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ABSTRACT
The paper is based on the notion that the Nyquist frequency νN is a symmetry point of the
periodogram of a time series: the power spectrum at frequencies above νN is a mirror image
of that below νN. Koen showed that the sum SS(ν) = ∑

k,�[sin 2πν(tk − t�)]2 (where tk and t�
range over the time points of observation) is zero when the frequency ν = νN. This property is
used to investigate the Nyquist frequency for data which are almost regularly spaced in time.
For some configurations, there are deep minima of SS at frequencies νP � νN; such νP are
dubbed ‘pseudo-Nyquist’ frequencies: the implication is that most of the information about the
frequency content of the data is available in the spectrum over (0, νP). Systematic simulation
results are presented for two configurations – small random variations in respectively the time
points of observation and the lengths of the intervals between successive observations. A few
real examples of CCD time series photometry obtained over several hours are also discussed.

Key words: methods: statistical – stars: individual: HE 0230-4323.

1 IN T RO D U C T I O N

A time series of measurements y1, y2, . . . , yN is taken at times t1,
t2, . . . , tN; the ti are, in general, not regularly spaced, i.e.

�j = tj+1 − tj (1)

is not constant. The notation is simplified if it assumed that the
mean of the yi is zero, hence this non-essential assumption is made.
The periodogram of the yi is defined as

I (ω) = 1

N

⎡
⎣

(
N∑

k=1

yk cos ωtk

)2

+
(

N∑
k=1

yk sin ωtk

)2
⎤
⎦ , (2)

where ω = 2πν is the angular frequency.
To set the scene, consider the case of constant time spacing be-

tween observations, i.e. �j = d(j = 1, 2, . . . , N − 1). Conven-
tionally, the periodogram (2) is then calculated over the frequency
interval 0 ≤ ν ≤ 0.5/d (or some subinterval thereof). It is often said
that the Nyquist frequency νN = 0.5d−1 is the highest frequency
component which can be extracted from the data. This is not quite
true – more accurately, it is the high-frequency limit of one interval
over which I (ν) is uniquely defined. It is not difficult to show that
exactly the same periodogram is obtained over an infinite number of
different frequency intervals. Let I 0(ν) be defined over 0 ≤ ν ≤ νN,
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then

I (ν) ≡ I0(2νN − ν) νN ≤ ν ≤ 2νN

I (ν) ≡ I0(ν − 2νN) 2νN ≤ ν ≤ 3νN

I (ν) ≡ I0(4νN − ν) 3νN ≤ ν ≤ 4νN

I (ν) ≡ I0(ν − 4νN) 4νN ≤ ν ≤ 5νN

. . . . . . (3)

or, more succintly,

I (ν) =
{

I0(2kνN − ν) (2k − 1)νN ≤ ν ≤ 2kνN

I0(ν − 2kνN) 2kνN ≤ ν ≤ (2k + 1)νN,
(4)

where k is any positive integer. As pointed out by Eyer & Bartholdi
(1999), physical considerations determine which of the intervals is
applicable – in practice, observations are usually planned such that
any frequency of interest lies in the interval (0, 0.5d−1).

Eyer & Bartholdi (1999) considered the case of irregular time
spacing, and showed that the Nyquist frequency is given by
νN = 0.5d−1

∗ , where d∗ is the greatest common divisor of the time
intervals in (1). For example, if there is an underlying regularity to
the times of measurement, characterized by an interval �t , then νN

= 0.5/�t , even if observations are only obtained sporadically (i.e.
if there are many ‘missing values’). If the measurements are com-
pletely random, then d∗ is the accuracy with which time is measured
(i.e. the effective unit of time; see Koen 2006).

Koen (2006) supplied a calculation formula to be solved for the
Nyquist frequency, for arbitrary time spacings of measurements:
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the smallest positive root of

SS(ν) =
N−1∑
�=1

N∑
k=�+1

[sin 2πν(tk − t�)]
2 = 0 . (5)

This will be used below to investigate a situation which is inter-
mediate to the two extremes discussed above, namely the case of
small random deviations from regularity in the times between ob-
servations. Two plausible theoretical time spacing configurations
are discussed in Section 2, and applications to real data follow in
Section 3. The contents of the paper are summarized in Section 4.

2 THE PSEUDO-NYQUIST FREQUENCY

Two situations are considered, which are, at a first glance, almost
identical:

(i) There is a small random element to the timing of each obser-
vation, i.e.

tj = j�t + εj , (6)

where �t is fixed and the εj are random numbers with a small
(common) variance.

