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Abstract
This study examined the integration of two satellite data sets, that is Landsat 7 ETM+ 
and ALOS PALSAR (Advanced Land Observing Satellite Phased Array type L- band 
Synthetic Aperture RADAR) in estimating carbon stocks in mopane woodlands of 
north- western Zimbabwe. Mopane woodlands cover large spatial extents and provide 
ecosystem benefits to the rural economies and grazing resources for both livestock 
and wildlife. In this study, artificial neural networks (ANN) were used to estimate 
carbon stocks based on spectral metrics derived from Landsat 7 ETM+ and ALOS 
PALSAR. To determine the utility of the two satellite- derived metrics, a two- pronged 
modelling framework was adopted. Firstly, we used spectral bands and vegetation in-
dices from the two satellite data sets independently, and subsequently, we integrated 
the metrics from the two satellite data sets into the final model. Results showed that 
the ALOS PALSAR (R2 = 0.75 and nRMSE = 0.16) and Landsat ETM+ (R2 = 0.78 and 
nRMSE = 0.14) derived spectral bands and vegetation indices comparatively yielded 
accurate estimations of carbon stocks. Integrating spectral bands and vegetation 
indices from both sensors significantly improved the estimation of carbon stocks 
(R2 = 0.84 and nRMSE = 0.12). These findings underscore the importance of inte-
grating satellite data in vegetation biophysical assessment and monitoring in poorly 
documented ecosystems such as the mopane woodlands.
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Résumé
Cette étude a examiné l'intégration de deux ensembles de données satellitaires, 
notamment Landsat 7 ETM+ et ALOS PALSAR (Advanced Land Observing Satellite 
Phased Array type L- band Synthetic Aperture RADAR) dans l'estimation des stocks de 
carbone dans les forêts de Mopane au nord- ouest du Zimbabwe. Les forêts de Mopane 
couvrent de vastes étendues d’espace et offrent des avantages écosystémiques aux 
économies rurales et des ressources de pâturage pour le bétail et la faune. Dans cette 
étude, des réseaux de neurones artificiels (ANN) ont été utilisés pour estimer les 
stocks de carbone sur la base d’indicateurs spectraux dérivés de Landsat 7 ETM+ et 
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1  |  INTRODUC TION

Forests are key environments and provide an important pathway 
in reducing the effects of climate change. They sequester approx-
imately a tenth of all carbon emissions (Goudriaan, 1995; Pasher 
et al., 2014; van Kooten et al., 2019). Despite such an important ser-
vice to the earth system, forests are facing an increased threat from 
human- driven deforestation and degradation (Wise et al., 2009). 
Forests around the world are cleared to create space for agriculture 
and urban settlement among other land- use types. These activities 
exacerbate the climate change crisis as large amounts of carbon tem-
porarily stored in vegetation are released back into the atmosphere 
(Houghton et al., 2012; Rokityanskiy et al., 2007). The United Nations 
Framework Convention on Climate Change (UNFCCC) introduced 
the Reduced Emission from Deforestation and Degradation Plus 
(REDD+) as a measure to reduce continuing deforestation (Phelps 
et al., 2010). REDD+ requires countries to establish measurement, 
reporting and verification (MRV) systems to report any changes in 
carbon stocks (Mitchell et al., 2017). In addition to the reporting re-
quirements under REDD+, countries that reduce the degradation 
of their forestry resources are financially rewarded through carbon 
credits (Blom et al., 2010). As such, knowledge on the amount of 
carbon stored in forests is crucial for monitoring forests and sub-
sequently developing climate change mitigation and adaptation 
policies.

Monitoring changes in forest carbon stocks can be accomplished 
through traditional routine surveys of permanent plots established 
in a forest. Although this approach is accurate, it is costly and time- 
consuming (Henry et al., 2011; Mitchell et al., 2017; Nhamo, 2011). 
Moreover, observations are limited to a few established perma-
nent plots and thus the results obtained are spatially limited (Dube 
et al., 2016). Carbon stock estimation through the use of satellite im-
agery has the capacity to augment and overcome the limitations of 
ground surveys. Remote sensing reduces the high financial, time and 
human resource costs owing to its large spatial coverage at limited 

