 2σ offsets
from ε = 0 and ε = 1 are also indicated (in red).

The period spacing δP = 1.5 μs used to produce Fig. 8 cor-
responds to the best resolution P 2

∗ / max(�1Y ) possible with the
intervals �1Y. This may compared with the resolution P 2

∗ δν =
5.9772 × 4.6 × 10−9 = 0.16 μs allowed by the full time span of the
observations. The logical next step would be to calculate ‘spectra’
using intervals such as �3Y, or the actual times pulse arrival times.
Examination of plots of the scaled residuals,

ε = modulus(�1Y , P∗)/P∗,

reveals that this will not be useful for this data set. The top panel of
Fig. 9 is based on the optimal period P∗ extracted from Fig. 7. Open
circles denote intervals �1Y which are shorter than 100P∗; these
all lie within 2σ (as indicated by the red lines) of zero or unity;
the dots correspond to intervals �1Y > 100P∗, and these scatter
more or less randomly over [0, 1]. This is perfectly consistent, since
only those �1Y ≤ 100P∗ were taken into account in determining
P∗ = 5.978 66 s. The bottom panel, on the other hand, is based
on all the �1Y. In this case, the open circles are those data with
�1Y ≤ 100 000P∗; with three marginal exceptions, these all lie
within the very narrow 2σ intervals from zero or unity. Dots denote
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Multiple periodicities in photon events 3021

residuals corresponding to the longer intervals �1Y > 100 000P∗;
and these again scatter randomly over the unit interval.

The implication of the bottom panel of Fig. 9 is that only the
shorter intervals between successive observations are well described
by P∗, while the longer intervals are not. This is a clear sign that the
period is not constant, and that its evolution is proportional to time.
The rate of period change is small enough to almost undetectable
over 105 or fewer cycles, but large enough to manifest over greater
numbers of cycles.

Linear period change models have in fact been fitted by Keane
et al. (2011) to this data set, and to all but one of the other data sets
analysed by Palliyaguru et al. (2011). Rather than equation (1), the
appropriate model for the event times is then

Yj ≈ Y0 + NjP0 + 1

2
Nj (Nj + 1)P0Ṗ + ej (32)

(e.g. Koen 1996), where P0 is the period at time Y0, and higher order
terms in the period derivative Ṗ have been neglected.

A point of interest is the number of cycles ‘lost’ during the span
of the observations, due to the lengthening period. The total number
of pulse periods of ∼5.9775 s covered was ∼3.6 × 107, and Keane
et al. (2011) find that Ṗ = 119.94 × 10−15. Therefore, the RRAT
pulsed

1

2
Nj (Nj + 1)P0Ṗ ∼ 460

fewer times than if the period were fixed at P0. On the other hand,
over 100 000 cycles only 0.0036 of a cycle is ‘lost’, which explains
the appearance of the lower panel in Fig. 9.

It is useful to be able to avoid explicit determination of the Nj.
This can be done by using the approximation

Nj ≈ (Yj − Y0)/P0

in the term in equation (32) which contains the period derivative.
The error incurred is minimal, since

(Yj − Y0)/P0

Nj

= 1 + 1

2
(Nj + 1)Ṗ ≡ 1 + x

and x
<∼ 2.2 × 10−6. This means that

Yj ≈ Y0 + NjP0 + 1

2

(Yj − Y0)2

P0
Ṗ (33)

to excellent approximation.
It is possible to use equation (33) to ‘correct’ the observed values

of Yj for the presence of the period drift:

Y ′
j ≡ Yj − 1

2

(Yj − Y0)2

P0
Ṗ ≈ Y0 + NjP0. (34)

The known value of Ṗ taken from Keane et al.(2011) will now be
used in equation (34) to further demonstrate the application of the
theory of this paper to the PSR J0847−4316 data.

Fig. 10 shows the periodograms (4) of, respectively, the raw Yj

and adjusted Y ′
j , calculated in a grid of ∼600 000 trial periods.

