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Abstract
Bimetallic FeMn nanoparticles based on a ferromanganese wad were successfully synthesized employing an entirely green 
approach. South African rooibos tea (RTea) extract was used as an environmentally friendly reducing and capping agent for 
preparing the Fe and Mn nanoparticles (nFeMn). The obtained nFeMn suspension and freeze-dried RTea capped nFeMn 
powder were characterized using several techniques. Elemental analysis conducted using XRF combined with ICP analysis 
revealed a metallic loading of 1.08 wt% of Fe and 0.25 wt% of Mn. The ultraviolet–visible spectroscopy (UV–vis) showed a 
broad shoulder in the UV region where the peaks of RTea and FeMn are located, implying bond formation during the reac-
tion between RTea polyphenols and nFeMn. TEM analysis depicted a core–shell architecture for the nFeMn with an average 
size of 20 nm while the FTIR revealed that specific peaks observed in the spectrum of RTea extract were visible on that of 
the nFeMn powder, indicating the capping of nFeMn particles by the RTea extract. Finally, the reactivity of nFeMn powder 
as a Fenton-like reagent was probed for the decoloration of methylene blue (MB) from an aqueous solution. Fenton-like 
oxidation of MB followed a pseudo-first-order reaction kinetics with a rate constant of 0.23  A−1  min−1. The results showed 
that nFeMn removed MB dye with an efficiency of over 95% in the MB concentration range of 50–250 mg/L. Overall, the 
finding herein is unique because we directly used readily available raw material as a source of metals and a safe, practical 
reagent to prepare bimetallic FeMn nanoparticles that can be used to remove the color from dye wastewater, thus, creating 
a circular green process.
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Introduction

Research on bimetallic nanoparticles has been ongoing for 
the past thirty years, with interest generated by their exhib-
ited enhanced activity in several reactions compared to their 
monometallic counterparts (Toshima and Yonezawa 1998; 
Doan et al. 2022; Sivashankar et al. 2022). The improved 
catalytic activity could be related to changes in electronic 
structure, geometric effects, and modification of the catalyst 
morphology (Yang and Somorjai 2004; Gilroy et al. 2016; 
Loza et al. 2020; Yoo et al. 2020). Bimetallic nanoparticles 
have been shown to have different topologies, such as crown-
jewel structure, hollow structure, heterostructure, alloyed 
structure, and porous structure (Duan et al. 2020; Lin et al. 
2022; Suliz et al. 2022; Zhang et al. 2022). In addition, some 
bimetallic materials exist in core–shell structures with a 
dense core and a thin shell, while alloyed nanoparticles with 
uniform textural properties have also been reported (Liu 
et al. 2012). Bimetallic nanoparticles can be prepared via 
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solution chemistry using co-reduction, successive reduction, 
or reduction of double complexes. The first method relates 
to the simultaneous reduction of metal salts (Ahmed and 
Emam 2019). The second method is one of the most suit-
able methods for preparing core–shell bimetallic particles 
and comprises the reduction of one metal followed by that 
of the second metal. The third method involves co-reduc-
tion of the metals in a compound containing two metals, 
e.g., preparation of Ag-Pt bimetallic particles from silver(I)
bis(oxalato)platinate(I) (Toshima and Yonezawa 1998; Liu 
et al. 2012; Bai et al. 2017; Deng et al. 2021). In solution, 
bimetallic nanoparticles may aggregate into larger particles 
without a stabilizer. Poly(N-vinyl-2-pyrrolidone) (PVP) is 
the most frequently used stabilizer to synthesize bimetallic 
nanoparticles with  NaBH4 as a reductant (Fang et al. 2011; 
Du et al. 2021; Ramos and Regulacio 2021; Tiri et al. 2022). 
Meanwhile, even when dissolved in small quantities, PVP 
and  NaBH4 produce hazardous compounds in the reaction 
environment.