cost (Gizachew & Duguma, 2016). Remote sensing provides an op-
portunity to assess an area over large temporal scales hence making 
it possible to assess trends in carbon stocks (Mareya et al., 2018; 
Mitchell et al., 2017). Numerous remote sensing instruments that 
include active sensors and passive sensors such as RADARSAT and 
Landsat Thematic Mapper (TM), respectively, have been utilised in-
dependently in estimating forest carbon stocks in several biomes. 
Optical remote sensors such as Landsat are highly sensitive to leaf 
biomass, whereas Radio Detection and Ranging (RADAR) sensors 
particularly L- band can penetrate tree canopies and sense variation 
in stem biomass (Naidoo et al., 2015; Sinha et al., 2015). However, 
none of these sensors is expected to provide infallible estimates 
of forest carbon stocks. For example, optical imagery is known to 
saturate in high biomass stands, while RADAR data interpretation is 
affected by speckles and shadows (Sinha et al., 2015). To this end, an 
integration of these sensors can potentially overcome their respec-
tive limitations and improve forest carbon estimation (Gizachew & 
Duguma, 2016).

ALOS PALSAR (Advanced Land Observing Satellite Phased 
Array type L- band Synthetic Aperture RADAR) is an active sen-
sor that emits radio signals towards objects and measures the sig-
nal that bounces back to the sensor (Cornforth et al., 2013; Morel 
et al., 2011). Landsat 7 Enhanced Thematic Mapper (ETM+), on the 
other hand, is a passive sensor that records the spectral properties 
of objects based on the sun's electromagnetic radiation (Basuki 
et al., 2013; Dube & Mutanga, 2015). Landsat imagery has been 
proven to be sensitive to variations in vegetation structural param-
eters that include forest carbon stocks (Goetz & Dubayah, 2011). 
However, this sensor like any other optical sensor is easily affected 
by clouds and saturates in areas of high biomass (Baccini et al., 2008; 
Gibbs et al., 2007). The saturation problem is mainly a result of its 
inability to penetrate complex overlapping canopies in highly foli-
ated landscapes. RADAR sensors on the other hand are not affected 
by clouds and have the ability to penetrate vegetation canopies 
and sense stem biomass (Anaya et al., 2009; Gibbs et al., 2007). 

ALOS PALSAR. Pour déterminer l'utilité des deux indicateurs dérivés des satellites, 
un cadre de modélisation à deux volets a été adopté. Premièrement, nous avons 
utilisé indépendamment les bandes spectrales et les indices de végétation des deux 
ensembles de données satellitaires, puis nous avons intégré les indicateurs des deux 
ensembles de données satellitaires dans le modèle final. Les résultats ont montré que 
les bandes spectrales dérivées et les indices de végétation d’ALOS PALSAR (R2 = 0,75 
et nRMSE = 0,16) et Landsat ETM+ (R2 = 0,78 et nRMSE = 0,14) ont comparativement 
donné des estimations précises des stocks de carbone. L'intégration des bandes 
spectrales et des indices de végétation des deux capteurs a considérablement amélioré 
l'estimation des stocks de carbone (R2 = 0,84 et nRMSE = 0,12). Ces résultats mettent 
en évidence l'importance de l’intégration des données satellitaires dans l'évaluation et 
la surveillance biophysiques de la végétation dans les écosystèmes mal documentés 
comme les forêts de Mopane.
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    |  3GARA et al.

Consequently, a synergy of these two sensors has the potential to 
improve forest carbon stock estimation.

To date, studies integrating optical and RADAR imagery for 
improved biomass mapping have focused on tropical monsoon, 
tropical rain, moist deciduous and temperate forests (Ho Tong 
Minh et al., 2018; Lehmann et al., 2012; Morel et al., 2012; Sinha 
et al., 2016; Zhao et al., 2016). To the best of our knowledge, no 
study has integrated optical and RADAR imagery for forest carbon 
modelling in mopane- dominated dry savannah forest of Southern 
Africa. The few studies that have been conducted in these eco-
systems mainly use optical sensors to model forest biomass or 
carbon (Dube et al., 2016; Gara et al., 2017). Dry savannah forests 
of Southern Africa are characterised by different vegetation struc-
tures compared to tropical monsoon, tropical rain, moist deciduous 

and temperate forests where radar data have been intensively used. 
The fundamental difference is with regard to tree density and sub-
sequently biophysical parameters such as leaf area index (LAI) which 
are key proxies of biomass as an estimate from remote sensing plat-
forms (Crowther et al., 2015). Tropical monsoon and temperate for-
ests are typically denser, with multiple layers of vegetation across 
the canopy vertical profile. savannah dry forests on the other hand 
are patchy, often a single layer and with no understory (Charles- 
Dominique et al., 2015). In this regard, there is an inherent need 
to investigate the integration of multi- sensors in the estimation of 
carbon stocks in mopane- dominated savannah dry forests.

