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Abstract

Motivation: Post-genome-wide association studies (pGWAS) analysis is designed to decipher the functional conse-
quences of significant single-nucleotide polymorphisms (SNPs) in the era of GWAS. This can be translated into
research insights and clinical benefits such as the effectiveness of strategies for disease screening, treatment and
prevention. However, the setup of pGWAS (pGWAS) tools can be quite complicated, and it mostly requires big
data. The challenge however is, scientists are required to have sufficient experience with several of these technically
complex and complicated tools in order to complete the pGWAS analysis.

Results: We present SysBiolPGWAS, a pGWAS web application that provides a comprehensive functionality
for biologists and non-bioinformaticians to conduct several pGWAS analyses to overcome the above challenges. It
provides unique functionalities for analysis involving multi-omics datasets and visualization using various bioinfor-
matics tools. SysBiolPGWAS provides access to individual pGWAS tools and a novel custom pGWAS pipeline that
integrates several individual pGWAS tools and data. The SysBiolPGWAS app was developed to be a one-stop shop
for pGWAS analysis. It targets researchers in the area of the human genome and performs its analysis mainly in the
autosomal chromosomes.

Availability and implementation: SysBiolPGWAS web app was developed using JavaScript/TypeScript web frame-
works and is available at: https://spgwas.waslitbre.org/. All codes are available in this GitHub repository https:/
github.com/covenant-university-bioinformatics.
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1 Introduction

Genome-wide association studies (GWAS) analyses are widely used
to report statistically significant genomic variants associated with a
particular genetic trait or phenotype (Tam ez al., 2019). However, in
most cases, researchers are interested in understanding underlying
molecular and biological functions that are triggered by these signifi-
cant variants. Therefore, post-GWAS (pGWAS) analysis is required
to address or interpret any GWAS findings (Gallagher and Chen-
Plotkin, 2018). Though pGWAS analysis is critical for understand-
ing the genetic mechanisms underlying many traits, it is challenging
to perform pGWAS analysis for researchers with limited bioinfor-
matics skills. These challenges are due to the complexity of installing
some pGWAS tools, complex command line parameters, or the
amount of Genomic data required for the pGWAS analysis. To fa-
cilitate pGWAS research, particularly for African bioinformatics
and biomedical researchers due to the limited computing resources
to store the huge annotated files and reference panels, we built
SysBiol pGWAS as a web-based pGWAS tool.

2. SysBioPGWAS software

2.1. Input and data format

The input file for the SysBiolPGWAS pipeline is a GWAS summary
file. A typical GWAS summary file contains nine fields which are:
single-nucleotide polymorphisms (SNPs) ID, chromosome, genomic
position, reference allele, alternative allele, beta score (effect size),
standard error, z-score (summary statistics for SNP association with
phenotype) and P-value. We used the standard GWAS summary files
as described by Buniello et al. (2019) and MacArthur et al. (2021).

2.2 Individual tools and pipelines

SysBiolPGWAS provides direct access to several individual pGWAS
tool pipelines. These tools are shown in Figure 1. The preprocessing
pipeline step consists of cleaning up the input data; and utilizing the
University of California, Santa Cruz (UCSC) LiftOver if needed
(Haeussler et al., 2019). UCSC LiftOver is a major tool that is used
for converting genomic coordinates between different assemblies.
This tool is provided as a web-based tool hosted at the University of
California, Santa Cruz (UCSC) Genome Browser (https:/genome.
ucsc.edu/cgi-bin/hgLiftOver). It is also available as a standalone tool
(Luu et al., 2020).

The annotation pipeline combines four tools, which are Annovar
tool (Wang et al., 2010), Ensembl Variant Effect Predictor (VEP)
version 107 (McLaren et al., 2016), the Disease-specific Variant
ANnotation tool (DIVAN) (Chen et al., 2016) and deTS software
(Pei et al., 2019). The algorithm underlying these annotation tools is
to determine what type of variant is being run and to assign an an-
notation score to the variants based on the source databases.
Annovar tool is used to perform several functional scoring of var-
iants. These functional scoring include the genome-wide annotation
of variants that supports prioritization of non-coding variants by
integrating various genomic and epigenomic annotations (GWAVA)
(Ritchie et al., 2014), the functional prediction score generated by
deep learning (DANN) (Quang et al., 2015), the functional predic-
tion scores for mutations based on selective constraints across the
human genome (GERP++) (Davydov et al., 2010; Cooper et al.,
2005) and the spectral approach integrating functional genomic
annotations for coding and non-coding variants (EIGEN) (Ionita-
Laza et al., 2016). Also, Annovar tool is used for performing SNPs
functional annotations and gene deleteriousness based on the
dbNSFP database (Liu et al., 2020). On the other hand, Ensembl
Variant Effect Predictor is used to perform functional prediction of
variants using the Combined Annotation Dependent Depletion score
(CADD) (Kircher et al., 2014; Rentzsch et al., 2019). DIVAN tool is
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Fig. 1. SysBiolPGWAS pipelines and architecture, inputs and outputs. The rectangles
in the center of the middle box show the preprocessing pipeline step consisting of
cleaning up the input data and lifting over coordinates if needed. The rectangles to
the right of the middle box indicate the group of tools that perform annotation of
SNPs (detecting the type of SNPs) and fine-mapping (finding the causal SNPs) ana-
lysis. The rectangles to the left of the middle box show tools that perform omics
based analysis

used for performing tissue-specific scoring for 45 different diseases/
traits. In addition, SysBiolPGWAS performs tissue-specific enrich-
ment analysis for a list of genes that are associated with the variants
using deTS (Pei et al., 2019).