Dried leaves or plant extracts may act as stabilizers and 
reductants in synthesizing bimetallic nanoparticles due to 
their polyphenolic compounds. Thus, they can be a viable 
alternative to traditional chemicals used for this purpose 
(Shankar et al. 2004; Kimpiab et al. 2022). For example, 
extracts of neem (Azadirachta indica), persimmon (Diopy-
ros kaki), mahogany (Swietenia mahogani JACQ.), cashew 
(Anacardium occidentale), and Sago Pondweed (Potamoge-
ton pectinatus L.) leaves were used in the synthesis of Au/Ag 
core–shell nanoparticles; Ce Bai Ye (Cacumen Platycladi) 
and green tea leaves were employed to obtain AuPd and 
FePd nanoparticles (Shankar et al. 2004; Mondal et al. 2011; 
Sheny et al. 2011; Smuleac et al. 2011; Zhan et al. 2011).

In this work, the co-reduction method was used to syn-
thesize ferromanganese wad-based FeMn nanoparticles 
utilizing the rooibos tea (RTea) extract as a reducing and 
capping agent. Rooibos (Aspalathus linearis) is indigenous 
to South Africa and growing in the Cederberg region. Ores 
(ferromanganese) containing high levels of Fe and Mn are 
abundant worldwide. Hence, these ores are often used as 
valuable nanoparticle synthesis resources (Chen et al. 2020; 
Zhang et al. 2020). In addition, Rooibos tea is a rich source 
of polyphenols; it is caffeine-free and possesses antioxidant 
properties (Iswaldi et al. 2011). The Folin–Ciocalteu assay 
(Paquin et al. 2015) determined the total polyphenolic con-
tent to be 25% (w/w) of an aqueous fermented rooibos tea 
extract of 10 g/L, indicating its potential to be a suitable 
reductant for metal nanoparticles. Aspalathin is the main 
flavonoid and antioxidant in rooibos (Baranska et al. 2006). 
Green synthesized bimetallic nanoparticles are desirable 
because, like their monometallic counterparts, they can be 
employed in environmentally friendly applications. Spe-
cifically, several studies show the use of monometallic, 
green-synthesized iron nanoparticles in removing organic 

or inorganic contaminants from aqueous solutions (Jin et al. 
2018; Nasrollahzadeh et al. 2021; Ghohestani et al. 2022). 
But information on bimetallic green synthesized nanoparti-
cles and their application to environmental remediation are 
limited.

The textile, leather, paper, and plastics industries are 
known to produce large volumes of colored wastewater. Two 
percent of dyes produced are directly released as aqueous 
effluent, and in the textile industry, 10% of the dyes are lost 
during the coloration process (Rai et al. 2005; Fatima et al. 
2017). If not adequately treated, the effluent dyes contami-
nate soil and water sources. Monometallic nanoiron particles 
have previously been used for the remediation of dyes and 
found to effectively remove dyes by adsorption or decolorize 
them by Fenton-like oxidation processes (Mukherjee et al. 
2016; Stefaniuk et al. 2016; Fazlzadeh et al. 2017; Badmus 
et al. 2018; Kimpiab et al. 2022).

A classical nano zerovalent iron (nZVI) synthesis com-
prises adding a chemical reductant, usually sodium boro-
hydride, into an iron suspension of 0.1 M  Fe3+ without any 
dispersant. In this study, a different approach was followed 
in terms of using a FeMn acidic solution prepared from a 
mined ferromanganese wad as a source of metal precursors 
and adding polyphenols from an aqueous extract of a natu-
ral organic matter (RTea) as reductant and capping agent. 
The current study demonstrates the capability of the RTea-
capped nFeMn particles as a Fenton-like catalyst to degrade 
azo dye methylene blue in an aqueous solution.