This study aims at estimating forest carbon stocks through the 
integration of optical and RADAR data sets. Specifically, the study 
seeks to (i) examine the utility of Landsat 7 ETM+ in estimating 

F I G U R E  1  (a) The location of Matetsi Safari Area in Zimbabwe and (b) the spatial distribution of sample plots overlaid on RGB Worldview 
imagery acquired on 15 October 2019.

Species Allometric equation Reference

Colophospermum mopane AGB = exp
(

− 2.55 + 0.895In
(

D2H
))

Colgan et al. (2014)

Combretum apiculatum AGB = exp
(

− 2.75 + 0.941In
(

D2H
))

Colgan et al. (2014)

Other species AGB = exp
(

− 2.597 + 0.929In
(

D2H
))

Colgan et al. (2014)

Note: AGB is above- ground biomass, D is basal diameter, H is tree height.

TA B L E  1  Tree allometric equations 
used to estimate AGB
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4  |    GARA et al.

forest carbon stocks, (ii) assess the utility of ALOS PALSAR in esti-
mating forest carbon stocks and (iii) integrate Landsat 7 ETM+ and 
ALOS PALSAR data in mapping forest carbon stocks.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The present study is based on field data which were collected in part 
of the Matetsi safari area in Zimbabwe and measures ~39,511 ha 
(Figure 1). Matetsi safari area is located in the north- eastern part of 
Zimbabwe between 31o48′– 31o55′E and 18o22′– 18o27′S. The safari 
area receives a mean annual precipitation of 600 mm with the rain 
season spanning from November to April (Childes & Walker, 1987). 
The vegetation type in Matetsi is predominantly savannah wood-
land and bushland with some areas occupied by large patches of 
grassland vegetation (Crosmary et al., 2015). The mopane woodland 
vegetation in Matetsi is dominated by Colophospermum mopane and 
Combretum apiculatum (Ndaimani et al., 2014). The area is dominated 
by regosols and lithosols soils (Muposhi et al., 2016).

2.2  |  Field data

Field data on tree structural variables were collected in April– 
May 2010. Thirty sampling points were randomly generated in the 
woodland vegetation class using the vegetation map provided by 
Zimbabwe Parks & Wildlife Management Authority. A hand- held 
Global Positioning System (GPS) Garmin GPSmap 60CSx (with an error 
of ±5 m) was used to navigate to sampling locations. At each sampling 
location, a square plot of 900 m2, that is 30 × 30 m was established. 
Within each sampling plot, all standing trees with a diameter at breast 
height (DBH) greater than 10 cm and height above 3 m had their struc-
tural attributes measured. DBH was measured at a height of 1.3 m 
above- ground surface using a diameter tape while tree height was 
determined using a clinometer for each tree. Further details on field 
measurements are in Gara, Murwira, and Ndaimani (2016a).

Above- ground biomass for each tree was estimated using an ap-
propriate allometric equation presented in Table 1. The estimation 
of field AGB was accomplished using two types of allometric equa-
tions: (i) species- specific equation for the dominant species and (ii) 
generalised equation for less- dominant species. The plot AGB was 
subsequently determined as the sum biomass of all trees within each 
sampling plot. Cognizant of the fact that between 45% and 55% of 
AGB is carbon, we multiplied AGB with a conversion ratio of 0.47 

according to the IPCC guidelines to obtain forest carbon stocks for 
each plot (IPCC, 2003).

