W) Check for updates

60T,

Received: 14 September 2018 Revised: 8 July 2019 Accepted: 25 July 2019 Published on: 19 August 2019

DOI: 10.1002/num.22420

RESEARCH ARTICLE WILEY

A fitted numerical method for parabolic turning
point singularly perturbed problems with an
interior layer

Justin B. Munyakazi® | Kailash C. Patidar | Mbani T. Sayi

Department of Mathematics and Applied
Mathematics, University of the Western Cape, Abstract

Bellville, South Africa . . . .
The objective of this paper is to construct and analyze

Correspondence . 2.9 3

Justin B. Munyakazi, Department of a fitted operator finite difference method (FOFDM) for
Mathematics and Applied Mathematics, the family of time-dependent singularly perturbed parabolic
University of the Western Cape, Private Bag convection—diffusion problems. The solution to the problems

X17, Bellville 7535, South Africa.

L ) we consider exhibits an interior layer due to the presence of
Email: jmunyakazi @uwc.ac.za

a turning point. We first establish sharp bounds on the solu-
tion and its derivatives. Then, we discretize the time variable
using the classical Euler method. This results in a system of
singularly perturbed interior layer two-point boundary value
problems. We propose a FOFDM to solve the system above.
Through a rigorous error analysis, we show that the scheme is
uniformly convergent of order one with respect to both time
and space variables. Moreover, we apply Richardson extrap-
olation to enhance the accuracy and the order of convergence
of the proposed scheme. Numerical investigations are carried
out to demonstrate the efficacy and robustness of the scheme.
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1 | INTRODUCTION

In this paper, we consider the turning point parabolic singularly perturbed problems with interior layer

Lu = —d(x, Du; + €uyy + alx, Hu, — b(x,Hu = f(x,1),—-1 <x<1; t€[0,T]; (1.1)

u(-1,n=a, u(l,t)=y, up(x) = ulx,0), (1.2)
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where « and y are given real numbers and the perturbation parameter € satisfies 0 < € < 1. The coef-
ficients functions a(x,t), b(x,t), d(x,t), f(x,t) and up(x) are assumed to be sufficiently smooth to ensure
the smoothness of the solution. Also d(x, 1) >0 V (x, 1) €[—1, 1] X [0, T]. The condition of the reaction
factor b(x,t) > by >0, V t € [0, T] ensures the uniqueness of the solution [1].

The problem (1.1) and (1.2) is said to be a turning point problem, if there exists a; with—1 < a; < 1
such that a(a;,t) = 0 and a(—1, Ha(l, ) #0,V t€[0, T]. The r zeros a;, i = 1, 2, ..., r of a(x, t) are
called turning points. These statements can be seen in Berger et al. [2] where they also showed that the
bounds of the solution to the problem (1.1) and (1.2) near the given turning point «; depend on & and
the constants f; = b(a;,t)/a.(a;,t). When §; <0, the solution to u(x,?) is “smooth” near (x,f) = (a;,1),
and if §; > 0, the solution u(x,f) presents a rapid change at (x, 1) = (a;, 1) V t € [0, T] termed “interior
layer” which is often shown up by the change in signs of the convection coefficient a(x,t) near (a;, 1)
V(x, ) €[—1, 1] X [0, T]. In the case where the convection coefficient a(x,f) does not change the sign
throughout the spatial domain, the boundary layer may occur near —1 or/and 1. In addition, the exis-
tence of ay € [—1,1], such that la,(x, 1)l > la,(ag, H)I/2,V t € [0, T], ensures the uniqueness of the turning
point in [—1,1].

In this paper, we consider the assumptions below to guarantee the interior layer of the solution to
problem (1.1) and (1.2) atx =0,V t€ [0, T,

a(0,7) =0, ax(0,1) > 0,1 € [0,T1],

lax(x, 0] > 200 xe[-1,11,1 €10, T],

b(0.1) (1.3)
> 0 xXete [O, T]7

a,(0,1) ’
b(x,t) > b(0,1) >0, xe[-1,1],t€][0,T].

The interior layers may also originate from discontinuous data [3-5].

Parameter-sensitive problems such as (1.1) and (1.2) in which the perturbation parameter mul-
tiplies the highest derivative of the underlying differential equation are termed singularly perturbed
problems. They have attracted researchers’ attention over the last few decades because of the existence
of oscillations or spurious solutions when trying to solve them numerically. These challenges are more
pronounced as the parameter approaches zero and classical numerical methods fail to generate suitable
approximations to the solution.