Materials and methods

Materials

The ferromanganese wad was obtained from Ryedale open-
pit mine in the Ventersdorp district of South Africa. The 
FeMn wad was dried overnight at 90 ºC and sieved to obtain 
a fraction below 0.5 µm, which was then stored in a closed 
container to synthesize nFeMn. The rooibos tea (RTea), in 
the form of leaves was fermented. All the chemicals used 
during several synthesis stages and Fenton-like reactions 
(HCl, NaOH,  H2O2, methylene blue) were of analytical 
grades.

Synthesis procedure

The aqueous RTea extract (20 g/L) was freshly prepared by 
heating the RTea/water mixture at 80 °C for 20 min, then 
filtering the leaves from the tea, followed by centrifugation 
of the filtrate. The reason for applying centrifugation, but 
not fine filtration, was that the tea extract plugged the fil-
ter paper's pores (both 0.22 and 0.45 µm) during vacuum 
filtration.
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A mixture of natural ferromanganese wad mineral con-
taining FeMn (2 g) and 200 mL of HCl (50% v/v) was heated 
at 90 °C for 10 min to dissolve the FeMn wad. Next, the 
obtained FeMn acidic solution was vacuum filtered through 
0.45 µm filter paper and stored in a glass bottle. Next, 50 mL 
of filtered acidic FeMn solution was adjusted to pH = 1.70 
because the extremely acidic solution (pH = 0) would destroy 
polyphenolic compounds in the RTea. After preparation, the 
pH-adjusted FeMn acidic solution was immediately added to 
the RTea extract with a volume ratio of 2:1; the volume ratio 
is based on the FeMn acidic solution, not on the pH-adjusted 
FeMn acidic solution (Hoag et al. 2009). The nFeMn sus-
pension's color instantly turned black, and the suspension 
was kept in the dark for 24 h to complete the reaction. After-
ward, the nFeMn suspension was poured into 40-mL plastic 
containers and freeze-dried for 6 days at − 53 °C. Finally, 
the obtained dried RTea- capped nFeMn powder was placed 
into a sealed container and stored in the dark in a desiccator 
to prevent oxidation of the metals.

Characterization

The LOI (Loss on Ignition) was determined on a portion of 
the finely ground FeMn wad sample by heating in a muf-
fle furnace to 950 °C using 0.65 g of the sample, which 
was accurately weighed with 5.6 g of Lithium Borate Flux 
(Claisse cat. # G-0640-70) and fused at 950 °C using a 
Claisse Fluxy M4 fuser and cast into a disk. The fusion disk 
was measured on a Panalytical PW2400 WDXRF fitted 
with a 3 kV rhodium tube. A range of 12 CRM's (Certified 
Reference Material) were used to calibrate the instrument 
for the elements determined using various combinations 
of collimators, crystals, and detection counters. To ensure 
the best resolution, a Spectro Arcos Inductively Coupled 
Plasma-Optical Electron Spectroscopy (ICP-OES) was used 
to analyze liquid samples. The instrument is equipped with 
Charge-Couple Device (CCD) detectors, and the radial view 
limits the matrix effects.

Ultraviolet–visible spectroscopy (UV–Vis) scanning of 
the solutions was done in the 200–800 nm range using Nico-
lette—Evolution 100 Ultraviolet Spectrophotometer (Ther-
mal Electron Corporation, UK). Decolouration of MB was 
followed by reading the absorbance of standards prepared 
from an MB solution at 665 nm using a Portable Thermo 
Scientific Helios Epsilon UV/VIS spectrometer; sample 
concentrations were read off the calibration curve drawn 
up using the standards. Transmission electron microscopy 
(TEM) and Energy dispersive spectroscopy (EDS) meas-
urements were done using a G2 F20 X Twin Mat 200 kV 
Tecnai FEG-TEM transmission electron microscope with 
EDS attachment. The X-ray diffraction (XRD) patterns of 
the FeMn wad and the powder samples were recorded on a 
Bruker powder diffractometer (D8 Advance) equipped with 

a theta-theta goniometer setting which includes a Cu target 
X-ray tube (CuKa1 line at k = 1.5406 Å) and PSD Vantec-1 
detector. Data evaluation was done using the EVA software 
from Bruker based on the International Centre for Diffrac-
tion Data (ICDD) PDF database 1998.