(ii) There is a small random element to each interval between
successive observations:

tj = tj−1 + �t + εj . (7)

Case (i) could be one in which, for example, the intervals between
observations are perfectly regular, but there are small recording
errors in the times. Case (ii) could, for example, model a situation in
which there are small random variations in exposure and/or readout
times in time series photometry.

It is assumed that the random elements εj are Gaussian, with zero
mean, and variance σ 2

ε . Simulation results presented below all have
�t = 1; N = 100 unless otherwise specified.

2.1 Case (i)

In the first example only, time is specified only to two decimal
places, hence the maximum value of the Nyquist frequency, which
applies to completely irregular time spacing of measurements, is
νN = 0.5/0.01 = 50. Fig. 1 shows simulated scatter in �j = t j+1 − tj,
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Figure 1. The intervals between successive time points for a Case (i) sim-
ulation with σ = 0.05.
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Figure 2. The function SS in equation (5), for the observation times corre-
sponding to Fig. 1.
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Figure 3. The low-frequency part of Fig. 2.

assuming σ ε = 0.05. The corresponding function SS in (5) is plotted
in Fig. 2. The function is zero at ν = 50 – the Nyquist frequency.
Note though, the presence of deep local minima, particularly at
small frequencies (ν < 5). The low-frequency interval is shown in
more detail in Fig. 3. Although the sum-of-squares SS is not zero
in the point ν = 0.5, it is quite small: the ratio D = SSmin/SSmax is
0.07.

Consider a candidate Nyquist frequency ν∗, and let I0 be the
periodogram, calculated over the interval 0 ≤ ν ≤ ν∗. The sum-of-
squares SS(ν∗) defined in (5) is then a measure of the difference
between I (ν) (ν∗ ≤ ν ≤ 2ν∗) and I 0(2ν∗ − ν) (cf. the first line of
equation 3; Koen 2006). If ν∗ = νN, then the two periodograms are
identical and SS = 0. On the other hand, if SS is non-zero but small,
it means that there is good, albeit not perfect, agreement between
the two spectra. The point is illustrated by Fig. 4, which compares
spectra over 0 ≤ ν ≤ ν∗ = 0.5 and 0.5 ≤ ν ≤ 1: the spectra are
almost mirror images, but there are some small differences. (The
‘measurements’ were 100 Gaussian random values, taken at the
time points giving rise to Figs 1–3.)

The correlation between the two periodograms defined above is
0.96 – it would have been unity if ν = 0.5 had been the true Nyquist
frequency. Given the very high correlation, a frequency such as
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Figure 4. The periodogram, as defined in (2), for white noise defined on
the time points giving rise to Figs 1–3. Note the near symmetry around the
pseudo-Nyquist frequency νP = 0.5.
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Figure 5. The top panel shows the correlation between periodograms cal-
culated over the frequency intervals (0, νP) and (2νP, νP), as a function
of deviation from regularity of the time points. The bottom panel shows
SS(νP), normalized by the maximum of SS over (0, 2νP). Calculations were
performed for σ ε = 0.02(0.02)0.30. At a given σ ε , plotted values have been
jittered slightly to show the vertical scatter of points more clearly. For each
value of σ ε , 100 white noise samples, each of size N = 100, were generated.

ν = 0.5 in this example will be referred to as a ‘pseudo-Nyquist
frequency’ νP in what follows.

It may be expected that the smaller σ ε (compared to �t) the higher
the correlation between the two spectra in the first line of (3) will
be. A simulation experiment was conducted to obtain quantitative
results: 15 values of σ ε were chosen in the range 0.02 to 0.30. For
each of these 100 sets of time points, with associated white noise
‘observations’ yj were generated. The pseudo-Nyquist frequency νP

near 0.5 was determined by locating the local minimum of SS(ν),
and the periodograms over (0, νP) and (2νP, νP) were correlated.
The results can be seen in the top panel of Fig. 5. (Values of σ ε

have been jittered slightly horizontally to make the vertical spread
of values in the diagram clearer.) Note that the spread is caused by
variations in the configurations of time points tj, variations in the
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Figure 6. As for Fig. 5, but for sample sizes N = 500.

‘observations’ yj and in the values of νP. The corresponding ratios
D = SSmin/SSmax are plotted in the bottom panel of the figure.

An implication of Fig. 5 is that for σ ε < 0.05, νP functions
effectively as a true Nyquist frequency, while for σ ε > 0.2 or so,
the time points are essentially randomly distributed, and D = D(ν)
is small only in the true Nyquist frequency ν = νN.

Fig. 6, for N = 500, shows that the spread in correlation values
for given σ ε decreases with increasing sample size. There is also a
suggestion that the mean correlation decreases to zero faster with
increasing σ ε .