In the context of finite difference discretizations, two families of methods are widely used namely
the fitted mesh finite difference methods (see e.g., [6—8]) and the fitted operator finite difference
methods (FOFDM) [9-11].

Recently, a very large number of special methods have been developed by various authors to
solve nonturning and turning points time dependent singularly perturbed parabolic problems using
implicit Euler method for time discretization. Some authors developed appropriate spatial discretiza-
tions adapted to the conditions of their problems. For instance [12] developed finite difference schemes
using a semi-discrete Petrov—Galerkin finite element method. In Clavero et al. [13] an upwind finite
difference scheme is derived, and [14] constructed an upwind and midpoint upwind difference meth-
ods for the discretization of space variable. In Kadalbajoo et al. [15] a B-spline collocation method is
designed. Readers who need more information related to nonturning points time dependent singularly
perturbed parabolic problems may refer to [16—19], and those who are interested in time dependent sin-
gularly perturbed parabolic problems when the turning points lead to boundary and/or interior layer(s)
are referred to [20-24].

Discussions on fitted finite difference methods to solve time dependent singularly perturbed
convection—diffusion problems whose solution exhibits an interior layer are rare. Nevertheless, we
have for instance Clavero et al. [25] who developed a classical upwind finite difference scheme on a
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piecewise defined mesh of Shishkin type to solve a one-dimensional parabolic singularly perturbed
reaction—diffusion problems with parameters affecting the diffusion and the convection terms. Dunne
and O’Riordan [26] constructed numerical methods involving piecewise uniform meshes of Shishkin
type which fitted to interior and boundary layers. The methods were used to solve singularly perturbed
parabolic problems in which the coefficients are discontinuous in the space variable. O’Riordan and
Quinn [27] examined a linear time dependent singularly perturbed convection—diffusion problems,
where the convective coefficient got interior layer; to design and analyze a monotone finite difference
operator and a piecewise-uniform Shishkin mesh. Gracia and O’Riordan [28] constructed and ana-
lyzed a numerical method consisting on a monotone finite difference operator and piecewise uniform
mesh. This method was used to solve a linear singularly perturbed time dependent convection—diffusion
problem, in which initial condition was designed to have steep gradient in the vicinity of the inflow,
transported in time to create a moving interior chock layer.

In several works on time dependent problems, as we can notice from the references above, in the
discretization of interior layer problems based on difference equation theory [29], there has never been
singularly perturbed problem with smooth coefficients depending on both space and time variables.

The main aim of this paper is to construct and analyze a FOFDM based difference equation theory
and implicit Euler method to obtain piecewise uniform meshes respectively on space and time. This
strategy approximates the solution of time dependent singularly perturbed problems (1.1) and (1.2),
where the coefficients are functions of space and time variables and the solution to the problem exhibits
an interior layer due to the presence of a turning point. We show that the method converges uniformly
of order one in both space and time variables. We also use Richardson extrapolation [6, 23], as the
acceleration technique to improve the accuracy and the order of convergence of the FOFDM designed
up to order two in space only.

The paper has been organized as follows: in Section 2 we provide qualitative results on the bounds
of the solution and its derivatives at every time level ¢ in [0,T]. Using techniques (tools) presented in
[2, 13, 30], we then provide sharp error estimates specific to the class of problems (1.1) and (1.2).
And Section 3 presents some a priori estimates on time discretization. In Section 4, we introduce the
proposed scheme which is analyzed in Section 5. Section 6 deals with Richardson extrapolation. To
show the effectiveness of the proposed scheme, we carry out and discuss some numerical experiments
in Section 7. Section 8 is devoted to some concluding remarks.

2 | QUALITATIVE RESULTS

In this section, some results related to the continuous problem are presented. We use these results in
Section 5 of the error analysis. f(x,f) and u(x,0) are herein assumed to be smooth functions to secure
the continuity and e-uniform bound of the solution with its derivatives to the problem (1.1) and (1.2).
These conditions are required for appropriate space and time accuracy when using the maximum norm
on the domain D = Q x [0, 7], with Q = (=1,1) and D = Q% (0,T].

Lemma 2.1 (Minimum principle). Let w be a smooth function satisfying w(—1,t) >0,
w(1,0)>0,Vte[0, T] and Ly (x, 1) <0, VY (x, £) €D. Then, w(x,t) > 0, V(x,t) € D.

