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ABSTRACT.  This work presents an artificial intelligence method for the development of decision support systems for environ-
mental management and demonstrates its strengths using an example from the domain of biodiversity and conservation biology. The 
approach takes into account local expert knowledge together with collected field data about plant habitats in order to identify areas 
which show potential for conserving thriving areas of Renosterveld vegetation and areas that are best suited for agriculture. The avail-
able data is limited and cannot be adequately explained by expert knowledge alone. The paradigm combines expert knowledge about 
the local conditions with the collected ground truth in a knowledge-based neural network. The integration of symbolic knowledge with 
artificial neural networks is becoming an increasingly popular paradigm for solving real-world applications. The paradigm provides 
means for using prior knowledge to determine the network architecture, to program a subset of weights to induce a learning bias which 
guides network training, and to extract knowledge from trained networks; it thus provides a methodology for dealing with uncertainty 
in the prior knowledge. The role of neural networks then becomes that of knowledge refinement. The open question on how to 
determine the strength of the inductive bias of programmed weights is addressed by presenting a heuristic which takes the network 
architecture and training algorithm, the prior knowledge, and the training data into consideration.  
 
Keywords: biodiversity and conservation, decision support system for environmental management, expert knowledge refinement, 
gradient descent learning algorithm, inductive bias, knowledge-based neurocomputing, knowledge uncertainty

 
 

 

1. Introduction 

The Western Cape Region at the southern tip of Africa is 
one of the world’s internationally recognized biodiversity hot- 
spots. It is home to the Cape Floristic Region which exhibits 
one of the richest floristic diversity and endemism, i.e. appro- 
ximately 9,000 plant species occur in an area of 90,000 km2 of 
which 70% are endemic. Renosterveld is a dominant vegeta- 
tion in the region along with Fynbos. The former tends to oc- 
cur on fertile and fine-grained shale-granite or silcrete-derived 
soils where moderate rainfall – from 350 to 650 mm – pre- 
vails; the latter prefers sandy nutrient-poor soils with heavier 
rainfalls. It is easiest to differentiate between the two species 
by referring to their habitat (geology, rainfall, etc.) instead of 
species composition. Renosterveld is phenomenally rich in 
bulb species.  

Renosterveld vegetation is unique to South Africa; today, 
a mere 2% of the original vegetation exists due to rapidly ex- 
panding agricultural activities. The threat of extinction makes 
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Renosterveld conservation essential. The decline of Renoster- 
veld makes the exploration of its potential medicinal, com- 
mercial and tourism value urgent; however, this process has 
been slow and questions regarding its economic value remain 
unanswered due to the lack of information collected about this 
plant species. The prevalence of Renosterveld in the Western 
Cape Region of South Africa is shown in Figure 1. 

 

 
 

Figure 1. Prevalence of Renosterveld in the Western Cape, 
South Africa. 
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Artificial intelligence techniques have been successfully 
applied to a range of environmental management problems 
(Davis et al., 1986; Loehle, 1987; Noble, 1987; Cortes et al., 
2000; Starfield, 1991). Artificial intelligence systems can sup- 
port a more natural, simple, interactive, participatory and ef- 
fective approach to natural resources planning and manage- 
ment. Environmental decision support systems may be prob- 
lem specific, i.e. tailored to narrow environmental domains but 
applicable to a wide range of different locations; situation and 
problem specific systems target specific environmental prob- 
lems in specific locations (Rizzoli and Young, 1997).  

The integration of symbolic knowledge with artificial ne- 
ural networks is becoming an increasingly popular paradigm 
for solving real-world applications (Shavlik, 1994; Towell and 
Shavlik, 1994). The paradigm provides means for using prior 
knowledge to determine the network architecture, to program 
a subset of weights to induce a learning bias which guide net- 
work training, and to extract knowledge from trained netwo- 
rks. The role of neural networks then becomes that of knowle- 
dge refinement. It thus provides a methodology for dealing wi- 
th uncertainty in the prior knowledge. The paradigm is gene- 
ral and can be applied to any species threat assessment where 
both expert knowledge and ground truth data are available. Id- 
entified high-threat areas can be superimposed on maps gene- 
rated by geographical information systems. 