It is noteworthy that the presence of the period trend causes the
periodicity to be inconspicuous in the raw data. The corresponding
scaled residuals can be seen in Fig. 11. The top panel is based on
the original Yj, folded with respect to the optimal period from the
top panel in Fig. 10. Residuals in the bottom panel of Fig. 11 were
calculated from the Y ′

j , using the optimal period from the bottom of
Fig. 10. Note that all the residuals in the bottom panel cluster around
either zero or unity; this confirms that a single period provides a
good description of the data, albeit with non-zero period derivative.

Figure 10. Periodograms of the original PSR J0847−4316 observations
(top panel) and of the data adjusted for the changing period (bottom panel).

Figure 11. Top panel: the residuals of the original PSR J0847−4316 ob-
servations, obtained by folding the data with respect to the ‘best’ period in
the top panel of Fig. 10. Bottom panel: as for the top panel, but residuals
were obtained from the adjusted data (as defined in equation 34), folded
with respect to the optimal period in the bottom panel of Fig. 10.

Figure 12. The phase angles, in the complex plane, of the adjusted PSR
J0847−4316 event times, plotted against time.

The phase angles of the adjusted observations are plotted in
Fig. 12: the shape of the curve traced over time suggests that the
rate of period change itself changed abruptly roughly 500 d after
monitoring commenced. The presence of an outlying point near Y
− Y0 ∼ 1100 d is also noted in passing.

As mentioned above, Keane et al. (2011) found linear period
changes in data for all the RRATs observed by Palliyaguru et al.
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3022 C. Koen

Figure 13. Uniform distribution test statistics, over a range of trial folding
periods, for photon arrival times of RRAT J1754−30. From top to bottom:
AD, KS, Neyman (fourth order), Degroote and the likelihood ratio statistic
(22). Statistics were calculated for the intervals �1Y between detection
times, including only those intervals up to n = 200 times the trial period
[see point (x) in Section 4].

Figure 14. As in Fig. 13, but focusing on a small period range around the
‘best’ period extracted from Fig. 13, and including all intervals �1Y between
successive detections.

(2011), with a single exception. Keane et al. (2011) could find
no entirely satisfactory model for event times of PSR J1754−30.
There are only 40 pulse arrival times for this RRAT, spanning
6.5 years. The period resolution is therefore similar to that of PSR
J0847−4316. The uniformity test statistics for the intervals �1Y ≤
200P are plotted in Fig. 13. The best period, according to the 


statistic, is 1.320 43 s; other parameters are σ = 0.029 and α =
0.19.

Fig. 14 shows the results of calculating the statistics over a small
period interval, centred on the best period from Fig. 13. All 39
intervals �1Y between successive events were taken into account,

Figure 15. The scaled residuals ε = modulus(�1Y , P∗)/P∗ for the inter-
vals �1Y and optimal periods P∗ corresponding to Fig. 14. Open circles
denote residuals corresponding to �1Y ≤ 1000P∗; dots denote the residu-
als corresponding to larger intervals �1Y. Estimated 2σ offsets from ε = 0
and ε = 1 are also indicated (in red).

and a very fine period grid �P = 8 × 10−10 s was used. The 


statistic reaches a maximum at P∗ = 1.320 4197 s, with σ = 0.040
and α = 0.53.

Two points are perhaps worth remarking on. First, comparison of
Figs 8 and 14 gives the impression that the period resolution in the
latter is considerably better. This is only a partial truth – period reso-
lution is proportional to P2 and inversely proportional to max(�1Y),
which, with the differences in P∗, gives δP(J1754)/δP(J0847) ≈
0.03. In reality, features in Fig. 8 are smeared because of the pres-
ence of the systematic period change. The true resolution inherent
in the PSR J0847−4316 data is more clearly demonstrated by the
bottom panel of Fig. 10.