A technical issue is mentioned in passing: for the largest values
of σ ε in Figs 5 and 6, the simulated values of ε are often larger than
unity in absolute value: such data were rejected to avoid ambiguity
in the simulated time points. Strictly speaking, random values were,
therefore, drawn from a truncated, rather than a standard, normal
distribution.

If νP is fixed at ν∗ (the exact Nyquist frequency obtained when
σ ε = 0), then relatively simple analytical expressions for the mean
and variance of SS(ν∗) can be derived. It is shown in Appendix A
that

ESS(ν∗) = 1

4
N (N − 1)(1 − e−4q ),

var[SS(ν∗)] = 1

16
N (N − 1)

× [
(1 − e−8q )2 + 2(N − 2)e−4q (1 − e−4q )2

]
, (8)

where q = (2πν∗σ ε)2. Fig. 7 shows the dependence of ESS(ν∗)/N 2

and var[SS(ν∗)]/N 3 on σ ε , for ν∗ fixed at 0.5, and three different
values of N. Clearly, ESS(ν∗) ∝ N 2 and var[SS(ν∗)] ∝ N 3 to very
good accuracy, at least for N ≥ 100. These results may have been
anticipated from the dependences on N in (8).

The results in (8) can be related to those in the lower panels of
Figs 5 and 6 by noting that

D = SSmin/SSmax ≈ SS(ν∗)/[0.25N 2] .

2.2 Case (ii)

Plots of SS(ν) around νP = 0.5 show that, for given σ ε , the local
minima are less deep than for simulated Case (i) data. Also, νP is
not as sharply defined as for Case (i) data. Fig. 8 illustrates this

C© 2009 The Author. Journal compilation C© 2009 RAS, MNRAS 401, 586–596



The Nyquist frequency for time series 589

0   

0.1 

0.2 

E
 [

S
S

(ν
*)]

0 0.1 0.2 0.3 0.4 0.5
0 

5 

10

15

σ
ε

V
a

r 
[S

S
(ν

*)]

Figure 7. The expected value (top panel) and variance (bottom panel) of
the sum of squares in equation (5), evaluated in a fixed pseudo-Nyquist
frequency ν∗ = 0.5, for Case (i) of Section 2. Although not readily distin-
guishable, results are shown for three sample sizes: N = 100 (broken lines);
N = 500 (solid lines); and N = 5000 (dotted lines). Expected values have
been scaled by N2, and variances by N3.
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Figure 8. The distribution of pseudo-Nyquist frequencies for 100 Case (i)
data sets with σ ε = 0.2 (top) and 100 Case (ii) data sets with σ ε = 0.1.

for 100 data sets for each of Case (i) (σ ε = 0.2) and Case (ii)
(σ ε = 0.1). The correlation between spectra with symmetry point
νP is 0.23 for both these sets of data. Note that the spread of νP

values is more than an order of magnitude larger for Case (ii) data
sets.

The Case (ii) analogue of Fig. 5 is given in Fig. 9. For a given
value of σ ε , the mean correlation is smaller, and the spread greater,
for the simulated Case (ii) data. Also, the minima in SS, as measured
by the ratio D, are shallower for Case (ii) data.

Analytical formulae for ESS(ν∗) and var[SS(ν∗)], analogous to
(8), are derived in Appendix B (equations B3, B7 and B8), but these
are not transparent. It is again found that ESS(ν∗) ∝ N 2, but the
dependence of the variance on N is stronger than for Case (i) –
var[SS(ν∗)] ∝ N 4. Some results are plotted in Fig. 10, for ν∗ = 0.5,
and three different values of N.
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Figure 9. As for Fig. 5, but for Case (ii) models with σ ε = 0.01(0.01)0.14.
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Figure 10. As for Fig. 7, but for Case (ii) of Section 2. The scaling of
expected values by sample size N is the same as for Case (i) (i.e. N2), but
variances have been scaled by N4, and then multiplied by 1000 (to facilitate
plotting).

This section of the paper is closed with a word on how to ascertain
which case a particular observed data set might belong to. This is
easily done by comparing observed and predicted time points in an
‘observed-calculated’ (O − C) diagram:

(O − C)(j ) = tj − j�t, (9)

where �t is the mean interval between successive observed time
points. Simulated O − C diagrams for the two data types are com-
pared in Fig. 11: the graph for Case (ii) data is a random walk,
considerably smoother than that for Case (i).