In this paper, an artificial intelligence paradigm for the 
development of a biodiversity and conservation biology deci- 
sion support system is proposed, which takes into account the 
local expert knowledge together with collected field data ab- 
out plant habitats in order to identify areas which show poten- 
tial for conserving thriving areas of Renosterveld vegetation 
and areas that are best suited for agriculture. The available da- 
ta is limited and cannot be adequately explained by expert kn- 
owledge alone. The expert knowledge about the local condi- 
tions and the collected field data is combined in a knowledge- 
based neural network; a novel measure which takes into ac- 
count the expert knowledge, the available field data and the 
neural network architecture and learning algorithm which au- 
tomatically determines – prior to training – how strongly the 
neural network ought to rely on the expert knowledge.  

Following this brief introduction to the application domain, 
in Section 2, a general framework for combining symbolic 
and neural learning called knowledge-based neural networks 
(KBANN) is discussed. KBANN maps prior knowledge in the 
form of propositional rules into feedforward neural networks 
thus providing an explicit inductive bias. The discussion is con- 
cluded with the open question: how strong the inductive bias 
should be chosen in order to achieve good training or genera- 
lization performance? A heuristic for determining the strength 
of this inductive bias is introduced which takes into account 
the neural network architecture and learning algorithm, the pri- 
or knowledge, and the training data in Section 3. This heuris- 
tic for determining a good choice of the explicit inductive bias 
has shown very good results both in cases where the quality of 
the prior knowledge was excellent (Snyders and Omlin, 2000) 
as well an application where the prior knowledge did not ex- 
plain the sparse given data well (Omlin and Snyders, 2003). 

Preliminary results for this environmental management appli- 
cation were discussed in (Chandra and Omlin, 2005). The heu- 
ristic is applied to the problem of conservation of Renosterveld 
in Southern Africa in Section 4; the expert knowledge about 
habitats that allow the vegetation to thrive is incomplete in the 
sense that it does not accurately predict the presence of Re- 
nosterveld. The heuristic for determining the strength of the in- 
ductive bias outperforms both random and standard choices for 
the inductive bias. The paper ends with conclusions from this 
work and possible directions for future research in Section 5. 

2. Expert Knowledge and Inductive Learning 

2.1. Preliminaries 

Expert knowledge about habitats in which species thrive 
can be expressed in the form of rules. Such rules can be im- 
plemented in expert systems or used to guide analytical learn- 
ing methods such as explanation-based learning. The objective 
of analytical learning methods is to find a hypothesis which fits 
both the expert knowledge and the given samples of ground 
truth. They provide logically justified hypotheses which have 
been arrived at through deductive inference. They have the ad- 
vantage that they can learn from sparse data; however, the lo- 
gical justifications are only as valid as the expert knowledge 
they are based on. They are of limited use if the expert know- 
ledge is either incomplete or even incorrect. Expert knowledge 
in the biodiversity field is often incomplete due to the variabi- 
lity of habitats. 

Analytical and inductive learning works well under diffe- 
rent conditions. However, most practical learning problems lie 
somewhere between the two extremes of plentiful data without 
prior knowledge and perfect prior knowledge with scarce data. 
Combining inductive with analytical learning methods thus 

holds the promise of exploiting the strengths of the two appro- 
aches while alleviating their respective weaknesses. This hy- 
brid approach is applicable to many practical problems inclu- 
ding computer-assisted decision support systems for biodiver- 
sity and conservation decision support systems. 

 
2.2. Artificial Neural Networks 

Artificial neural networks are artificial intelligence para- 
digms; they are machine learning tools which are loosely mo- 
deled after biological neural systems. They learn by training 
from past experience data and make generalization on unseen 
data. They have been applied as tools for modeling and prob- 
lem solving in real world applications such as speech recogni- 
tion, gesture recognition, financial prediction, ecological mo- 
deling and medical diagnostics (Robinson, 1994; Giles et al., 
1997; Marakami and Taguchi, 1991; Hilbert and Ostendorf, 
2001; Omlin and Snyders, 2003). Neural networks learn by 
training on past experience using an algorithm which modifies 
the interconnection weights as directed by a learning objective 
for a particular application. A neuron is a single processing unit 
which computes the weighted sum of its inputs. The output of 
the network relies on cooperation of the individual neurons. 
The learnt knowledge is distributed over trained networks wei- 
ghts. Neural networks are characterized into feedforward and 
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recurrent neural networks. Unlike feedforward neural networks, 
recurrent neural networks contain feedback connections and 
have shown to learn and represent dynamical systems (Giles 
et al., 1999). Neural networks are capable of performing tasks 
that include pattern classification, function approximation, pre- 
diction or forecasting, clustering or categorization, time series 
prediction, optimization, and control. A detailed review on the 
applications and performance of artificial neural networks is 
done in (Paliwal and Kumar, 2007). Feedforward networks con- 
tain an input layer, one or many hidden layers and an output 
layer. Information is passed from the input layer to hidden la- 
yer or layers and then finally to output layer. During training, 
error information is passed backwards from the output layer. 
Figure 2 shows the architecture of a feedforward network.  

