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A simple, high-throughput 
modeling approach reveals 
insights into the mechanism of 
gametophytic self-incompatibility
Jahanshah Ashkani1,2 & D. J. G. Rees1,2

Specificity in the GSI response results from the S-haplotype-specific molecular interaction of S-locus 
F-box (SLF/SFB) and SRNase proteins in the self-incompatibility locus (S-locus). The answer to the 
question of how these two components of the S-locus (SRNase and SLF/SFB) interact has been gathered 
from several models. Since there is not enough evidence as to which one is the definitive model, none 
of them can be ruled out. Despite the identification of interacting protein elements, the mechanism 
by which SLF/SFB and SRNase interact to differently trigger the self-incompatibility among families 
and subfamilies remain uncertain. The high-throughput modeling approach demonstrates structural 
visions into the possible existence of a Collaborative Non-Self Recognition model in apple. These 
findings postulate several prospects for future investigation providing useful information to guide the 
implementation of breeding strategies.

Gametophytic self-incompatibility (GSI) plays a key role in the genetic diversity within plants while changing 
patterns of lineage diversification in clades that employ these mechanisms1–4. GSI involves the participation of 
both factors from the pollen and pistil5, which play an important role in pollen recognition and rejection6. One 
of the important features of the GSI is the existence of an extracellular ribonuclease in the pistil, the SRNase (the 
female determinant of SI), and its involvement in the rejection of incompatible pollen cells7. The Rosaceae SRNase 
contains a single hypervariable region (RHV) that is the most hydrophilic part of the SRNase, suggesting that it 
could be the prime determinant of the SRNase specificity8. The high level of allelic polymorphism of the SLF/SFB  
gene, along with its pollen-specific expression and close physical distance to the SRNase gene in the S-locus sup-
ports the hypothesis that SLF/SFB is the male determinant of GSI9,10. Despite the identification of F-box genes 
as pollen-S candidates the mechanism by which SLF/SFB and SRNase interact to trigger the self-incompatibility 
reaction remains uncertain. Several studies have suggested divergence of pollen-S function among different taxa 
with some having a self-recognition system with a single factor while others represent a non-self recognition sys-
tem with multiple factors11–19. The increase in the number of SLF genes implies that a larger repertoire of SRNases 
can be targeted, thus allowing more potential coupling partners, while the expansion in the number of SRNases 
will have the opposite effect. Accordingly, for a plant species it would be advantageous to have multiple SLF genes 
as this helps prevent inbreeding and provide diversity in plants.

The growing economic importance of fruit crops and the problems associated with their commercial produc-
tion has placed the molecular basis of self-incompatibility under intense attention. This has led to the rise of many 
hypotheses about how the pistil S-ribonuclease (SRNase) and pollen-expressed S-haplotype-specific F-box (SFB) 
interact. Kubo and colleagues (2010) proposed a Collaborative Non-Self Recognition model for the interaction of 
SLF variants (brothers) with different SRNases. This model assumes that the pollen S-locus encodes several SLF 
proteins and different SLF variants can recognize a subset of SRNases20. It is therefore of great interest to evaluate 
and study this model in various species, as it provides clues about the mechanism of GSI employed and further 
assists in formulating future studies, especially those focused on apple due to its economic significance in world-
wide agriculture. It is notable that successful breeding programs rely on the availability of diverse germplasm, 
which poses the need to develop and introduce new cultivars. Additionally, the GSI mechanism represents an 
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obstacle for the breeding of apple by restricting crosses between apple cultivars. As such the knowledge of GSI as 
to how the SLF/SFB and SRNase proteins interact, can provide useful information to guide the implementation 
of breeding strategies.

To address this issue a model of interaction between S-locus genes is introduced by assessing the Collaborative 
Non-Self Recognition model in apple. This model aims at describing the specificities of SLF/SFB and their broth-
ers (SFBBs) in recognizing a large repertoire of SRNases, using molecular modeling and docking techniques.