Proof.  Assume that there exists a point (x*, r*) € D such that w(x", t") = miny(x, ) < 0.
It follows that (x*,t*) cannot be of the form (—1, 1), (1, ¢) or (x, 0). From the definition,
v (" 1) =0, w,(x", ) =0 and . (x", ") > 0. We also have

Ly (x*,1") = ey (X", 1) + a(x™, 1)y (x", 1) — b(x*, )y (X", 1) + i, (6", 1) > 0,

which is false. It follows that y(x*,£*) > 0, and thus y(x, ) > 0, V(x,t) € D. n
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We use this minimum principle to prove Lemma 2.2.

Lemma 2.2 (Uniform stability estimate). Let u(x,t) be the solution of (1.1) and (1.2).
Then, we have

lluCx, DIl < Coy" IIf x, Dl + max(lal, [y]), V(x,1) €D,
where Il denotes the maximum norm on the domain D, and by a positive constant as
specified above in the introduction.
Proof.  Consider the comparison function
I*(x, 1) = by | (x, Ol + max(|el, |y]) + u(x,), x € D.
We have

LITE(x, 1) = —%l[f(x, Ol = bGx. ymax(|al. [y]) = Lu(x.?) < 0.
0

Using the minimum principle above it follows that
IT*(x,1) >0, V(x,1) €D.
Consequently
llutx, DIl < Cb " IIf (x, DIl + max((lal, Iy ), V(x,1) € D,

which completes the proof. n

For the rest of this work we consider the following partition of Q = [-1,1]: @ = [-1, =95),
Qc =[-6,6], Qg = (6,1], where 0 < 6 < 1/2. Furthermore, Q¢ = Q- U QZ, with Q- = [-4,0), Qf =
[0,6]and D = Q x [0, T1.

Lemmas 2.3 and 2.4 provide the appropriate bounds on the solution to the problem (1.1) and (1.2)
and its derivatives, depending on whether x belongs to Q;, Q¢, or Qg.

It is well known that if u(x,f) is the solution to the problem (1.1) and (1.2), then there exists a
positive constant C such that |u(x, )| < C, V(x,1) € D.

Lemma 2.3  Let u(x,t) be the solution to (1.1) and (1.2) and a(x,t), b(x,t) and f(x,1)
sufficiently smooth functions in D. Then, there exists a constant C such that

‘M <C, V(x,t)eD\Qc.
oxt
Proof.  See [13]. ]

Lemma 2.4 Let u(x,t) be the solution to (1.1) and (1.2) and a(x,t),b(x,t), and f(x,1)
sufficiently smooth functions in D. Then there exist positive constants n and C such that

‘M scft+etexp ()], wreon refoT, i=0,12,
oxt I3
and
’%x.’l) gc[1+e—iexp(1x>], VreQ 1e[0,T], i=0,1,2.
X! £
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Proof.  We prove this lemma on Q. The proof on Q¢ can be done in similar manner.
To start let us rewrite Equation (1.1) as follows:

Lycu=d(x, t)% +f(x, ) =gk, VxeQ te][0,T], 2.1
where )
o“u du
Lycu= 5@ + a(x, t)a — b(x, Hu,

Assuming uy = u(x,0), d and f smooth functions, then g(x,r) is continuous and
e-uniformly bounded. We use the technique of [19] and Equation (2.1), to get
o'u(x, 1)
oxi
To deduce the similar bounds for higher values of i, we consider v(x,f) = du(x,t)/dx, and
after differentiating (2.1) with respect to x, it follows that Vx € Q;, t € [0,T];

gc[1+s—iexp<@)], VreQs, te[0,T], i=0,1. 2.2)
&

ov(x, 1) af(x,t)  dd(x,t)ou  da(x,t) ou = 9db(x,1)
—d L) ————— LXE = L) = - = it ,
(D= ey =me ) = = o a ox ar T ax "
V(_l,,)zwzah v(l,,)zwzyh vo(x)zw
0x ox ox
Assuming m(x,t) smooth function and applying the above technique for the second time,
yields
o gc[1+e—1exp(@>], VxeQg, 1el0,T],
£
which is a bound for 0%u/ox>. "

3 | TIME DICRETIZATION

In this section, we discretize the problem (1.1) and (1.2) with respect to time, with uniform step size
7, using Euler implicit method. The partition of the time interval [0, 77 is given by:

@ ={nn=kr, 0<k<K, t=T/K}. (3.1
And the discretization of the problem (1.1) and (1.2) on @*
(i M T HO ) |y ) = fln), 1<k <K, (3.2)
T
ulx, ty) = up(x), vxe(-1,1), u(-l,n)=a, u(l,t)=y. (3.3)