 

 
Figure 2. The architecture of the feedforward neural network 
with one hidden layer. 

 

Backpropagation is the most widely applied learning al- 
gorithm for neural networks. It learns the weights for a multi- 
layer network, given a network with a fixed set of weights and 
interconnections. Backpropagation employs gradient descent 
to minimize the squared error between the networks output va- 
lues and desired values for those outputs. The goal of gradient 
descent learning is to minimize the sum of squared errors by 
propagating error signals backward through the network ar- 
chitecture upon the presentation of training samples from the 
training set. These error signals are used to calculate the wei- 
ght updates which represent the knowledge learnt in the net- 
work. The performance of backpropagation can be improved 
by adding a momentum term and training multiple networks 
with the same data but different small random initializations 
prior to training (Ooyen and Nienhuis, 1992). In gradient de- 
scent search for a solution, the network searches through a 
weight space of errors. A limitation of gradient is that it may 
get trapped in a local minimum easily. This may prove costly 
in terms for network training and generalization performance. 
The success and failures of backpropagation is discussed in 
(Frasconi et al., 1993). 

 

2.3. Integration of Symbolic Knowledge with Neural Net- 
works 

Combining symbolic and neural learning has become a 

well-established paradigm (Shavlik, 1994; Towell and Shavlik, 
1994; Gallant, 1988; Omlin and Snyders, 2003). There are di- 
fferent ways in which neural and symbolic learning can be com- 
bined to solve a given learning task. Following the discussion 
in the introduction, the question arises whether neural networks 
can make effective use of explicit inductive bias and how such 
a bias influences the training and generalization performance. 
In order to introduce an explicit inductive bias in feedforward 
neural networks, i.e. a preference for a solution in hypothesis 
space, one has to investigate how neural networks represent 
knowledge and infer hypotheses from learning examples. Wei- 
ghted connections between neurons provide an opportunity to 
incorporate knowledge prior to learning. The structure of the 
network and the programmed weights provide an explicit in- 
ductive bias.  

The traditional approach to using neural networks is shown 
in the upper part of Figure 3. (“connectionist representation”). 
A network's adaptable weights are initialized with random va- 
lues drawn according to some distribution. Using numerical op- 
timization, the network is trained on some known data to per- 
form a certain task (e.g. pattern classification) until some trai- 
ning criterion is met. After successful training, a network can 
take advantage of its generalization capabilities to perform the 
intended task on arbitrary data. Notice that during the entire 
process, the knowledge remains “hidden” in a network's adap- 
table connections, hence the name “connectionist representa- 
tion”.  

 

Initialized 
Neural 

Network

Trained 
Neural 

Network

Refined 
Domain 
Theory

Connectionist module

Random 
Initialisation

Symbolic
Knowledge
extraction

Symbolic
Knowledge

insertion

Train

Symbolic Module

Generalisation

Initial 
Domain 
Theory

Figure 3. Knowledge-based neurocomputing paradigm. 
 
The above training paradigm can be enriched with sym- 

bolic knowledge in the following way (“symbolic representa- 
tion”): prior knowledge about a task (initial domain knowle- 
dge) is used to initialize a network before training. This requi- 
res a translation of the information from a symbolic into a con- 
nectionist representation. The particular method for converting 
the symbolic representation of knowledge into its equivalent 
connectionist representation depends on the kind of symbolic 
knowledge, the learning task, and the network model used for 
learning. To date, most efforts are directed towards encoding 
prior knowledge by programming some network weights to spe- 
cified values instead of choosing small random values. The pro- 
grammed weights define a starting point for the search of a 
solution in weight space. The premise is that a better solution 
will be found faster compared to starting the search from a ran- 
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dom point in weight space. The prior knowledge presumably 
defines a good starting point in the space of adaptable para- 
meters and leads to faster learning convergence; it also provi- 
des an explicit inductive bias which focuses a network's atten- 
tion on relevant input features or favors a desirable connec- 
tionist knowledge representation. Examples of this approach 
include pre-structuring of feedforward networks with Boolean 
concepts (Abu, 1990). The choice of a network architecture 
itself represents an implicit use of prior knowledge about an 
application. 