Results and Discussion
With the aim of inspecting the Collaborative Non-Self Recognition model in apple, Malus ×  domestica (Borkh.), 
the tertiary structure of known SRNases, along with SLFB3 and SLFB9, as well as their relevant brothers namely 
SFBB3α , SFBB3β  and SFBB9α  and SFBB9β , were predicted using the I-TASSER suite21 (Table S1-S7 and  
Fig. S1-S8). The folding topologies of the modeled SRNases structures were examined using the Dali server, which 
were found to be very similar to the topologies of Momordica charantia ribonuclease MC and MC1 (Table S4).  
Hence, it is concluded that these predicted structures have good homology with the experimentally solved struc-
tures of the RNase T2 family enzymes. These models can therefore be used confidently in a docking study to 
further assess the Collaborative Non-Self Recognition model in apple. With respect to SLF/SFBs and their relative 
brothers (SFBBs), the folding topologies of the modeled structures were found to be commonly very similar to 
the topologies of F-BOX/WD-repeat proteins (Table S3). Therefore, the result of Dali server clearly shows that the 
template and modeled structures could be part of the same protein family. Previous protein binding studies have 
shown that SLF interacts with the hypervariable (HV) region of S-RNase22, accordingly in this analysis only the 
residues within the predicted hypervariable region (Fig. 1) as identified previously by Ashkani and Rees23 were 
used as the interacting interface.

ZDOCK24–26 was used to predict SLF and SRNase interactions in S-locus while the docking results were 
narrowed down to those predicted complexes that have shown a significant interaction based on the Wilcoxon 
rank-sum test (p-value <  0.0001) comparing binding energies (ZRANK scores). The null hypothesis for this anal-
ysis was based on the finding of Hua and Kao (2006) who suggested that the non-self interactions are much 
stronger than the self-interactions22. The accuracy of the predicted complexes by docking was further assessed 
using the root mean square deviation (RMSD) between the atoms of the predicted complex and the native or 
near-native complex, the model with the best binding energy (Figs S9 and S10).

The results of the Wilcoxon rank-sum test (Table 1) shows that SFBB3β  from the S3-haplotype interacts more 
strongly with S10- and S25-RNase compared to the self S3-RNase while SLFB3 and SFBB3α  are only strongly 
interacting with S10-RNase. With regards to SLFB9 and its brothers (SFBB9α  and SFBB9β ), they all commonly 
interact with S3-, S8-, S10-, S25- and S30-RNase. In addition, SLFB9 and SFBB9β  commonly interact with S7- and 
S26-RNase while SFBB9α  and SFBB9β  commonly interact with S4-RNase (Fig. 2).

Therefore, it is suggested that the self/non-self recognition system in apple is controlled by multiple factors 
where SLF/SFBs interact with non-self SRNases with different binding specificities and thus proteins originally 
identified as SLF-like (SLF/SFB brothers), may indeed be true SLF/SFB proteins in carrying out the process of 
self/non-self recognition. Consequently, the presence of extra subsets of SLF/SFB proteins in the S-locus, which 
can interact with certain subset of SRNases is expected while additional SLF proteins in S-locus have yet to be 
characterised in Malus. In line with this hypothesis, Minamikawa and colleagues18, and Okada and co-workers27 
reported additional SFBB-like genes/alleles in apple, and it is likely that more SFBB genes remain to be identified. 
However, recently multiple male factors in pear (Pyrus pyrifolia) have also been identified28. In addition, com-
mon binding of a specific subset of SRNases to another subset of SLF/SFBs, are consistent with the scenario that 
a large repertoire of non-self SRNases are targeted and detoxified by multiple SLF/SFBs each of which recognizes 
a sub-fraction of SRNases28,29. These findings are in line with the Collaborative Non-Self Recognition model that 
the loss-of-function of one of multiple SLF/SFBs leads to a limited effect on the GSI phenotype.

Though our findings pertaining to the computational prediction of SLF/SFB and SRNase mechanism of inter-
action hold great value for future breeding studies, its further validation through direct protein-protein interac-
tion studies is needed.