Equation (3.2) can also be written as:
(=d (0] + TLy ) (ulx, 1)) = 7 f(x, 1) — d(x, i)ulx, ti-1). (3.4)

The discretization above is the result of the turning point singularly perturbed problems, at each
time level #; = kr which will be examined later. The global error Ej at the time level 7 is the sum of
local errors ¢ at each time level #;. This local truncation error e is given as: e = u(x,t;) — (x,tx),
where #i(x,t;) is the solution of

(=d(x, DI + Ly )(u(x, i) = 7 (x, 1) — d e, Dux, t-1), u(=1,4) = a, u(l, i) =y. (3.5)
We find out that the operator (—d(x,t)I + 7L, ) verifies the maximum principle leading to:
1

l(=d(x, t)] + L)'l < (3.6)

maxo<k<k, xe(-1,11(|d(x, 1) |[77der Dy + 7§
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where order(l) in the inequality above is the order of the identity matrix /. Which proves the stability
of the discretization with respect to time.

It is also known that the local error and the global error are respectively bounded as follows:
llexlleo <72, 1<k <K and IEll, <c7,1 <k <K.

Lemma 3.1 Let u(x,t;) be the solution of (3.2) and (3.3) at time level t, Then there

exists a positive constant C such that

and

Proof.

In the next section we introduce the scheme which we analyze in a subsequent section.

4 | THE SCHEME

|u<m>(x,rk)|sc[l+g—mexp<@)], m=0,1,2,3, VxeQg,

£

|u<m>(x,tk)|sc[1+s—mexp<ix>], m=0,12,3, V¥ xeQk

See [13].

£

Let n be a positive and even integer and let us denote by Q" the following partition of the interval

[—1,1]:

X0 =

-1, x;=x0+jh; j=1,....,n-1, h=x—x_1, x,=1.

et 0" = Q" x @F be the erid o x;,tr). To simplify, we adopt the following; X, ty) €
LQK Q X b he grid of (x;,t;). T plify dopt the foll gV (x5, %)

@”’K, E(xj, ) = Ejk And U;‘ the approximation of qu . Using difference equation theory on @n’K [29],
we discretize the problem (1.1) and (1.2) as:

where

and

LKUf =

-
~ r7k=1
J

27k o k-7 7k " E_f k_ pk_ gkY
‘95Uj+“jDUj‘<bj+f>Uj—J§‘dj et

j=12...%-1 k=1,..K,

~ rrk=1

2k7¢+k_~l(% k_ ok kYT
ovf e adnruf- (i L) v = -

i—_nn n _ _
J=L0 4L 42, -1, k=1, K,

L

Ut =a, Us=y,

Uf - Uf Uk, - Uf Uk, —2UF + UF
_ J=1 +rk _ Jjtl J 27k _ g+l J Jj—1
» DUj=———, U= —
¥j

~k
[l—exp(_q"hﬂ, j:g,g+1,g+2,...,n—l.

@.1)

“4.2)

(4.3)
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Also, we have adopted the following convention for k =1, ..., K.

k k
~ _ 4t i n_
aj == for]—0,1,2,...,2 1,
k k
~ _ G s_non n —
aj == for]—2,2+l,2+2,...,n 1,
~ k k k
dg = +b+bj+l fk T for j=1,2,. —1, (4.4)

3

~

=]j7‘—d}‘%,for i=1,2,..n—1,

k k k
gk = i,
j 3

L

, for j=0,1,2,...,n—1.

We rewrite (4.1) as

s

- 77k k n .
rj,kljj—l +rﬁkljj + r +1 _f]‘ ) .] - 0’ 1’2 5 1’
k=0,1,...,K,
< 4.5)
k . n n n .
ij + U + ]+1_]§,]_55 L3+2,....n=1
k=0,1,...,K
where
_ at 2 ak ~k d*
e g mm g (B D) e mona g
¢’f 4 ®; (4.6)
K= g rS, = - l;k+§ rJ“—i+z =5241,5+2,...,n-1 |
jk_ﬁz’ jk_gl-(»z h ] T ’ j’k_glzz 3]_2,2 ) ’ ’

The FOFDM (4.5) along with the boundary conditions (4.2) satisfies Lemmas 4.1 and 4.2:

Lemmad4.1 (Discrete minimum principle). For any mesh function §lk such that, L'* flk <
0VG.k) € 0K, & >0, 0<j<n & >0adé& >0 1<k<K Then

g >0, v, k)eQ”"

Proof.  Let (s,]) be such that & = min(j,k)ff < 0, 5;‘ € @n’K. It is clear that s # 1, 2,
on—landl#1, 2, ..., K; otherwise & > 0. Also §£+1 — &l >0, - 55_1 < 0, and
gl — £l-1 < 0. We have

e5°El +alD¢l - (b§+ %)gﬁ >0, s=1.2..0-1 I=12...K,

LKl = —<b§+d75>§£>0, s=" 1=1.2...K 4.7)
6525§+a§D+g§—(bg+%>§§>o, s=2+1n—1.1=12...K

Thus L”'Kg‘,l( >0,s=1,2,...,n—1and/=1,2, ..., K, which is a contradiction. It follows
that & > 0, and thus & > 0, ¥ (i.k) € Q™"
The above minimum principle is used to prove Lemma 4.2. (]
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Lemmad4.2 (Uniform stability estimate). Let Z;‘ be a mesh function at a time level such
that ZS =Zk=0. Then

|zk|<bilm<axl|L"sz| for 1<j<mand 1<k<K.
0 n—

Proof.  Consider the mesh function

E=— max [LP*Z}|+2Zf, 1<j<n and 1 <k<K,
b 1<i<n—1

with bJ’.‘ > by > 0 to ensure the uniqueness of the solution to the problem (4.1) and (4.2).
It is clear that (&%) > 0 and (€)X > 0. Also, for 0<j<n,and 1 <k <K,
k

L ey = 7;131<a>51|L"’<z"| +L"%zf, 1<j<n, and 1<k<K.

For 0 < j < n,(=b%)/(bo) < —1. This leads to L™X(£%)¥ < 0. By the discrete minimum
principle (Lemma 4.1), we conclude that (fi);‘ >0, VO0<j<nl<k<K and this
ends the proof. n

Lemma 4.3  For a fixed mesh and for all integers m, we have

exp(Mx;/+/e exp(—Mx;/+/e

lim max M =0,and lim max p(—,/\/_) -0
e=>015j<t-1 em/2 e=>0 2 <j<n-1 em/2

Proof.  See [8]. ]

In the next section we concentrate on convergence analysis of the FOFDM derived.

5 | CONVERGENCE ANALYSIS OF FOFDM

In this section we analyze the FOFDM described in the previous section. The analysis will be conducted
on x € [—1,0] and the case when x € (0,1] can be done similarly.
Let us define the operator LX from (3.3) as:

LKz ) = EM +a(x, )dzgx’ ) _ (b( 1) + L0 d(x fk) ) 26 1),
X

= fn ) — dx, 1) =), (5.8)
T
The local truncation error of the space discretization on [-1,0] X [0,T] (e.g.,j =1, 2, ..., n/2—1,

k=1,2,...,K) can be given as:
Ln,K([]jk _ ij) — (LK _ LH,K)ZJI_(

k
= e+ A - | S -2 )+ T -2
¢’
J
= ew - =y |Pufl ((’”’)"(5)+ (“”’)"(5)
¢
akn akhz ~kh
e el RPN (N (5.9)
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with & € (xj,xj11), £2,€3 € (xj_1.%;). Using the expression for Ek in reference to (4.4), the Taylor expan-

sions of a ~, up to order four, and the truncated Taylor expansion 1/ ¢2 =1/ - chk /€eh, it follows
that

3d k
Ly (Uf - k)—3a’-‘u’-’h!+l 2/"z;’k— (@ &) + &) - ’z;’k’] W

3 1 / k i
+ l ‘Zk / J((Z(’”))k(§1)+(z(’”))k(éz))+ ’k Sk g(zw)"(e:g)] K

//

13 " , .
+ [— ;{k ,”k— G () + ) - 2’4‘ - g(z@"»k@] K. (5.10)

where &’s lie in the interval (x;_1,x;+1). Note that the coefficients of u k

e @), ) can be
bounded by a constant. Now, applying Lemmas 3.1 and 4.3 it follows that

LYK (UF =) < Mh, V)= 1(1)% ~ 1.
In a similar way, we can prove that
LYK (UF -2 < Mh,  Vj= g(l)n +1.
Lemma 4.2, leads to the following results.
Theorem 5.1 Let Uk be the numerical solution of (4.1) along with (4.4) and z the

solution to (3.2) and (3 3) at time level t;.. Then, there exists a constant M zndependent of
g, 7, h and k such that

max |Uf =] < Mh k=1(DK + 1. (5.11)
1gi<n+1 -/

Triangular inequality |US — uf| < |UF — 2§| + |2f — u}| along with Lemma 4.2, Theorem 5.1 and
the global error; lead to the following main result.