2.3  |  Landsat 7 ETM+  pre- processing

Geometrically corrected Landsat 7 ETM+ imagery acquired closet to 
the date when field data were collected was downloaded from USGS 
(https://earth explo rer.usgs.gov). The Landsat data set contained 
strips of no data and gap filling was performed using a mask layer 
acquired from USGS to populate the empty data strips. In order to 
reduce the effect of the atmosphere attenuation on measured radi-
ance and obtain top of the atmosphere (TOA) radiance, we performed 
atmospheric correction on the Landsat 7 ETM+ imagery using the 
dark object subtraction algorithm in QGIS (Musungu & Mkhize, 2019). 
Although there exist several other remote sensing products from sen-
sors such as SPOT 5, in this study, we used Landsat 7 ETM+ because it 
is freely available and the results can be compared with future Landsat 
missions such as the Landsat 9 launched on 27 September 2021.

2.4  |  Vegetation indices

After image pre- processing, vegetation indices (Normalised 
Difference Vegetation Index (NDVI) (Tucker, 1979) and Simple Ratio 
(SR) (Jordan, 1969)) presented in Equations 1 and 2 were computed.

where NIR and R stand for near- infrared and red reflectance 
respectively.

These indices were selected because they generated higher 
correlations with forest carbon stocks in related studies performed 
in a similar ecosystem (Dube & Mutanga, 2015; Gara, Murwira, & 
Ndaimani, 2016a). A suite of other indices such as the soil- adjusted 
indices were examined and they did not generate better results.

2.5  |  ALOS PALSAR pre- processing

RADAR polarisation images (HH and HV, Table 2) were acquired 
from Japan Aerospace Exploration Agency (JAXA) (https://www.
eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm Accessed on 20 
January 2020). Speckle filtering, terrain and geometric correction of 

(1)NDVI =
NIR − R

NIR + R

(2)SR =
NIR

R

TA B L E  2  Data sets used in this study

Data set Tile Spatial resolution Acquisition

Landsat 7 ETM+ Level 1C Path 173 Row 073 30 13 May 2010

ALOS PALSAR S18E025 25 12 May 2010

ASTER DEM S19E025 30 Temporal extent of 1 March 2000– 30 November 2013
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the ALOS PALSAR scene were performed in order to improve the 
quality of the images before analysis (Flores De Santiago et al., 2013). 
Speckle filtering was performed to remove speckles and noise pre-
sent in the images. A geometric correction was done to change the 
slant distance recorded by the SAR sensor to ground distance. This 
procedure was performed to correct off- nadir signals acquired by the 
SAR instruments (Sumantyo & Amini, 2008). Terrain correction, on 
the other hand, was performed using Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) digital elevation model 
(DEM) using the topographic correction SAGA Tool in QGIS (Conrad 
et al., 2015). The radar images acquired in BEAM- DIMAP format 
were converted from reflectance to backscatter values (which corre-
lates with forest biophysical parameters) using the following formula:

where DN is the digital number (reflectance values), and CF is the 
calibration factor of −83 (Shimada et al., 2009).

2.6  |  ALOS PALSAR vegetation indices

One of the main objectives of the present study was to integrate 
ALOS PALSAR and Landsat 7 ETM+ for the purpose of estimating 
forest carbon stocks. HH, HV radar polarizations and radar vegeta-
tion indices were used as input variables in the estimation of for-
est carbon stocks. The two indices, that is Normalised Backscatter 
Vegetation Index (Equation 4) (Wagner et al., 1999) and the Radar 
Vegetation Index (Equation 5) (Li & Wang, 2018), were computed 
from HH and HV radar polarizations. The NBVI also known as the 
Radar Forest Degradation Index (RFDI) takes advantage of the high 
sensitivity of HV polarisation to tree biomass and the moderate sen-
sitivity of HH polarisation to generate an index that ranges from 0 to 
1 with patches of high biomass assuming values closer to 1.

where �HV and �HH measures of backscattering intensities as mea-
sured by the HH and HV polarisation.

2.7  |  Harmonising the satellite data sets

ALOS PALSAR and Landsat 7 ETM+ images have different spatial 
resolutions (25 and 30 m, respectively, Table 2). Therefore, in order 
to harmonise the two data sets, spatial resampling was performed. 
This procedure was done to match the spatial resolution of the sat-
ellite data sets together with the size of the sampling plot used for 
field data collection. The images were resampled to 10 m using the 
nearest neighbour resampling method. After resampling the images, 
we extracted the image values for each plot as a mean of nine (9) 

pixels (3 × 3 pixels) to match the size of the sampling plot based on 
which biomass was estimated.