Conclusion
It is known that the specificity of the self-incompatibility response results from S-haplotype-specific molecu-
lar interactions of SLF/SFBs and SRNases. As such understanding the recognition mechanism of GSI requires 
detailed structure-function analysis of the S-locus proteins. Such structure-function studies require an experimen-
tal system that allows efficient in vivo functional analysis of large numbers of SLF and SRNase variants generated  
in vitro by site-directed mutagenesis or domain swapping between proteins that determine different GSI specif-
icities. However, due to the experimental limitations associated with such studies, the computational approach 
undertaken here represents a powerful alternative. Hence, these findings provide the basis for studying the 
appearance of multiple subsets of SLF/SFBs and the biochemical basis that allows a particular subset of SLF/SFBs  
to recognize certain subset of SRNases but not others.

Methods
The I-TASSER suite21 was used to predict the tertiary structures of SLFB3, SFBB3α, SFBB3β, SLFB9, SFBB9α,  
SFBB9β  and SRNase haplotypes (i.e. S1-S4, S7-S10, S16, S20, S24-S26, S28, S30, S31) (Table S1). The quality of the 
final refined models was subjected to a series of tests for their internal consistency and reliability. Backbone con-
formation and overall model quality were evaluated by PROCHECK30 in VADAR v1.831 and ProSa-web32, respec-
tively. Furthermore, the folding topologies of the modeled structures were examined using the Dali server (http://
ekhidna.biocenter.helsinki.fi/dali_server). The ZDOCK program was used to evaluate the interactions between 
currently known Malus x domestica (Borkh.) SLF/SFBs and SRNases. The PDB file of the modeled structures of 
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SLF/SFBs and SRNases were used as inputs to ZDOCK as receptors and ligands respectively. For docking pur-
pose, the number of top poses for SLF/SFB-SRNase complex was set to 2 000 with the root mean square division 
(RMSD) cut off the value of 10 while only the hypervariable regions identified by Ashkani and Rees23 was pro-
vided to ZDOCK as an interface. Furthermore, ZRANK was used to re-rank the ZDOCK scores while the binding 
energies from ZRANK were analysed using Wilcoxon rank-sum test33, as implemented in R34. The RMSD values 
were calculated with ProFit v3.1 (Martin, unpublished, http://www.bioinf.org.uk/software/profit). Assuming that 
a pose with the lowest binding energy is the nearest native, the structure with the top ZRANK from the previous 
analysis was provided to ProFit as the reference structure in PDB format. All the other structures (from 2 000 
poses) were provided as mobile structures. The reference structure remains fixed while the mobile structures are 
fitted on to it. Finally, to determine the accuracy of the scoring function for docking models that were shown to 

Figure 1. Graphical representations of the location of hypervariable region (HV) on the alignment and 
secondary structures of Malus (A) SLF/SFBs and (B) SRNases. Highlighted regions on the primary and secondary 
structure of SLF/SFBs and SRNases are shown the location of HV region while ‘S’ referrers to SRNase. Ancestor 
sequences of SLF/SFBs and SRNases (i.e. SLFanc and SRNanc) were reconstructed using the Bayesian method 
as described by Hall35 as described by Ashkani and Rees23. HV regions containing 27 amino acids (from Lys-247 
to Cys-273, on loop 19 and a section of β 16-sheet) and 24 amino acids (from Ser-40 to Pro-63, on loop 2 and 
a section of α 2-helix) were identified for SLF/SFBs and SRNases based on the ancestor amino acid sequences, 
respectively.
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be significant using Wilcoxon rank-sum test, the ZRANK scores were plotted against ligand RMSDs, L-RMSDs. 
Plotting the ZRANK scores against LRMSDs shows the distribution of the poses in the form of an energy funnel, 
which is suggestive of the accuracy of the scoring function, whereby most near-native complexes have lower 
binding energies and low L-RMSDs.

References
1. Igic, B., Lande, R. & Kohn, J. R. Loss of self-incompatibility and its evolutionary consequences. Int J Plant Sci 169, 93–104 (2008).
2. Goldberg, E. E. et al. Species Selection Maintains Self-Incompatibility. Science 330, 493–495 (2010).
3. Franklin-Tong, N. V. & Franklin, F. C. Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. 