3 R EAL EXAMPLES

The first set of illustrations is based on data acquired during three
observing runs on the hot subdwarf star HE 0230-4323 (Koen
2007). The times between successive B-band exposures are plot-
ted in Fig. 12. Exposures through a V filter were interleaved with
those in B, and filter changes also required a few seconds. The top
panel of the figure demonstrates the results of an uneventful run –
only slight irregularities in the times between exposures are evident.
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Figure 11. ‘Observed minus predicted’ diagrams for Case (i) (top panel)
and Case (ii) (bottom panel) time points, respectively. The variance σ 2

ε =
0.01, and N = 200, for both data sets.
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Figure 12. Three typical time interval configurations encountered in CCD
time series photometry. Top panel: slight irregularities in the time intervals
between measurements. Middle panel: as for the top panel, but with a single
aberrant irregularity due to a software restart. Bottom panel: as for the top
panel, but with a permanent change of exposure times. Breaks in the plots
are due to missing observations: these do not affect the Nyquist frequency.

It is interesting that, within the accuracy of the times recorded, only
a few discrete time interval values occur. The effect of a ∼100 s
interruption in the observing sequence is illustrated in the middle
panel. The time intervals plotted in the bottom panel were generated
by a switch in exposure times, necessitated by changes in weather
conditions.

Results for the three data sets are given in Table 1: note that
the brightness measurements of HE 0230-4323 were used in the
calculations. For the time spacing plotted in the top panel of Fig. 12,
νP can essentially be treated as a true Nyquist frequency. In the case
of the spacing in the bottom panel of Fig. 12, the correlation between
spectra on either side of νP is too small for the periodogram to be
considered unique over (0, νP). Results for the data in the middle
panel are apparently intermediate.

It is interesting to compare νP with the frequency

ν1 = 0.5/�t , (10)

Table 1. Parameters derived for the data sets in Fig. 12.

Data set νP ν1 ρ D

Slight irregularities 168.91 163.78 1.00 0.0007
One outlier 165.40 158.66 0.92 0.46
Change of spacing 169.00 151.60 0.22 0.53

Note. νP is a low frequency candidate substitute for the true Nyquist fre-
quency; ν1 is based on the mean time spacing (see equation 10); ρ is the
correlation between periodograms defined on intervals separated by νP; and
D measures the depth of the sum of squares SS in the frequency νP.
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Figure 13. The sum of squares defined in equation (5), for the data set
with a change in times between successive observations (bottom panel of
Fig. 12). Two closely spaced pseudo-Nyquist frequencies are obtained.

where �t is the mean time spacing between measurements. It has
been speculated in the astronomy literature that this is an appropriate
‘Nyquist frequency’ for irregularly spaced data. It is clear from the
entries in the table that ν1 as defined in (10) is an inaccurate estimator
for νP.

For the first data set, which has an underlying time spacing which
is close to regular, ν1 can be adjusted to take account of the fact that
some of the �t are artificially long because a few poor data points
have been excised. The result is a frequency of 168.90 – very close
to νP.

There are two issues of particular interest raised by the infor-
mation in the table. The first is the fact that the pseudo-Nyquist
frequency of the third data set differs little from the first two, de-
spite the change in times between measurements. Fig. 13 shows that
two distinct minima in SS are in fact obtained – but the one near
ν = 169 is considerably deeper.

The second point is an apparent discrepancy between the values
of D and the correlation coefficients for the data with a single out-
lying time spacing: the correlation is high, despite the fact that D is
relatively large. Inspection of Fig. 14, a plot of I (νP + ν) against
I (νP − ν) (0 < ν < νP), reveals the reason for the large correlation
coefficient: a reasonable correspondence between the largest peaks
in the two periodograms. If both spectra are truncated so that only
periodogram values below 300 are taken into account, the correla-
tion coefficient drops to 0.53. A short simulation experiment was
also conducted using white noise as ‘measurements’ – only modest
periodogram peaks are expected for such data. Correlation coeffi-
cients in the range 0.22–0.77 were obtained, for 100 different ‘data
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Figure 14. The relationship between periodograms over (νP, 0) and (νP,
2νP), for the data set with a single outlying time spacing (middle panel of
Fig. 12).
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Figure 15. The sum of squares defined in (5), for the time spacings in the
middle panel of Fig. 12; see also the second line in Table 1, and Table 2.

sets’. In general, the ratio D is therefore probably a better measure
of whether a candidate pseudo-Nyquist frequency is useful than a
single correlation coefficient.