Decoloration experiments

Decoloration experiments were performed in an Erlenmeyer 
flask placed in a water bath at 25 °C. UV–vis absorbance of 
the reaction solutions was measured at 665 nm, where the 
MB solution gives maximum absorbance. 20 mg of nFeMn 
was added into 2 mL of 0.1%  H2O2 and 18 mL of 50 mg/L 
MB solution. The Erlenmeyer containing the reaction mix-
tures was shaken in the water bath and was removed from the 
bath at specified times. The nFeMn particles were recovered 
by decantation from the reaction mixture, and absorbance 
values were recorded (Shahwan et al. 2011). In addition, the 
effect of MB concentration on the extent of decoloration was 
assessed by varying MB solutions' concentrations from 50 
to 250 mg/L. Finally, the reaction mixtures prepared in the 
same manner above were shaken for an hour, filtered, and 
their UV–vis absorbance values were measured. Figure 1 is 
a schematic representation of the experimental approach.

Results and discussion

Characterization of synthesized nFeMn

A naturally occurring ferromanganese wad containing 
mainly  Fe2O3 and MnO (57.5 and 15.2%, w, respectively) 
(Table 1A) was leached using HCl (50%, v/v) (see experi-
mental section). After filtering, the FeMn acidic solution 
with mainly  Fe3+ and  Mn2+ (0.34 and 0.08%, w, respec-
tively) (or  Fe3+ 0.61 M) (Table 1B) was obtained. The 
recovery resulting from the dissolution process of the FeMn 
wad was calculated to be 84.6% and 68.4% for Fe and Mn, 
respectively. This result indicates the loss of Fe and Mn 
together with the residue (mainly Si) during filtration of the 
FeMn acidic solution. The pH of the filtered FeMn acidic 
solution (50 mL) from the stock was adjusted (pH = 1.7) 
and added to RTea extract (20 g/L, w/v). Depending on the 
composition (Table 1A) and the amount of FeMn wad that 
was dissolved in the HCl (50%, v/v), the Fe and Mn con-
centrations in the FeMn acidic solution (Table 1B) and the 
amount of product made, it was possible to calculate the 
iron and manganese content of nFeMn powder (Table 1C). 
The reason for this is that the reaction mixture composed 
of pH-adjusted FeMn acidic solution and RTea extract was 
directly freeze-dried after mixing and aging for 24 h. That 
is, no filtration or centrifugation procedure leading to Fe 
loss was applied after the reaction, before the freeze-drying. 
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The RTea-capped nFeMn powder was calculated to contain 
mainly Fe and Mn with 1.08 wt% and 0.25 wt%, respectively 
(Table 1C). The mass balance for Fe and Mn was confirmed, 
as shown by the result calculated in Table 1C. The nFeMn 
powder also included NaCl formed during freeze-drying of 
the reaction mixture, which originated from Cl in the HCl 
solution used in the leaching of FeMn wad and from Na 
in the NaOH (50% w/v) solution used for pH adjustment 
of FeMn acidic solution. Comparing the calculated com-
position of nFeMn powder (Table 1C) with that of the XRF 
fusion disk analysis (Table 1D), we observed a good agree-
ment between the XRF and the calculated values. Although 
the XRF values were slightly lower than the calculated val-
ues, this can be attributed to the fact that some of the Fe and 
Mn could have been lost due to nFeMn powder containing 
natural organic matter from RTea; however, the overall trend 
from XRF agrees with the calculation. The NaCl content of 
nFeMn powder was 42.3%, according to the XRF analysis. 
The ICP-OES and IC analyses of water-leached nFeMn pow-
der were done to cross-check the Na content and determine 
the Cl content. Still, the spectroscopic analysis did not pro-
duce reliable results due to the presence of natural organic 
matter. Due to these challenges, TG–DTA was applied and 
indicated that after subtracting the RTea, Fe, and Mn com-
ponents from 100%, the remaining mass, NaCl in nFeMn, 
was approximately 92.2 wt% (Fig. S1).