Theorem 5.2 Let Uj’? be the numerical solution of (4.1)—-(4.4) and ujk the solution to
(1.1) and (1.2) at the grid point (x;,ty). Then, there exists a constant M independent of e,
7, h and k such that
max |Uy — uf| < M(h+ 7). (5.12)
0<j<n
In the next section we deal with Richardson extrapolation which is an acceleration technique. We
use this technique to improve the estimate (5.12).

6 | RICHARDSON EXTRAPOLATION ON FOFDM

Richardson extrapolation is the extrapolation technique based on linear combination of p solutions,
p >0 corresponding to different, nested meshes.

In this section we improve the accuracy and the order of convergence of (5.12). To begin, we look
back to (5.10) that can also be written as:

LK (UK = 2 = Mih + Myh? + Ry (xy), (6.1)
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where
3a;
M, = TJZJ/‘,I/(,
34! ak
My = 5 = (M@ + @) &) - 5 S5
3a}), ai, -
Rfi(xj)=h3l Uk j((Z(w))k(é:l)+(Z(w))k(~fz))+ 1’2 e Zg(z“”)k(é)]
2 13aj} // Jk (iv)\k (io)\k J”k 2 o (io\k
+ 5a G~ g @ ED + @ &) - 37k - e (@)

The &’s and z z Koo (z(”’))k(e:* ) remain the same as specified in (5.9). Now, let u», be the mesh
obtained by blsectlng each mesh 1nterva1 in p,, thatis,

M2n={xi} with X()=—1, jn=l and Xj—fj_1=ﬁ=h/2, j=1,2,...,2]’l.

—k . . o . . .
U; the numerical solution on y,. M and p positive constants. Equation (6.1) can be written in terms

of Ujk as follows:
LUy =7 = M+ ph + RS, (%), 1 <j <2n— 1. 6.2)
Note that 7 z ]‘
Multlplylng (6.2) by 2, leads to
2LK(T] - 2) = 2Mh + 2ph° + 2R, (%), 1 <j < 2n— 1, (6.3)
or
LK QU; - 225 = 2Mh + 2ph + 2R, (%), 1 <j < 2n — 1. (6.4)
Let (6.1) be in terms of M and p. After subtracting (6.1) from (6.4), we get:
QU - UY =2 = ph” + 2R, (), 1 <j<2n—1 (6.5)
or
LK(QUy - US -2y = 00,1 <j<2n— 1.
Let )
extk ._ AT7 k
Uttt =20 - Uy,

1k
U;7™" is another numerical approximation of z

Using Lemma 4.2 we get the following result

Theorem 6.1 Let Ujex”k be the numerical solution approximation, obtained via the
Richardson extrapolation based on FOFDM (4.5) along with the boundary conditions
4.2) and zj’f the solution to (3.2) and (3.3) at time level t,. Then, there exists a constant M
independent of €, T, h and k such that

max |US™ — 2| < Mh?, (6.6)
0<j<n

Applying triangular inequality leads to
UF = ufl < 1UP = g1+ I = . (6.7)

From Lemma 3.1, Theorem 6.1 and the global error, we get the following result.
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Theorem 6.2 Let Ujm’k be the numerical solution of (4.5) along with the boundary
conditions (4.2) and zj’? the solution to (1.1) and (1.2) at the grid point (x;,t). Then, there
exists a constant M independent of €, T, h and k such that
max | U™ — uk| < M(K? + 7). (6.8)
0<j<n J J

In the next section we implement the proposed scheme on two examples and present numerical
results which confirm the accuracy and robustness of the solution.

7 | NUMERICAL EXAMPLES
In this section we present the numerical results of some problems of type (1.1) and (1.2).