A broader search for pseudo-Nyquist frequencies for the ‘one
outlier’ data set gives interesting results. In Fig. 15, the sum of
squares SS is plotted over a wide frequency interval. There is an array
of deep local minima, spaced roughly 165 d−1 apart. Furthermore,
there is a symmetrical arrangement of depths of the minima, with
symmetry point ν ∼ 1200. The first seven minima are listed in
Table 2.
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Figure 16. The times between successive observations of fields in the open
cluster IC 2391. Data for three different nights are shown.

Table 3. Parameters derived for the data sets in Fig. 16.

Panel in Fig. 16 νP ν1 ρ D σ (�t)

Top 93.10 93.08 0.86 0.13 4.3
Middle 92.64 92.38 0.84 0.15 6.1
Bottom 92.62 92.50 0.93 0.072 4.7

Note. The correlation coefficients are mean values derived from 100 syn-
thetic white noise data sets. The last column gives a measure of the scatter
in the plotted time intervals; other symbols are defined in Table 2.

Scrutiny of the table, and Fig. 15, suggests that ν = 1163 d−1 is
very close to being a true Nyquist frequency. Using ν = 332.2 d−1

would lead to a slight loss of information.
Data for the second set of illustrations are taken from observations

of stars in the cluster IC 2391 (Koen & Ishihara 2006). Telescope
pointing was rotated between two fields in the cluster throughout
each of the three observing nights – this accounts for the rather
erratic intervals between measurements (Fig. 16).

The results of the analysis are presented in Table 3. The correla-
tions were derived by associating random white noise ‘data’ with
each of the time points; the values in the table are means over 100
simulated data sets.

The agreement between ν1 and νP is much better than for the
data in Table 1: one reason is that there are no censored time points
amongst the IC 2391 data. It is curious that the correlation coefficient
for the bottom data set in Fig. 16 is larger than for the top data set,
despite the fact that the scatter in the time intervals is slightly larger.

4 SU M M A RY

(i) If measurements are regularly spaced in time, an interval �t

apart, then the Nyquist frequency is νN = 0.5/�t . This frequency is

Table 2. Properties of the local minima in Fig. 15.

νP 165.40 332.54 497.93 665.07 830.47 997.60 1163.01

D 0.46 0.063 0.23 0.23 0.073 0.47 0.019
Real data ρ 0.92 0.96 0.87 0.82 0.96 0.67 0.99

White noise ρ 0.55 0.94 0.76 0.76 0.93 0.52 0.98

Note. Two correlation coefficients ρ were calculated: one for the actual HE 0230-4323 observations, the other being the mean obtained
for 100 simulated white noise data sets.
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Figure 17. Periodogram of observations of the star HE 0230-4323. The
time spacing of the measurements is plotted in the top panel of Fig. 12; see
also the first line of Table 1.

not affected by missing values: provided that there is an underlying
regularity, large gaps in the data make no difference to the Nyquist
frequency.

(ii) At the other end of the scale, for completely random obser-
vations, the Nyquist frequency is also determined by the largest
common divisor of the �tj: in this case, it would usually be
the smallest unit of time recorded. As an example, if the Julian
date of observation is recorded to five decimal places, then νN =
50 000 d−1.

(iii) The results in Section 2 address intermediate situations, in
which there are small variations in the �tj. Two cases were dis-
tinguished: random variations in the time points of measurement,
and random variations in the intervals between measurements. For
each, the potential usefulness of the pseudo-Nyquist frequency
νP ∼ 0.5/�t was investigated. For Case (i), σ P could be used
as a Nyquist frequency for scatter less than about 5 per cent of �t ;
for Case (ii) data the limitation is more severe. These results were
derived for N = 100; numerical results for N = 500 were similar.

(iv) Real data sets with small irregularities were discussed in
Section 4. Provided there are no discrepant time points, such obser-
vations may have pseudo-Nyquist frequencies which may be used
as true Nyquist frequencies (e.g. the first HE 0230-4323 data set –
see also below). For somewhat larger scatter, as in the IC 2391 data,
the pseudo-Nyquist frequency does not seem to be useful.

(v) An intriguing discovery of this paper is the result that,
for some time spacing configurations, pseudo-Nyquist frequencies
which could function as true Nyquist frequencies may be found at
approximate multiples of 0.5/�t (Fig. 15). This seems to be asso-
ciated with data containing time points which are aberrant, i.e. do
not belong to the approximately regular spacing of the rest. None
of the data studied in this paper, aside from the ‘one outlier’ set in
Table 1, showed this behaviour: for the rest, the dependence of SS
on ν resembled that shown in Fig. 3.

(vi) The combined results of Sections 2 and 3 show that for a
given data set with timing irregularities, it may not be possible
to draw definite conclusions about the location of pseudo-Nyquist
frequencies, nor about the degree of symmetry around these, with-
out careful investigation. It is recommended that, where feasible,
simulation be used to this end.