2.8  |  Correlation analysis between predictor 
variables and forest carbon stocks

Before modelling forest carbon stocks using artificial neural 
networks, Pearson's correlation coefficient (r) was used to ex-
amine the strength of the relationship between all predictor vari-
ables from ALOS PALSAR and Landsat 7 ETM+ (Gara, Murwira, 
& Ndaimani, 2016a; Morel et al., 2011) and forest carbon stocks. 
Correlation analysis explored the strength of the relationship be-
tween forest carbon stocks and satellite data from the two sensors. 
To limit model complexity and achieve model parsimony, we selected 
Landsat 7 ETM+ spectral bands that generated higher correlations 
with forest carbon stocks.

2.9  |  Modelling forest carbon stocks using artificial 
neural networks

Artificial neural networks (ANN) are machine- learning algorithms 
within artificial intelligence machine- learning techniques (Bermejo 
et al., 2019), whose function imitates the operation of neural net-
works of a human brain (Ayensa et al., 2017). The structure of a typi-
cal ANN is primarily comprised of an input layer, a hidden layer and 
an output layer. Predictor variables from Landsat 7 ETM+ and ALOS 
PALSAR data sets were fed into the artificial neural network through 
the input layer. The hidden layer performed the machine- learning 
computations and predicted the dependent variable (forest carbon 
stocks) in the output layer. In this study, three experimental designs 
were conducted to examine the performance of ALOS PALSAR and 
Landsat 7 ETM+ imagery.

 (i) ALOS PALSAR experiment: FCS ~ HH + HV + NBVI + RVI
 (ii) Landsat 7 ETM+ experiment: FCS ~ NDVI + SR + G + NI
 (iii) Sensor integration experiment: FCS ~ HH + HV + NBVI + RVI + N

DVI + SR + G + NIR (FCS: forest carbon stocks).

Validation of all models for each experimental design was done 
in two steps. Firstly, we used a leave- one- out- cross- validation 
(LOOCV) technique (Varma & Simon, 2006) to validate the stabil-
ity of each model against measured forest carbon stocks. Secondly, 
we bootstrapped the ANN models with 1000 iterations and a decay 
threshold value of 0.1 in order to generate numerous models that 
would facilitate the comparison of root mean square errors (RMSE) 
generated from the model replicates of each experimental design. 
The performance of each model was assessed using the coefficient 
of determination (R2) and normalised RMSE (nRMSE) between the 
predicted and measured forest carbon stocks (Thumaty et al., 2016). 
We also compared the mean nRMSE of the 1000 model itera-
tions for each data set using one- way ANOVA. Subsequently, we 

(3)� = 10∗log10

(

DN2
)

+ CF,

(4)NBVI =
�HH − �HV

�HH + �HV
,

(5)RVI =
4 �HV

�HH + �HV
,
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6  |    GARA et al.

performed a pairwise comparison using Tukey's HSD post hoc test. 
Artificial neural network models were calibrated using the NNET li-
brary (Ripley et al., 2016) in R statistical software using the ‘caret’ 
package (Kuhn, 2012).

3  |  RESULTS

The HV polarisation generated the highest correlation (r = 0.5) with 
forest carbon stocks compared to any other ALOS PALSAR variables 

including the HH polarisation (r = 0.33) (Figure 2). The two spectral 
indices developed from ALOS PALSAR polarisations demonstrated 
moderate relationships with forest carbon stocks (NBVI = 0.38 and 
RVI = 0.39). The Landsat 7 ETM+ NIR band and NDVI generated 
high correlations (r = 0.39 and 0.4, respectively) to forest carbon 
stocks compared to the green band and simple ratio vegetation 
index (r = 0.35 and 0.36, respectively). The NIR and green bands 
of Landsat 7 ETM+ bands were selected as they exhibited a signifi-
cant relationship to forest carbon stocks compared to other spectral 
bands (result not shown).

Based on the LOOCV method both the RMSE and nRMSE de-
creased in the order of ALOS PALSAR > Landsat ETM > Integrated 
sensors (Figure 3). Sensor integration yielded an R2 of 0.84 and 
nRMSE of 0.12 compared to ALOS PALSAR and Landsat 7 ETM+ 
which generated R2 of 0.75 and 0.78 together with nRMSE of 0.16 
and 0.14, respectively.