Trends Plant Sci 8, 598–605 (2003).
4. Waligorski, P. & Szaleniec, M. Prediction of white cabbage (Brassica oleracea var. capitata) self-incompatibility based on neural 

network and discriminant analysis of complex electrophoretic patterns. Comput Biol Chem 34, 115–121 (2010).
5. East, E. M. The distribution of self-sterility in flowering plants. Proc Am Philos Soc 82, 449–518 (1940).
6. Wheeler, M. J., Franklin-Tong, V. E. & Franklin, F. C. H. The Molecular and genetic basis of pollen-pistil interactions. New Phytol 

151, 565–584 (2001).
7. Kao, T. H. & Tsukamoto, T. The Molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell 16 Suppl, S72–S83 

(2004).
8. Tsai, D. S., Lee, H. S., Post, L. C., Kreiling, K. M. & Kao, T. h. Sequence of an S-protein of Lycopersicon peruvianumand comparison 

with other solanaceous S-proteins. Sex Plant Reprod 5, 256–263 (1992).
9. Sijacic, P. et al. Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429, 302–305 (2004).

10. Sakai, S. & Wakoh, H. Initial Invasion of Gametophytic Self-Incompatibility Alleles in the Absence of Tight Linkage between Pollen 
and Pistil S Alleles. Am Nat 184, 248–257 (2014).

SRNase SLFB3 SFBB3α SFBB3β SLFB9 SFBB9α SFBB9β

S1 − 35.61 − 29.55 − 31.75 − 25.85 − 32.30 − 35.17

S2 − 28.58 − 17.01 − 24.68 − 21.49 − 27.29 − 30.87

S3 (−49.01) (−53.49) (−51.55) − 38.77* − 44.54* − 54.07*

S4 − 41.83 − 38.62 − 43.12 − 31.83 − 39.08* − 42.70*

S7 − 35.79 − 41.07 − 37.81 − 36.33* − 36.25 − 43.32*

S8 − 42.55 − 43.74 − 48.75 − 36.73* − 43.69* − 47.39*

S9 − 35.90 − 34.37 − 41.61 (−30.65) (−34.37) (−41.61)

S10 − 56.37* − 61.77* − 59.89* − 47.87* − 48.72* − 60.64*

S16 − 35.09 − 29.84 − 31.54 − 25.69 − 33.20 − 35.39

S20 − 37.17 − 32.61 − 32.68 − 28.55 − 35.22 − 39.99

S24 − 37.88 − 33.88 − 36.30 − 28.21 − 32.86 − 40.57

S25 − 46.93 − 46.41 − 53.37* − 35.65* − 45.87* − 51.96*

S26 − 42.65 − 42.88 − 43.17 − 36.17* − 35.61 − 47.35*

S28 − 32.52 − 30.22 − 29.92 − 25.15 − 28.67 − 35.65

S30 − 38.69 − 35.47 − 38.55 − 32.29* − 38.31* − 43.45*

S31 − 36.95 − 34.28 − 37.40 − 28.21 − 34.42 − 40.39

Table 1.  The predicted binding energies for the interacted SLF/SFBs and SRNases. The non-self interactions 
were statistically assessed using Wilcoxon rank-sum test33. The null hypothesis assumes that no interaction 
exists between SLF/SFBs and non-self SRNases if binding energy in the non-self interaction is more than or 
equal to that of self interactions. Note: *Significant (p <  0.0001), bold values in the parenthesis show the binding 
energies for the self-interactions.

Figure 2. Graphical representation of the introduced model of interaction between Malus S-locus proteins. 
The figure was generated based on the results of Wilcoxon rank-sum test33. SLFB3 and SLFB9, and their 
brothers (SFBB3α , SFBB3β , SFBB9α , SFBB9β ) are all predicted to interact with S10-RNase. In addition  
SFBB3β  interact with S25 specifically. In terms of SLFB9 and its brothers (SFBB9α , SFBB9β ), they all interact 
with S3-, S8-, S25- and S30-RNase with different binding affinities. However, SLFB9 and SFBB9β  interact with 
S7- and S26-RNase, and SFBB9α  and SFBB9β  interact with S4-RNase. ‘S’ referrers to SRNase.
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