Moreover, the redox potential of RTea extract was 
measured to be + 0.27 V by cyclic voltammetry (Fig. S2). 
This value is similar to other tea extracts (black and green 
teas + 0.23 V) and low compared to plant extracts (e.g., 
T. Chebula + 0.63 V and Eucalypus leaves + 0.4 V). The 
redox potentials of  Fe3+/  Fe2+ and  Fe2+/ Fe are + 0.77 V 
and − 0.44 V, respectively (Mohan Kumar et al. 2013; Wang 
2013). This value implies that  Fe3+ can be reduced to  Fe2+ 
using RTea extract. As for the reduction of  Fe2+ to Fe, there 
is less agreement in the literature. Some reports show the 
formation of nano zerovalent iron (nZVI) in the green-syn-
thesized nano iron particles via XRD analyses using green 

tea extracts (Kozma et al. 2016; Zhu et al. 2018). Another 
report on green tea extract-synthesized nano iron particles 
determined no ZVI but  Fe3+ and  Fe2+ in the product via 
Mössbauer spectrometry (Markova et al. 2014). Another 
report on nano iron particles synthesized using Eucalyp-
tus leaves indicated that  Fe2+ is difficult to reduce to ZVI 
because polyphenol ligands strongly stabilize  Fe3+ over 
 Fe2+. A complex structure was proposed in which ferric ion 
is located in spherical nanoparticles chelated by polyphe-
nols (Wang 2013). The reduction potential of  Mn2+/Mn is 
− 1.18 V, indicating that  Mn2+ is more difficult to reduce by 
RTea extract than  Fe2+.

Figure 2A shows the UV–Vis spectra of FeMn acidic 
solution, RTea extract, and nFeMn in solution. The nFeMn 
in the solution was obtained by adding the pH-adjusted 
FeMn solution into the RTea extract. An instant color 
change was observed after mixing the two solutions because 
of the reduction of the metal ions, indicating the formation 
of RTea-capped nFeMn  (Hoag et al. 2009). In Fig. 2A, a 
spectral comparison of peaks was made using the stable 
FeMn acidic solution instead of pH-adjusted FeMn solution, 
which was prone to oxidation and, therefore, immediately 
employed in the nFeMn synthesis reaction. The FeMn acidic 
solution exhibited a peak at 335 nm and the RTea extract 
exhibited a peak at 282 nm, belonging to the polyphenols it 
contained (Joubert et al. 2013). Eleven polyphenols in wine 
also showed peaks at 250–350 nm (Gorinstein et al. 1993). 
The RTea-capped nFeMn suspension exhibited no peak but 
a broad shoulder between 260 and 400 nm where the peaks 
of RTea and FeMn were placed, implying that the hump was 
due to a reaction between RTea polyphenols and nFeMn 
particles. The shifted position of the broad hump of nFeMn 
compared to the peak of FeMn acidic solution confirmed 
this reaction and the formation of polyphenol-stabilized 
nanoparticles.

The second set of experiments (Fig. 2B) was done to 
see the difference between UV–Vis spectra of FeMn acidic 
solution and a prepared mixture of Fe and Mn (FeMnmix) 