The nRMSE generated from the bootstrapped ANN models con-
firmed the significant decrease in error in the order of ALOS PALSAR 
> Landsat ETM+ > Integrated sensors (Figure 4). ALOS PALSAR mod-
els yielded a mean nRMSE of 0.26, while Landsat 7 ETM+ generate 
an nRMSE of 0.23. However, when data from the two sensors were 
integrated into the ANN modelling nRMSE significantly dropped to 
0.18. A Tukey post hoc test showed that the nRMSE generated by 
both the ALOS PALSAR and Landsat 7 ETM+ were significantly dif-
ferent from those yielded by the Integrated model (Figure 4).

Figure 5 shows the spatial variation in forest carbon stocks 
mapped using the best- performing ANN model, that is the inte-
grated model. The spatial distribution of forest carbon stocks is con-
sistent with findings observed during fieldwork, which showed that 
stands at higher elevations had higher carbon content than low- lying 
areas because they had less vegetative cover.

F I G U R E  2  Strength of relationship between variables and forest 
carbon stocks. All correlations were statistically significant at 
p > 0.05.

F I G U R E  3  Leave- one- out cross- 
validation of the ANN model for the three 
data sets.
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    |  7GARA et al.

4  |  DISCUSSION

Results presented in this study demonstrate that integrating Landsat 
7 ETM+ and ALOS PALSAR improve the estimation accuracy of for-
est carbon stocks in a dry mopane woodland in comparison to inde-
pendently modelling forest carbon stocks using data from Landsat 
7 ETM+ or ALOS PALSAR. ALOS PALSAR produced an R2 of 0.75 
and nRMSE of 16% and Landsat ETM+ generated an R2 of 0.78 
and nRMSE of 14% based the on leave- one- out cross- validation 
(Figure 3). However, when the data from the two sensors were in-
tegrated the R2 improved to 0.84 and the nRMSE dropped to 12%. 
A comparison of the mean nRMSE generated from the 1000 model 
iterations further confirmed the improvement in the estimation ac-
curacy of the data integration approach (Figure 4). As expected, 

the mean nRMSE of several model iterations is higher compared 
to the nRMSE generated from the leave- one- out- cross- validation 
procedure. These results concur with observations made by Basuki 
et al. (2013), Chen et al. (2009), Ho Tong Minh et al. (2018) and Shao 
and Zhang (2016) who observed an improvement in biomass model-
ling after fusing optical and RADAR imageries. For example, Shao 
and Zhang (2016) observed an increase in estimation accuracy (from 
18.68% to 14.17%) after integrating Landsat 8 OLI and RADARSAT- 2 
to estimate above- ground biomass in Mongolia, China. Our results 
demonstrate that ALOS PALSAR and Landsat 7 ETM+ comple-
ment each other and their integration is beneficial for forest carbon 
modelling.

Landsat 7 ETM+ provides information in the optical spectral do-
main (400– 2500 nm), which reflects variation in canopy biochemical 
and biomass content. For example, reflectance in the NIR spectral 
bands is sensitive to foliage biomass or leaf area index (Soudani 
et al., 2006; Xavier & Vettorazzi, 2004), while the visible bands re-
spond to variation in chlorophyll pigmentation (Ali et al., 2020; Croft 
et al., 2013, 2015). This confirms the high correlation observed for 
the green and NIR Landsat 7 ETM+ bands (Figure 2). ALOS PALSAR 
on the other hand has the ability to penetrate the canopy and provide 
information on stem biomass. The single polarised HV generated a 
higher correlation to forest carbon stocks compared to the HH signal 
(Figure 2). HH consists mainly of surface canopy scattering while HV 
reflects volumetric scattering because of its ability to penetrate the 
canopy and thus corresponds to variation in biomass and forest car-
bon stocks (Collins et al., 2009; Morel et al., 2011). We report for the 
first time that ALOS PALSAR indices (NBVI and RVI) generate a mod-
erate correlation with forest carbon stocks in a savannah dry forest. 
Our study generated a higher R2 compared to Goh et al. (2014) who 
obtained an R2 value of 0.46 and nRMSE of 0.36 after integrating a 