Fidelity of the mapping of the prior knowledge into a net- 
work is very important since a network may not be able to 
take full advantage of poorly encoded prior knowledge or, if 
the encoding alters the essence of the prior knowledge, the pri- 
or knowledge may actually hinder the learning process. Once 
a network has succeeded in learning a task as measured by its 
performance on the training data, it may be useful to extract 
the learned knowledge. The question arises whether it is po- 
ssible to extract an adequate symbolic representation of the 
knowledge learned by a network, i.e. a representation that cap- 
tures the essence of the learned knowledge. In many cases, the 
extracted knowledge may only approximate a network's true 
knowledge; however, it is also possible for the extracted sym- 
bolic representation to exceed the accuracy of the knowledge 
stored in a trained network (Shavlik, 1994). This paper is con- 
cerned with the management of uncertainty in the expert kn- 
owledge. Validation and verification of extracted refined know- 
ledge, although important, is beyond the scope of this discuss- 
ion. 

There are advantages to making effective use of prior kn- 
owledge that is common to all learning tasks: (1) It may lead 
to faster convergence to a solution; (2) networks trained with 
hints may generalize better to future examples; and (3) expli- 
cit rules may be used to generate additional training data whi- 
ch are not present in the original data set. The initialization of 
feedforward networks with Horn clauses has been the predo- 
minant paradigm for prior knowledge in the neural networks 
community.  

 
2.4. Prior Knowledge Encoding 

Prior knowledge can be used to derive an initial hypothe- 
sis from which to start the search for a solution. In knowle- 
dge-based artificial neural networks (KBANNs), an initial do- 
main theory in the form of propositional rules is used to con- 
struct a feedforward neural network (Shavlik, 1994). The back- 
propagation learning algorithm is then used to refine that ini- 
tial domain theory. KBANN provides an inductive bias which 
is more likely to generalize as predicted by the initial domain 
theory; backpropagation provides a generalization bias such th- 
at networks are more likely to converge toward a solution wi- 
th small weights.  

The method proposed in (Shavlik, 1994) is used to illus- 
trate how Horn clauses can be encoded into feedforward net- 
works. The construction of an initial network is based on the 
correspondence between entities of the knowledge base and 
neural networks, respectively. Supporting facts translate into 

input neurons, intermediate conclusions are modeled as hidden 
neurons, output neurons represent final conclusions; dependen- 
cies are expressed as weighted connections between neurons. 
The neuron outputs are computed by a sigmoidal function whi- 
ch takes as its argument a weighted sum of inputs. 

Given a set of if-then rules, disjunctive rules are rewritten 
as follows: The consequent of each rule becomes the consequ- 
ent of a single antecedent; it in turns becomes the consequent 
of the original rule. This rewriting step is necessary in order to 
prevent combinations of antecedents from activating a neuron 
when the corresponding conclusion cannot be drawn from such 
combinations. These rules are then mapped into a network to- 
pology as follows: a neuron is connected via weight H to a ne- 
uron in a higher level if that neuron corresponds to an antece- 
dent of the corresponding conclusion. The weight of that con- 
nection is +H if the antecedent is positive; otherwise, the wei- 
ght is programmed to −H. For conjunctive rules, the neuron bi- 
as of the corresponding consequent is set to −(P − 1/2)H where 
P is the number of positive antecedents; for disjunctive rules, 
the neuron bias is set to −H/2. This guarantees that neurons 
have a high output when all or any one of their antecedents 
have a high output for conjunctive and disjunctive rules, res- 
pectively. If the given initial domain theory is incomplete or 
incorrect, a network may be supplemented with additional neu- 
rons and weights which correspond to rules still to be learned 
from data. A detailed study of knowledge insertion in neural 
networks is done in (Shavlik, 1994; Towell and Shavlik, 1994). 

If an initial domain theory is sparse, the network construc- 
ted from the prior knowledge may be too small for a given lear- 
ning task. In particular, the number of hidden neurons which 
along with their weights correspond to intermediate conclusions 
may be insufficient. Additional neurons may thus be added pri- 
or to training. It has generally been observed that networks ini- 
tialized with correct prior knowledge train faster and genera- 
lize better compared to networks trained without the benefits 
of an initial domain theory (Snyders and Omlin, 2000; Omlin 
and Snyders, 2003).  