The paper is closed with a very real application. It was noted
in the previous section that νP = 168.9 d−1 is essentially a real
Nyquist frequency for the first of the HE 0230-4323 data sets. The
periodogram of the data is plotted in Fig. 17, over an interval of
twice νP. The excellent agreement between the spectra on either
side of the Nyquist frequency is evident. Koen (2007) only studied
the low-frequency part of the spectrum, and concluded that HE
0230-4323 is a slowly pulsating star with a prominent ∼39 d−1

mode. Subsequent investigation, using very short exposures (10 s),
revealed that the wrong alias had been identified: the star is in fact
a rapid pulsator with periods of the order of a few minutes.
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APPENDIX A : SOME STATISTICAL PROPERTI ES OF SS F O R C A S E ( i) O F S E C T I O N 2

Consider a frequency ν∗ which would have been a Nyquist frequency if the time spacings had been regular (i.e. if εj ≡ 0 had held in
equation 6). Then,

sin 2πν∗(k − �) = 0 cos 2π(k − �)ν∗ = ±1

for all integer k, �. It follows that

SS(ν∗) =
N−1∑
�=1

N∑
k=�+1

[sin 2πν∗(εk − ε�)]
2 . (A1)

The primary interest is in the mean and variance of SS(ν∗). One way of obtaining these is through the probability density function (PDF)
of SS(ν∗): it is not difficult to show that the PDF of the individual terms

y = sin2 2πν∗(εk − ε�) (A2)

in (A1) is

f (y) = 1

σ∗
√

y(1 − y)

{
φ

(
− arcsin

√
y

σ∗

)
+

∞∑
j=1

[
φ

(
jπ + arcsin

√
y

σ∗

)]
+

[
φ

(
jπ − arcsin

√
y

σ∗

)]}
, (A3)
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where σ 2
∗ = 2(2πν∗σ )2 = var[2πν∗(εk − ε�)] and

φ(u) = 1√
2π

exp

(
−1

2
u2

)
.

However, the PDF of the sum of terms in (A1) is not readily written down, due to the interdependence of the terms in (A1). We therefore
proceed to evaluate the mean and variance of SS(ν∗) directly from the Gaussian distribution of the arguments 2πν∗(εk − ε�).

Some useful results are first given. Using the standard integral∫ ∞

0
e−ax2

cos bxdx = 1

2

√
π

a
e−b2/4a

and the trigonometric identities

sin2 x = 1

2
(1 − cos 2x)

cos2 x = 1

2
(1 + cos 2x)

sin2 x cos2 x = 1

8
(1 − cos 4x)

sin4 x = 1

8
(3 − 4 cos 2x + cos 4x)

cos4 x = 1

8
(3 + 4 cos 2x + cos 4x)

it is not difficult to show that, for y as defined in (A2),

E sin2 y =
(

1 − e−2σ 2∗
)

/2

E cos2 y =
(

1 + e−2σ 2∗
)

/2

E sin2 y cos2 y =
(

1 − e−8σ 2∗
)

/8

E sin4 y =
(

3 − 4e−2σ 2∗ + e−8σ 2∗
)

/8

E cos4 y =
(

3 + 4e−2σ 2∗ + e−8σ 2∗
)

/8.

(A4)

Furthermore, expectations of variables such as sin y, sin3 y, sin y cos y, etc., are zero, since these are uneven functions of y. Finally, since the
εj(j = 1, 2, . . . , N ) are assumed independent, it follows that for distinct �, k, r , s

cov[sin2 ω∗(εk − ε�), sin2 ω∗(εs − ε�)] = 0,

where ω∗ = 2πν∗.
The expected value (mean) of SS(ν∗) follows immediately from the first relation in (A4) as

ESS(ν∗) = 1

4
N (N − 1)

(
1 − e−2σ 2∗

)
. (A5)

Calculation of the variance is more involved:

var[SS(ν∗)] = cov

[
N−1∑
�=1

N∑
k=�+1

sin2 ω∗(εk − ε�),
N−1∑
r=1

N∑
s=r+1

sin2 ω∗(εs − εr

]

=
N−1∑
�=1

N∑
k=�+1

cov

[
sin2 ω∗(εk − ε�),

N∑
s=�+1;s =k

sin2 ω∗(εs − ε�) +
N∑

s=k+1

sin2 ω∗(εs − εk)

+
k−1∑

r=1;r =�

sin2 ω∗(εk − εr ) +
�−1∑
r=1

sin2 ω∗(ε� − εr ) + sin2 ω∗(εk − ε�)