The estimating SNPs casualty pipeline step consists of fine-
mapping and SNPs clumping. SysBiolPGWAS performs probabilistic
fine-mapping, i.e. applied the Bayesian fine-mapping approach,
using Fine-mapping Of CaUsal gene Sets software (Mancuso et al.,
2019). Bayesian fine-mapping utilizes the statistical Bayes frame-
work to estimate the probability of a given variant being a causal
variant, i.e. estimating the Bayes factor (BF) (Wang and Huang,
2022). Such BF can be estimated from GWAS summary statistics
such as variant P-value and its standard error of the effect even with-
out accessing the individual-level genotype data (Mancuso er al.,
2019). Approximation BF from GWAS summary report approxi-
mates Bayes factor (Wakefield, 2007, 2009). Maller et al. (2012)
suggested estimating the probability of variant causality as a poster-
ior inclusion probability (PIP) by using a simplified version of the
Bayes model. Moreover, Maller et al. (2012) provided a method to
estimate the smallest number of variants that can sum up to a prede-
fined PIP threshold value and called it as the credible set. For
detailed mathematical equations for the Bayesian fine mapping,
refer to Wang and Huang (2022).
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SysBiolPGWAS can select causal variants based on the linkage
disequilibrium information in 1000 genomes using the clumping
method of PLINK software. The process of variant clumping reports
iteratively the most significant variant in the defined LD regions
across the genome (Choi et al., 20205 Privé et al., 2019). In each LD
region, the most significant variant, i.e. the SNP with the smallest P-
value, is called the lead variant. However, the approach of choosing
the lead variants is limited by the biological fact that the leads are
not always considered as the causal variants (Schaid et al., 2018).

The step of omic-based analysis and reporting includes five types
of analysis, which are (i) gene-level analysis, (ii) pathways analysis,
(iii) eQTL analysis, (iv) chromatin interaction mapping [using
Position Weight Matrices (PWM)] analysis and (v) colocalization
analysis. SysBiolPGWAS uses MAGMA (Multi-marker Analysis of
GenoMic Annotation) (de Leeuw et al., 2015) for performing gene-
level analysis. The algorithm underlying MAGMA’s gene level is
based on the statistical regression approach and utilizing LD infor-
mation to detect marker effects. SysBiolPGWAS pathways analysis
using the Pathway Scoring Algorithm is implemented in Pascal soft-
ware (Lamparter et al., 2016).

SysBiolPGWAS performs eQTL analysis by incorporating the
GTEx multi-tissue eQTL information, which is very useful to under-
stand the biological machinery underlying the variants in GWAS
summary. The eQTL analysis can be performed using SMR and
HEIDI (Wu et al., 2018), and Loci2Path tool (Xu et al., 2020). For
the chromatin interaction mapping (via PWM) analysis,
SysBiolPGWAS uses HaploR R package (Zhbannikov et al., 2017)
to query HaploRegDB (Ward and Kellis, 2016) and RegulomeDB
(Boyle et al., 2012). To perform colocalization analysis,
SysBiolPGWAS uses coloc R package (Wallace, 2021).

The interpretation of several predicted variants in a GWAS to
functional mechanisms is faced with several challenges identified by
Gallagher and Chen-Plotkin (2018), a few of which include: (i) asso-
ciation of an SNP with a phenotype does not give sufficient informa-
tion about the actual causal SNP or causal gene of that phenotype.
(ii) Ninety percent (90%) of SNPs identified in a GWAS fall into a
non-protein coding region (intergenic or intronic) which are very far
from any known nearest gene. (iii) These SNPs that fall in non-
coding regions may be enriched in putative regions of cis-regulatory
elements (enhancers, silencers and promoters), however, because of
the complex nature of regulation, it might be hard to associate these
noncoding cis-regulatory elements (CREs) to correct target genes.
We chose all these crop of tools in this study to help tackle these
challenges. We also selected appropriate tools that help annotate
variants in protein-coding and non-coding regions. In summary,
each tool in the individual pipelines provides a unique pGWAS ana-
lysis to assist biologists in performing pGWAS analysis in one place,
seamlessly overcoming the complex challenges and obtaining the
results expeditiously.

2.3 Customized pipeline

This pipeline integrates several pGWAS tools and allows users to
execute several of these tools in a single run. It should be noted that
this pipeline performs pGWAS analysis only on the potential lead
SNPs. First, we perform SNPs clumping to find lead SNPs, then we
do gene-based analysis, followed by pathways analysis, eQTL ana-
lysis, SNPs annotations, deleteriousness and regulation analysis. We
also execute Bayesian fine-mapping to report the probability of each
SNP to be casual.

3 Conclusion

In conclusion, SysBiolPGWAS provides several pipelines consisting
of multiple pGWAS tools with the current state-of-the-art annota-
tion tools to perform complete pGWAS analysis and visualization
for all users, especially scientists who are not command line or stat-
istically inclined. This is the first version of the tool, and we plan to
extend SysBiolPGWAS to include more comprehensive OMICS, fur-
ther GWAS and pGWAS analysis by including more pGWAS

resources and tools. Online tutorials are available in the tutorial
navigation link drop down section at https:/spgwas.waslitbre.org/.
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