Example 7.1 Consider the following singularly perturbed turning point problem

Eltyy + a(x, Du, — b(x, Hu — du, = f(x,1), -1 <x < 1; g,1€[0,1], a1
ueLm=MLm=0} '
where d = 1, a(x, 7) = 2x[1 + y/ef*)] and b(x,1) = 2(2 + x1).
This problem has an interior layer of width O(¢). The exact solution is
u(x,r) = e(1 = x?) exp (—£> erf .
)\ Ve
To get the expression of f(x,r) we substitute a(x,?);b(x,t) and u(x,f) into Equation (7.1).
Example 7.2  Consider the following singularly perturbed turning point problem
EUyy + alx, Duy — b(x,Hu —du, = f(x,1), 0<x<1, & t€][0,1],
1 1 2 (7.2)
u(0,0) = etanh (5 ) = ML@=£MM<——)—QC=£L
2¢e 2¢e

where d = (1 +x%)exp(—1), a(x,t) = 2(2x — D[1 + )] and b(x,1) = 2(1 + x1).

This problem has an interior layer of width O(¢). The exact solution is

0.5 —x)
€

u(x,t) = gexp [—1] tanh < — cexp(—xt),
€

and f(x,t) is obtained after substituting u(x,f) into Equation (7.2).
The maximum errors at all mesh points and the numerical rates of convergence before extrapolation
are evaluated using the formulas

Ee,n,K — Us,n,K _ ek
- Jk

ik

ax
0<j<m0<k<K
In case the exact solution is unknown, we use a variant of the double mesh principle

E¢K = max
0<j<n;0<k<K

e.n,K £,2n,2K
U™ = Ui ’

where ufk"K and Uif;("’K in the above represent respectively the exact and the approximate solutions

obtained using a constant time step = and space step 4. Similarly, U;;f"’ZK is found using the constant
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WILEY
TABLE 1 Maximum errors of Example 7.1 (before extrapolation)

N=16 N=32 N =64 N =128 N =256

3 K=10 K=20 K=40 K =80 K =160

1073 6.34E—02 4.06E—02 2.25E-02 1.18E-02 6.05E-03

10~ 6.34E-02 4.07E-02 2.26E-02 1.19E-02 6.09E—03

1073 6.34E—02 4.07E-02 2.26E-02 1.19E-02 6.09E-03

107 6.34E-02 4.07E-02 2.26E-02 1.19E-02 6.10E-03

10714 6.34E-02 4.07E-02 2.26E-02 1.19E-02 6.10E-03

TABLE 2 Maximum errors of Example 7.2 (before extrapolation)

N =16 N=32 N =64 N =128 N =256
€ K=10 K=20 K=40 K =80 K =160
1073 8.70E-02 4.71E-02 2.44E-02 1.24E-02 7.32E-03
10~ 8.66E—02 4.69E-02 2.43E-02 1.23E-02 6.22E-03
1073 8.65E-02 4.68E-02 2.43E-02 1.23E-02 6.21E-03
1076 8.64E—02 4.68E—02 2.43E-02 1.23E-02 6.21E-03
10714 8.64E—02 4.68E—02 2.43E-02 1.23E-02 6.21E-03

TABLE 3 Rates of convergence of Example 7.1 (before

extrapolation)
£ ry r r3 ry
1073 0.64 0.86 0.93 0.96
10~ 0.64 0.85 0.93 0.96
107> 0.64 0.85 0.93 0.96
10-° 0.64 0.85 0.93 0.96
1071 0.64 0.85 0.93 0.96

. h . . ..
time step % and space step 7 Nevertheless, the computation of numerical rates of convergence is given
by:
T =T S ey = logz(EE’"’K/EE’z”I’zKl), 1=1,2,...
Also, we compute E, x = maXo<e<iEenk-
And the numerical rate of uniform convergence is:

Rk = 10gy(E, k[ Eon2k)-

For a fixed mesh, we see that the maximum nodal errors remain constant for small values of £ (see
Tables 1 and 2). Moreover, results in Tables 3 and 4 show that the proposed method is essentially first
order convergent.

After extrapolation the maximum errors at all mesh points and the numerical rates of convergence
are evaluated using the formulas:

ext ._ ext _  &nK — - ext ext _
oK = osjsgnmggkszK |U; Uiy | and Ry =R, :=log,(E;; /Ean), k=1,2,...
respectively, where E*' stands for E&2m2K Tables 5-8 confirm the theoretical predictions that Richard-
son extrapolation improves the accuracy of the numerical method employed and increases the rate of
convergence.
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TABLE 4 Rates of convergence of Example 7.2 (before

extrapolation)
£ ry
1073 0.88
107+ 0.88
1073 0.89
10-¢ 0.89
10~ 0.89

r;

0.95
0.95
0.95
0.95

0.95

r3

0.96
0.98
0.98
0.98

0.98

ry

0.76
0.99
0.99
0.99

TABLE 5 Maximum errors of Example 7.1 (after extrapolation)