Fig. 1  Brief schematic representation of synthesis process and catalytic assessment
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from the salts of  Fe3+ and  Mn2+, the concentration of which 
was similar to that of FeMn acidic solution (Table 1C). In 
Fig. 2B, the FeMnmix showed a peak at 292 nm arising 
mainly from Fe(III) since Mn(II) had only a tiny peak at 
200 nm. No shift was observed in the position of FeMnmix 
compared to the Fe(III) peak, which is indicative of no reac-
tion occurring when mixing Fe(III) and Mn(II) solutions. On 
the other hand, the shifted position of the peak of the FeMn 
acidic solution relative to FeMnmix can be related to the 
particle sizes of Fe and Mn, as well as to the trace quantity 
of metallic impurities from the wad and chloro-complexes 

of Fe(III) and Mn(II) even though they were in low con-
centrations in the aqueous solution prepared by 50 times 
dilution of FeMn acidic solution for UV–vis measurement. 
Figure 2C shows the FTIR analysis of RTea leaves. The 
spectral information between 3800 and 2600  cm−1 and 2000 
and 600  cm−1 is essential to identify the tea under investiga-
tion because all the major and minor organic constituents 
in teas exhibit peaks in these ranges. The FTIR spectrum 
of RTea leaves showed a broad peak at 3285  cm−1 due to 
OH stretching vibrations. The peaks at 1615 and 1509  cm−1 
correspond to the C=C stretching of ring vibrations (Luo 

Table 1  Chemical analysis of the FeMn wad, FeMn acidic solution, and nFeMn powder

*Oxides in the bulk composition were converted to elemental (mg/L) and subsequently percent values
**The elemental composition of nFeMn was calculated using the ICP-OES results from (B), the volume of acid used in the synthesis, and the 
weighed amount of the material

(A) Material Method

FeMn wad XRF

Bulk composition (%) Elemental composition (%)*

Fe2O3 57.5 Fe 40.2
MnO 15.2 Mn 11.7
Al2O3 3.13 Al 1.66
TiO2 0.16 Ti 0.10
SiO2 15.6 Si 0.00
K2O 0.33 K 0.27
MgO 0.21 Mg 0.13
Na2O 0 Na 0.00
LOI 7.55
other 0.23
Total 99.9

(B) Material Method

FeMn acidic solution ICP-OES

Elemental composition (%) Fe recovered in the FeMn Acidic solution 
[yield] %

Fe 0.34 Fe 84.8
Mn 0.08 Mn 68.4
Al 0.01 Al negligible
Ti 0.00 Ti 0.00
Si 0.00 Si 0.00
K 0.01 K negligible
Mg 0.00 Mg 0.00
Na 0.00 Na 0.00

(C) Material Method (D) Material Method
nFeMn powder calculation nFeMn powder XRF

Elemental composition (%) ** Elemental composition (%)

Fe 1.08 Fe 0.90
Mn 0.25 Mn 0.08

Na 42.3
LOI 2.46
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et al. 2014; Morikawa et al. 2015). The peak at 1024  cm−1 
was assigned to C–O–C and C–OH vibrations (Kora et al. 
2010; Zheng and Wang 2012; Govarthanan et al. 2014). 
Figure 2D shows FTIR spectra of the RTea extract and the 
RTea-capped nFeMn powder. In the FTIR spectrum of RTea 
extract, the intense peak at 3369  cm−1 is attributed to O–H 
stretching vibrations (Huang et al. 2015). The small peak 
at 1634  cm−1 is again assigned to C=C stretching vibra-
tions of the aromatic ring in RTea, a few of which combine 
to form polyphenols. It was previously demonstrated that 
C=C and C–O groups in the plant extracts generally have a 
substantial effect on the capping of nanoparticles (Khariss-
ova et al. 2013). The RTea-capped nFeMn powder showed 
only a tiny peak at 1632  cm−1, which was formed by slight 

shifting and extinction of the 1634  cm−1 peak of the RTea 
extract, indicating that the RTea extract successfully coated 
nanoparticles.