The second point is the disappointing performance of the Deg-
roote statistic in Fig. 14. This can be ascribed to the large value
σ = 0.040, as compared to the default value δ = 0.01 – see Fig. 15.
Fig. 15 also demonstrates the uncomfortable fact that for some rel-
atively short intervals, �1Y is not very close to an integer multiple
of P∗: for these short intervals this cannot be ascribed to secular
period changes, but must be due to shorter time-scale effects.

It is also noteworthy that the two shortest intervals between suc-
cessive events are 2.3386 and 4.7743 s; since the first three multiples
of P∗ are 1.3204, 2.6408, 3.9612 and 5.2816 s, clearly these two
intervals either involve spurious events or events not associated with
the primary periodicity.

In principle,periods can be much more accurately estimated di-
rectly from the sequence of time points Yj than from intervals. How-
ever, as pointed out above, the long time baseline implies a very
fine period resolution, which implies that the test statistics need to
be calculated for a great many trial periods. This is currently not
feasible for all the statistics; in what follows, only the periodogram
is used.

The periodogram of the 40 observations of PSR J1754−30 can
be seen in Fig. 16. The highest peak is at P∗ = 1.321 956 5077 s,
with 1.319 4442 s a close second. The scatter is substantial though,
as illustrated in Fig. 17. Transforming the residuals as in equation
(20) gives a standard deviation σ ξ = 0.153. The isolated point at
index number 17 is associated with the minimum interval 2.3386 s
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Multiple periodicities in photon events 3023

Figure 16. The periodogram of the J1754−30 pulse times, in the vicinity
of 1.32 s.

Figure 17. The scaled residuals obtained when folding the J1754−30 tim-
ings with respect to the optimal period P∗ = 1.321 9565 s (from Fig. 16).

referred to above. Leaving this out does not affect P∗, but reduces
σ ξ to 0.131.

Examining subsets of the data is interesting. The first nine events,
covering 835 d, are well described by a period of 1.320 82 s
(σ ξ = 0.024); events 12–23 (excluding the anomalous observa-
tions 17) cover 523 d, and have P∗ = 1.321 09 (σ ξ = 0.025); pulses
24–35 cover 104 d, with P∗ = 1.319 54 s and σ ξ = 0.035; pulses
30–40 (excluding an anomalous event 38) cover 769 d, and can be
modelled by P∗ = 1.318 57 s, σ ξ = 0.034.

The results in the preceding paragraph suggest that all but perhaps
four of the pulses belong to a process with a period ∼1.32 s, but that
the period may not be perfectly constant. Fitting a definitive model
to the PSR J1754−30 pulse data is outside the scope of this paper.

1 0 A N I N T E R E S T I N G A S I D E

The paper is concluded by demonstrating the ease with which
RRAT-type data can be checked for the presence of a planet-sized
body orbiting the neutron star, provided the light travel time �t

of the pulsar emission is smaller than its pulse period. The latter
requirement can be written as

�t = a1 sin i/c = αP , (35)

where a1 is the distance from the pulsar to the centre of mass of
the pulsar–planet system, i is the orbital inclination, P is the pulsar
period and α < 1. Use will be made of the phase angles defined by
the periodogram (4), evaluated in the ‘best period’ P.

Kepler’s law is

PO = (a1 + a2)3

M1 + M2
≈ a3

2/M1, (36)

where subscripts 1 and 2, respectively, refer to the pulsar and the
small body, and PO is the orbital period. Furthermore,

m1a1 = m2a2. (37)

Equations (35)– (37) can be combined to find

M2 sin i ≈ cM
2/3
1 P

−2/3
O �t. (38)

Some of the units in equation (38) are a little peculiar: �t and PO

are measured in years, and c in au/yr. The form

M2 sin i ≈ 0.102M
2/3
1 P

−2/3
O �t (39)

with M1 and M2 in M, PO in d, and �t in s, is more useful.
A good estimate of the most likely values of PO can be obtained

from the phase angles

ψj = tan−1

{
tan

[
2π(tj − t1)