]
. (A6)

A typical covariance term is

cov[sin2 ω∗(εk − ε�), sin2 ω∗(εs − ε�)]

= E[sin2 ω∗(εk − ε�) sin2 ω∗(εs − ε�)] − [E sin2 ω∗(εk − ε�)][E sin2 ω∗(εs − ε�)]

= E[sin ω∗εk cos ω∗ε� − cos ω∗εk sin ω∗ε�]
2[sin ω∗εs cos ω∗ε� − cos ω∗εs sin ω∗ε�]

2 − 1

4
(1 − e−4q )2

= E[sin4 ω∗εk cos2 ω∗ε� cos2 ω∗εs + cos4 ω∗εk sin2 ω∗ε� sin2 ω∗εs + sin2 ω∗εk cos2 ω∗ε� cos2 ω∗εk sin2 ω∗εs

+ cos2 ω∗εk sin2 ω∗ε� sin2 ω∗εk cos2 ω∗εs] − 1

4
(1 − e−4q )2,
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where q ≡ σ 2
∗/2. Using (A4), and simplifying,

cov[sin2 ω∗(εk − ε�), sin2 ω∗(εs − ε�)] = 1

8
e−4q (1 − e−4q )2 s = k (A7)

is obtained. It is straightforward to also show that, if k = s,

cov[sin2 ω∗(εk − ε�), sin2 ω∗(εk − ε�)] = 1

8
(1 − e−8q )2. (A8)

Substitution of (A7) and (A8) into (A6), then leads to

var[SS(ν∗)] =
N−1∑
�=1

N∑
k=�+1

[
(2N − 4)

8
e−4q (1 − e−4q )2 + 1

8
(1 − e−8q )2

]

= 1

16
N (N − 1)

[
(1 − e−8q )2 + 2(N − 2)e−4q (1 − e−4q )2

]
. (A9)

APPENDIX B: SOME STATISTICAL PROPE RTI ES OF SS FOR CASE ( ii) O F SECTI ON 2

The analogue of equation (A1) is

SS(ν∗) =
N−1∑
�=1

N∑
k=�+1

[sin ω∗(ek − e�)]2, (B1)

where

ej ≡
j∑

i=1

εi .

It follows that

ek − e� =
k∑

i=�+1

εi

is Gaussian with zero mean and variance (k − �)σ 2 (σ 2 being the variance of the εj). Consequently, by (A4),

E sin2 ω∗(ek − e�) = 1

2

(
1 − e−2(k−�)q

)
, (B2)

where, as in Appendix A, q = (ω∗σ )2.
The expected value of SS(ν∗) can be obtained with the help of (B2):

ESS(ν∗) = 1

2

N−1∑
�=1

N∑
k=�+1

(
1 − e−2(k−�)q

)

= 1

4
N (N − 1) − 1

2

N−1∑
�=1

N∑
k=�+1

ak−�,

where a = exp (−2q). The last term is

N−1∑
�=1

N∑
k=�+1

ak−� =
N−1∑
�=1

a
1 − aN−�

1 − a

= a(N − 1)

1 − a
− a

1 − a
[a + a2 + · · · + aN−1]

= a

1 − a

[
(N − 1) − a

1 − aN−1

1 − a

]
.

The final result is

ESS(ν∗) = 1

4
N (N − 1) − a

2(1 − a)

[
(N − 1) − a

1 − aN−1

1 − a

]
. (B3)

In order to evaluate the variance of SS(ν∗), covariances of the form

C(θ1, θ2, θ3) = cov
[
sin2(θ1 + θ2), sin2(θ1 + θ3)

]
,
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where θ j ∼ N (0, qj) are independent, are required. Expanding the sinusoidal functions, setting expected values of odd functions equal to zero,
and re-arranging,

C(θ1, θ2, θ3) = [
E cos2 θ2

] [
E cos2 θ3

]
var(sin2 θ1) + [

E sin2 θ2

] [
E sin2 θ3

]
var(cos2 θ1)

+ {[
E cos2 θ2

] [
E sin2 θ3

] + [
E sin2 θ2

] [
E cos2 θ3

]}
cov(sin2 θ1, cos2 θ1)

= {[
E cos2 θ2

] − [
E sin2 θ2

]} {[
E cos2 θ3

] − [
E sin2 θ3

]}
var(sin2 θ1).

The last line of the result follows because

var(sin2 θ1) ≡ var(cos2 θ1) ≡ −cov(sin2 θ1, cos2 θ1) .