TEM-EDS was used to analyze the particle size and ele-
mental mapping of the binary nFeMn nanoparticles. The 
TEM images showed that the nanoparticles had well-defined 
borders. The TEM image recorded at high magnification 
showed spherical binary nFeMn particles with diameters 
of about 20 and 15 nm, respectively (Fig. 3A). They had a 
core–shell structure. They showed electron density banding 
where the core is darker than the less dense shell (Mallin 
and Murphy 2002). Figure 3B shows an image of a nFeMn 
particle made with the rooibos reductant. The lattice fringes 
on the particle indicate some degree of crystallinity in the 

Fig. 2  UV–Vis spectra of FeMn, nFeMn, and RTea (A) Mn, Fe, and Mn/Fe mixture with the same concentration as that in nFeMn (B) 50 times 
dilution. FTIR spectra of (C) RTea extract and nFeMn powder (D)
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material. It is possible to identify the Fe and Mn from the 
TEM image by measuring lattice distances on the core and 
shell (Liu et al. 2012). However, the d-spacing values meas-
ured on the core and shell showed some variation when com-
pared to normal d-spacing values of Fe and Mn. The reasons 
may be due to the strained shell compared to the core as 
well as the complexity of the colloid chemistry (Strasser 
et al. 2010). The chemical synthesis of colloids may produce 
nanocrystals with a crystal structure never found in bulk 
materials (Sobal et al. 2002).

The selected area electron diffraction (2B) image show-
ing electron distribution in the matrix displayed concentric 
circles originating from the random orientation of crystal 
planes [Huang polysaccharide], suggesting that the nFeMn is 
a polycrystalline material. The EDS analysis with ten repeats 
performed on the sample matrix confirmed the presence of 
Fe, Mn, O, Na, and Cl elements (Fig. 3D). The intense com-
posite Fe–Mn peak dominated the matrix together with the 
O–Fe peak. The composite peak shows that Fe and Mn ele-
ments are in very close proximity in the sample. The Fe–O 
peak may indicate that polyphenols chelated Fe via their O 
atoms (Wang 2013).

The main peaks identified on the XRD spectrum of 
FeMn wad (Fig. 3D) are hematite  (Fe2O3) JCPD 00-033-
0664 and quartz  (SiO2) JCPD 01-079-1910. The existence 
of  (Fe0.67Mn0.33)OOH JCPD 00-014-0557 is likely, but 
most probably due to overlapping with hematite, there is no 
freestanding peak of that phase. On the other hand, all the 
peaks clearly detected in the spectrum XRD of RTea capped 
nFeMn were identified to be halite (Fig. 3E). The reason 
that iron peaks were not observed in the XRD spectrum of 
nFeMn can be explained as follows: The XRD peak height 
depends on the size and volume fraction of nanoparticles in 
the nFeMn powder. XRF and ICP-OES analysis determined 
approximately 1% of Fe and 0.25% (w) of Mn in the nFeMn 
powder. Therefore, it is plausible that due to the very low 
metallic content, the metal peaks were below the detection 
limit of the XRD technique. Furthermore, the nanodomain 
of the particle of nFeMn does not present long-range crystal-
lographic ordering, rendering the metal amorphous. More-
over, even if the metallic peaks were present, they would 
remain obscured by the well-defined halite peaks, which 
were the dominant phase and overlapped regions where the 
characteristic peaks for iron and manganese could be found.

Fig. 3  TEM images of nFeMn particles were dropped onto the TEM grid (A–B) EDS spectra (C). XRD plots of nFeMn (D) and FeMn wad (E)
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Application nFeMn and decoloration kinetics of MB

The effectiveness of nFeMn particles synthesized using 
RTea extract was probed to decolorize an aqueous solution 
of MB with an initial concentration of 50 mg/L, and the 
results are shown in Fig. 4A. The reaction between nFeMn 
particles and MB was instantaneous: more than 90% of MB 
was decolorized within 5 min of contact time. The RTea 
polyphenols contributed to the effectiveness of nFeMn par-
ticles due to their effectiveness in reducing and stabilizing 
the nanoparticles. In addition, the polyphenol-capped nano-
particles provided a large surface and contact area for MB 
molecules to react. The MB degradation results from this 
study agree with the literature using tea-polyphenols-capped 
nano iron particles as catalysts in Fenton-like reactions and 
obtaining fast degradation of dyes (Shahwan et al. 2011).