F I G U R E  4  Distribution of the nRMSE based on the 
bootstrapped ANN model for each dataset

F I G U R E  5  Spatial distribution of forest 
carbon stocks based on the integrated 
model. Underneath the forest carbon map 
is a digital elevation model. The Mg/ha 
represents megagram = 1000 kg
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SPOT- 5 NIR band with an HV polarisation band from ALOS PALSAR 
in a study carried out in Singapore. This variation can be attributed to 
the procedure in which data integration was performed in our study. 
In their study, Goh et al. (2014) integrated spectral bands alone with-
out using vegetation indices, especially the radar indices which are 
documented to improve vegetation biophysical retrieval. Moreover, 
our study used a powerful machine- learning technique ANN, com-
pared to simple parametric linear regression used in several studies 
(Basuki et al., 2013; Wingate et al., 2018). The utility of ANN concurs 
with Foody et al. (2003) who modelled forest biomass using ANN 
based on Landsat TM imagery in Malaysia.

In as much as the models produced in this study had high pre-
dictive power, like all modelling processes they are subject to error. 
The possible source of errors include uncertainties in the allometric 
equations used especially the generalised species. Errors in a model 
can also be propagated from atmospheric and geometric processing 
of the images. However, an error of less than 25% is considered a 
good estimate and sufficient in vegetation biophysical predictions 
using remote sensing data (Asner et al., 2015). Our results thus 
demonstrate high prediction accuracies for all three experimen-
tal models. The spatial variation in forest carbon stocks shown in 
Figure 5 reflects the foraging behaviour of key foraging wildlife spe-
cies in the park. The park has a sizeable number of African elephants, 
and they forage in accessible low- lying areas rather than inaccessible 
high- elevation areas (Gara, Wang, et al., 2016b).

To the best of our knowledge, a single study (Wingate 
et al., 2018) has to date integrated radar and optical imagery to es-
timate forest carbon stocks or any other forest structural parame-
ter in the savannah dry forest of Southern Africa. Studies that have 
examined the utility of radar remote sensing have mainly focused 
on tropical forests while savannah dry forests of Southern Africa 
have remained under- reported. The few studies conducted in these 
ecosystems used Landsat data only and regressed forest carbon 
stocks to vegetation indices using simple parametric regression 
(Gara et al., 2015, 2017). In addition to integrating ALOS PALSAR 
and Landsat ETM+, our study demonstrates the utility of ANN— a 
parametric machine- learning algorithm to estimate and map forest 
carbon stocks.

4.1  |  Implications for management

The findings presented in this study have a wide range of policy im-
plications related to UNFCCC carbon stock measurement, reporting 
and verification (Herold & Skutsch, 2011). Our findings validate the 
use of remote sensing as a tool to supplement in situ measurements 
of carbon stocks for estimating and monitoring a key forest metric 
across large landscapes in an understudied forest type. Future man-
agement of these fragile ecosystems depends on an understanding 
of how changes in forest carbon stocks relate to changes in land use 
and cover as well as to other types of disturbance. The map that was 
created is crucial for identifying and selecting landscapes with mutu-
ally beneficial features in addition to assessing the spatial variability 

in forest carbon stocks (for biodiversity conservation, habitat extent 
and fragmentation).

5  |  CONCLUSION

In this study, we examined the utility of integrating ALOS PALSAR 
and Landsat 7 ETM+ in estimating forest carbon stocks in a savan-
nah dry forest. Based on the results obtained from our analysis, we 
conclude that 

 (i) Integrating ALOS PALSAR and Landsat 7 ETM+ bands and vege-
tation indices improves the estimation accuracy of forest carbon 
stocks in mopane dry forests compared to when they are used as 
independent data sets.

 (ii) An integrated RADAR and Landsat 7 ETM data set can be suc-
cessfully used to map variability in forest carbon stocks in a sa-
vannah dry forest.

 (iii) The spatial variation in forest carbon stocks generally reflects 
the foraging behaviour of key foraging wildlife species, that is 
African elephants in the study site.

However, further research should be conducted in the other bi-
omes using the recently launched Sentinels SAR and Landsat imag-
ery to ascertain the validity of the results obtained in this study.
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