P

]}
,

where the inverse tan function returns values in the interval (−π, π).
The conventional periodogram

IC(ω) = 1

N

∣∣∣∣∣∣
N∑

j=1

(ψj − ψ)e−iω(tj −t1)

∣∣∣∣∣∣
2

(40)

of the phase angles of PSR J1754−30 is plotted in the top panel
of Fig. 18. The period P = 1.321 956 5077 s, from Section 9, has
been used, and the suspect observation 17 has been omitted. The
maximum value of IC is reached in a frequency of 0.5064 d−1, i.e.
PO = 1.975 d. Given the sparsity of the 39 values of ψ over the
observation interval, there is, of course, dreadful spectral leakage
– prewhitening PO from the phase angles leads to the residual pe-
riodogram in the middle panel of Fig. 18. It is clear that PO can
account very well for the power in the top panel periodogram.

A sinusoid with period PO fitted to the ψ j has an LS-estimated
amplitude of 0.68. The interval [−π, π] represents one full period
P; therefore, α = 0.68/2π = 0.11. Substituting PO = 1.975 d, P =
1.322 s, M1 = 1.5 M and �t = αP = 0.145 s into equation (39),
M2sin i ≈ 0.012 M is obtained.

The phase angles are shown phased with respect to PO in the
bottom panel of Fig. 18. Although this looks quite convincing the
periodogram peak in the top panel of Fig. 18 should be evaluated
formally. Significance levels are easily ascertained, under the null
hypothesis H0 that there is no time dependence in the ψ j:

(i) Permute the phase angles – under the null hypothesis, this
gives a statistically equivalent data set.

(ii) Calculate the periodogram of the permuted phase angles, and
note the height of the tallest peak.

(iii) Repeat steps (i)–(ii) many times, for different permutations.
(iv) The collection of periodogram maxima represents the distri-

bution of largest peak values. Comparison of the actual peak value
to the distribution gives the significance level.
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3024 C. Koen

Figure 18. Top panel: the standard periodogram (see equation 40) of the
PSR J1754−30 phase angles. Middle panel: the periodogram of the residuals
after prewhitening a frequency of 0.5064 d−1 from the phase angles. Bottom
panel: the phase angles phased with respect to the 0.5064 d−1 frequency.

In the case of the PSR J1754−30 data the maximum in the top
panel of Fig. 18 is 5.92; 14.7 per cent of permuted data showed
periodogram maxima in excess of this value, i.e. the peak in Fig. 18
is not significant.
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A P P E N D I X A : PE R I O D O G R A M P H A S E
A N G L E S

Let P∗ be one of the periods present in the data. Only for those
observations, tj corresponding to the period P∗ will

tj = mjP∗ + φ∗ + ej ,

where the mj are integers, φ∗ is a fixed phase and ej is a small
zero-mean ‘noise’ component. The periodogram is calculated from
a sum over terms exp (iωtk); for ω = 2π/P∗, terms corresponding
to P∗ reduce to

exp(iωtj ) = exp[2πi(φ∗ + ej )/P∗].

It follows that the angles in the complex plane associated with these
measurements scatter around 2πφ∗/P∗, whereas for time points not
associated with P∗, phase angles will be uniformly spread over
(0, 2π).

For slightly misspecified trial periods Pt = P∗ + δ,

tj /Pt ≈ mj (1 − δ/P∗) + φ∗/Pt + ej /Pt ≡ mj (1 − δ/P∗) + φ′ + e′
j

and hence

exp(i2πtj /Pt) ≈ exp[i2π(−mjδ/P∗ + φ′ + e′
j )].

The phase angle corresponding to tj is

ψj = 2π(φ′ + e′
j ) − 2πδmj/P∗, (A1)

i.e. the angles are linear functions of mj, or approximately linear
functions of tj. This point is illustrated in Fig. 4.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 459, 3012–3024 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/459/3/3012/2595231 by U
niversity of the W

estern C
ape user on 02 M

arch 2023