Determination of reaction kinetics is essential to under-
standing the decoloration mechanism of MB in the nFeMn/
Fenton-like system. For this purpose, several kinetic mod-
els were applied to the experimental data (Ho et al. 2000). 
Among them, the pseudo-first-order kinetic model can be 
defined with Eq. 1 as follows:

where A0 is the initial absorbance of the dye (A), At is the 
absorbance of decolorized dye solution at time t, Ae is the 
equilibrium absorbance of the dye, and  k1  (min−1) is the 
rate constants of the pseudo-first-order kinetic equation. 
The graph plotted using log(At-Ae) versus t produced a line 
equation with a high correlation coefficient of R2 = 0.93 
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A
t
− A

e

)

= log
(
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− A

e

)

−

(
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1

2.303

)
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(Fig. 4B). The rate constant  k1 was calculated from the 
slope and intercept of the graph. The calculated half-life 
value, 2.3 min, was close to the experimental results, prov-
ing that the model is correctly fitted to the data. As a result, 
it was concluded that the decoloration of MB followed a 
pseudo-first-order reaction kinetics using Eq. 2 (Bautista 
et al. 2007). Therefore, the pseudo-first-order kinetic rate 
constant  (k1) for the decoloration of MB was calculated to 
be 0.23  A−1  min−1.

The MB degradation could proceed through two steps: 
The addition of RTea-capped nFeMn into MB/H2O2 solution 
caused contact of RTea capping agent with MB and  H2O2, 
resulting in some degree of decoloration of MB and initia-
tion of radical scavenging reactions of RTea polyphenols 
(Joubert et al. 2005; Markova et al. 2014). Immediately after 
that, MB was almost entirely decolorized by the Fenton reac-
tion, generally thought to be accompanied by some degree of 
mineralization. However, the degree of mineralization was 
not measured by Total Organic Carbon (TOC) analysis in 
this study (Wang et al. 2014; Yu et al. 2014). All in all, the 
performance of the synthesized FeMn nanoparticles is in 
agreement with and above the green bimetallic nanoparticles 
reported in the literature, as shown in Table 2.

(2)−r
MB

= k
[

C
MB

]

[∙HO] ≅ k
�
[

C
MB

]

Fig. 4  A Fenton-like oxidation of methylene blue using nFeMn particles capped by RTea polyphenols. Conditions: 18 mL of MB (50 mg/L), 
2 mL of  H2O2 (0.01%) and 0.02 g of nFeMn powder. Reaction temperature: 25 °C. B Linearized pseudo-first-order kinetic plots of MB
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Conclusion

In this study, we successfully synthesized a bimetallic 
Rooibos Tea-capped iron and manganese nanoparticles 
(nFeMn) that combine iron and manganese from a ferro-
manganese wad mineral. The ferromanganese wad, a waste 
material, may be found in nature. The rooibos tea extract 
effectively acted as a reducing and capping agent to pro-
tect the nanoparticles. The core–shell nanoarchitecture of 
the synthesized nFeMn particles revealed average sizes of 
15–20 nm. Because of the nFeMn powder's outstanding 
oxidative activity, methylene blue was degraded from solu-
tions with concentrations ranging from 5 to 250 mg/L ppm 
with a removal rate of 99.99%. The performance of the 
prepared nFeMn was comparable with the ones reported in 
the literature. Given the ease of readily available raw mate-
rials used in this study (ferromanganese wad mineral and 
Rooibos tea), our study draws a foundation for a circular 
green process. Future research in this area will concentrate 
on three key goals: (1) A scrutinizing characterization of 
the nanoparticles, including DLS and Zeta potential for 
precise observation of particle size distribution and charge 
and particle stability, (2) eliminating chlorinated organics 
using nFeMn suspension, which has been reputed the most 
challenging task to date and (3) assessing the influence 
of varied quantities of RTea extract on reaction rate. The 

purpose of these assessments is to identify the most suc-
cessful technique.
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