£

1073
107#
1073
10-°

10—14

N=16
K=10
8.87E-02
8.98E—-02
8.99E-02
8.99E-02

8.99E—02

N=32
K =40
2.65E—-02
2.97E-02
2.97E-02
2.98E—-02

2.98E—02

N =64
K =160

5.25E-03
7.88E—-03
8.08E-03
8.09E—03

8.09E—03

N =128
K = 640

9.45E—04
1.68E—-03
2.06E—03
2.07E-03

2.07E-03

TABLE 6 Rates of convergence of Example 7.1 (after

extrapolation)
£ ry
1073 1.74
107# 1.60
1073 1.60
10-¢ 1.60
10710 1.60

r

2.34
1.91
1.88
1.88

1.88

r3

2.47
2.23
1.97
1.97

1.97

ry

0.64
2.46
2.07
1.99

1.99

TABLE 7 Maximum errors of Example 7.2 (after extrapolation)

£

1073
107#
107>
10-¢

10—14

N=16
K=10
1.07E-01
1.07E-01
1.07E-01
1.07E-01

1.07E-01

N=32
K =40
3.10E-02
3.13E-02
3.13E-02
3.13E-02

3.13E-02

N =64
K =160

8.00E-03
8.21E-03
8.21E-03
8.21E-03

8.21E-03

N =128
K =640
7.32E-03
2.07E-03
2.08E-03
2.08E—03

2.08E—03

WILEY— L2

N =256

K = 2,560
6.06E—04
3.05E-04
4.89E—-04
5.19E-04

5.20E—04

N =256

K = 2,560
7.32E-03
1.46E-03
5.21E-04
5.21E-04

5.21E-04
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TABLE 8 Rates of convergence of Example 7.2 (after

extrapolation)

&

1073
107*
1073
10-°

10714

n

1.77
1.77
1.77
1.77

1.78

r

1.93
1.93
1.93
1.93

1.93

r3

1.99
1.98
1.98
1.98

1.98

ry

0.50
2.00
2.00
2.00

2.00

CONCLUDING REMARKS AND SCOPE OF FUTURE RESEARCH

Singularly perturbed turning point problems are difficult to solve using standard/classical methods due
to the presence of boundary or interior layers in their solutions. Usually, when seeking for numerical
solutions of layer problems, layer adapted meshes are used. These meshes are fine in the layer region
and coarse away from the layer region. Due to the nature of these meshes, and especially when time is
involved, the computation with regards to the convergence analysis becomes more complex.

€=102

. -ol.s -olfs »0I.4 »0I.2 (I) 0:2 0:4 06 08 1

152000 . . — =1.04 . . . . 152000 . . —° =1.0-6 . . . .
1F . 1 :
05F 1 05 .

0 0

05} { 05 i
At 44 .

15 . . . . . . . . . 15 . . : . . . . . .
4 .08 06 -04 -02 0 02 04 06 08 1 1 08 -06 04 -02 0 02 04 06 08 1

FIGURE 1 Plots of the numerical solution of Example 7.1 for € = 1, 1072, 10~* and 107® with n = 128 and K = 128 [Color

figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Log-log plot for Example 7.2: The logarithm of pointwise maximum errors is plotted against the logarithm of
step size & at time ¢ = 1 with values of n from 4 to 4,096 and for e = 10~2 and 10~° [Color figure can be viewed at
wileyonlinelibrary.com]

The main aim of this paper was to design and analyze a FOFDM to solve a class of time depen-
dent singularly perturbed turning point problems whose solution exhibits an interior layer. We first
established bounds on the solution and its derivatives. Then, we discretized the time variable before
proceeding to space discretization. Bounds were used to prove uniform convergence of the proposed
numerical method. The first order uniform convergence shown theoretically, with respect to space and
time variables was confirmed numerically through two test examples.

We provided plots of the numerical solution for Example 7.1 for various values of the perturba-
tion parameter ¢ to see the layer behavior (see Figure 1). In addition, we presented a log—log plot for
Example 7.2 (see Figure 2).

We also applied Richardson extrapolation to improve the accuracy and the convergence of the
numerical scheme in the space variable. Indeed, convergence order improved from one to two.

The problem investigated in this paper depends on the perturbation parameter € which multiplies
the highest order derivative that appears in the problem. One would like to understand how replacing
€ by some function of € and x affects the design of numerical methods. We are currently working in
that direction.
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