Substituting results from (A4),

C(θ1, θ2, θ3) = 1

8

(
1 − e−4q1

)2
e−2(q2+q3). (B4)

The required variance is then

var[SS(ν∗)] =
N−1∑
�=1

N∑
k=�+1

cov

[
sin2 ω∗(ek − e�),

N−1∑
r=1

N∑
s=r+1

sin2 ω∗(es − er )

]

=
N−1∑
�=1

N∑
k=�+1

cov

{
sin2 ω∗

[
k∑

i=�+1

εi

]
,

k−1∑
r=1

N∑
s=�+1

sin2 ω∗

[
s∑

j=r+1

εj

]}
.

(B5)

The last sum is conveniently split into four parts, which differ in their overlap θ 1 with the terms in S0 = sin2(ω∗
∑k

i=�+1 εi):

k−1∑
r=1

N∑
s=�+1

sin2 ω∗

(
s∑

j=r+1

εj

)
= S1 + S2 + S3 + S4,

where

S1(�, k) ≡
�∑

r=1

k∑
s=�+1

sin2

(
ω∗

s∑
j=r+1

εj

)
θ1 = ω∗

s∑
i=�+1

εi θ2 = ω∗
k∑

i=s+1

εi θ3 = ω∗
�∑

j=r+1

εi

S2(�, k) ≡
�∑

r=1

N∑
s=k+1

sin2

(
ω∗

s∑
j=r+1

εj

)
θ1 = ω∗

k∑
i=�+1

εi θ2 = 0 θ3 = ω∗

(
s∑

i=�+1

εi +
�∑

j=r+1

εi

)

S3(�, k) ≡
k−1∑

r=�+1

k∑
s=r+1

sin2

(
ω∗

s∑
j=r+1

εj

)
θ1 = ω∗

s∑
i=r

εi θ2 = ω∗

(
r−1∑

i=�+1

εi +
k∑

j=s+1

εi

)
θ3 = 0

S4(�, k) ≡
k−1∑

r=�+1

N∑
s=k+1

sin2

(
ω∗

s∑
j=r+1

εj

)
θ1 = ω∗

k∑
i=r+1

εi θ2 = ω∗
r∑

i=�+1

εi θ3 = ω∗

(
s∑

i=k+1

εi

)
.

In these formulae, θ 2 are the terms which occur only in S0, and θ 3 those only in S1– S4. Using (B4),

cov(S0, S1) = 1

8

�∑
r=1

k∑
s=�+1

(
1 − e−4q(s−�)

)2
e−2q(k+�−r−s)

cov(S0, S2) = 1

8

�∑
r=1

N∑
s=k+1

(
1 − e−4q(k−�)

)2
e−2q(�−r+s−k)

cov(S0, S3) = 1

8

�∑
r=�+1

k∑
s=r+1

(
1 − e−4q(s−r−1)

)2
e−2q(r+k−�−s−2)

cov(S0, S4) = 1

8

�∑
r=�+1

N∑
s=k+1

(
1 − e−4q(k−r)

)2
e−2q(r+s−k−�).

(B6)

The required variance can be calculated from (B5) as

var[SS(ν∗)] =
N−1∑
�=1

N∑
k=�+1

cov[S0(�, k), S1(�, k) + S2(�, k) + S3(�, k) + S4(�, k)] (B7)
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with the covariances given by (B6). Computer summation over four indices is slow for large N, and can be speeded up by explicit evaluation
of (B6):

cov(S0, S1) = ak+� − ak

8(1 − a)

[
a−� − a−k + 2a−�+1 − 2ak−2�+1

1 − a
+ a3

1 − a3
(a3k−4� − a−�)

]

cov(S0, S2) = a

8(1 − a)2
(aN+�−k − a�)(1 − a−�)(1 − 2a2(k−�) + a4(k−�))

cov(S0, S3) = ak−�

8

{
1

1 − a

[
−(k − � − 1) + a�−k+1 − 1

1 − a

]
− 2a

1 − a

[
(k − � − 1) + ak−� − a

1 − a

]

+ a3

1 − a3

[
(k − � − 1) + a3(k−�) − a3

1 − a3

]}

cov(S0, S4) = (ak − aN )

8

[(
a

1 − a

)2

(a−k − a−�−1) + 2
ak−�+1

(1 − a)2
(a−� − a−k+1) − a3k−4�+1 − a−�+4

(1 − a)(1 − a3)

]
,

(B8)

where a = exp(−2q) = exp[−2(2πν∗σ )2], as before.
It is, of course, also possible to sum the expressions in (B8) explicitly over k and �, but the resulting equations are tediously long, and do

not seem amenable to simplification.
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