While good empirical results have been achieved using the 
framework which combines neural and symbolic learning des- 
cribed above, the merits underlying the symbolic/connectionist 
approach are not yet well understood. Gaining that insight re- 
mains an important open research problem. In this paper, we 
will address the following open question: how should this ex- 
plicit inductive bias H be chosen? If we give too little weight 
to the inductive bias, then it may not be very helpful in find- 
ing a solution. If we assign too much importance to it, then 
the network might not be able to find a solution, particularly 
when the prior knowledge and the training data do not repre- 
sent similar concepts. 

It is conceivable that the choice of this inductive bias de- 
pends on the application, the training data, and the network ar- 
chitecture. Therefore, a novel heuristic is proposed for deter- 
mining the strength of the inductive bias for feedforward neu- 
ral networks encoded with prior information using the KBANN 
method and demonstrated its usefulness for applications with 
excellent and poor prior knowledge, respectively (Snyders and 
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Omlin, 2000; Omlin and Snyders, 2003). In the next section, 
the details of this heuristic is presented. 

3. Strength of Inductive Bias for KBANN 

3.1. Motivation 

Based on empirical investigations, the authors of KBANN 
suggest that all weights which reflect prior knowledge about a 
learning task be set to H = 4 (Towell and Shavlik, 1994). This 
indiscriminant choice of the inductive bias has two major draw- 
backs: (1) it is conceivable that different applications require 
different choices of the inductive bias H which leads to fast 
convergence and good generalization performance; and (2) it 
does not provide a mechanism for dealing with uncertainty ab- 
out the initial domain theory. This section discusses a method 
for choosing the strength of the inductive bias which takes these 
two objections into account: The choice of H depends on the 
application represented by the initial domain theory, the net- 
work architecture, and the training data; it adjusts its confi- 
dence into the prior knowledge according to the amount and 
the quality of the available prior knowledge. 

Consider an error function E used to train a network. The 
idea for determining a good value for the inductive bias H is 
to start the search for solution in a point in weight space wh- 
ere the gradient /E H   is maximal, i.e. we choose H such 
that the search starts in a point where the error function in the 
direction of the inductive bias H is steep; this avoids the need 
for determining H through trial-and-error or traversing flat re- 
gions of the weight space during the initial training phase. Fur- 
thermore, the value H which gives good training performance 
depends on the prior knowledge and the training data. The func- 
tion /E H   takes both these dependencies into consideration. 
The more prior knowledge is available and the more accurate 
that knowledge is, the more the function /E H   influences 
the gradient-descent search for a solution in weight space. Ste- 
ep descent makes fast convergence possible; furthermore, it is 
a reasonable premise that good local minima in weight space 
are more likely to be found at the bottom of steep ravines than 
in shallow areas. 

 

3.2. The Neural Network Dynamics and Training Equa- 
tions 

The dynamics of a typical knowledge based feed forward 
network can be described by the following equations: 

 

1

1

m
l l l l
j j i ji j

i

S g S w b



 
  

 
                               (1) 

 

where l
jS  is the output of the neuron j in layer l. gj is the dis- 

criminant function, typically a sigmoidal function. 1l
iS   is the 

output of the neuron i in layer l − 1 (containing m neurons) and 
l
jiw  the weight associated with that connection with j. l

jb  is 
the internal threshold/bias of the neuron. 

Weight updates for a specific pattern are done using the 
quadratic error function:  
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where jd  is the desired output for neuron j in the output layer 
(containing m neurons), and 

L
jS  is the actual output of neu- 

ron j in layer L, where L is the output layer. 

The weight updates are computed by: 
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where α is the learning rate constant. The local gradient for neu- 
ron j, l

j  can be calculated by: 
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3.3. Derivation for the Inductive Bias 

In this section, a recursive procedure is derived for evalu- 
ating the gradient ( ) /E H H   prior to training which is simi- 
lar to the error backpropagation learning algorithm. The value 
of the error function E depends on the particular choice of H, 
thus E(H). For simplicity, the argument H is omitted in the equ- 
ations for the computation of ( ) /E H H  . 

Consider a commonly used quadratic error function for a 
specific pattern: 

 
2

0 0( ) [ ( )] / 2LE H d S H                                 (5) 

 
where 0d  is the desired network output and 0 ( )LS H  is the ac- 
tual network output for a specific pattern p, where L is the out- 
put layer. Notice that 0

LS  depends on the particular choice of 
H. Then, the derivative /E H   is given by: 
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0 /LS H   is computed recursively as follows: 
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where 0

L
jw  is the weight connecting output of neuron j in the 

hidden layer (containing m neurons) immediately proceeding 
the network output layer with the output neuron 0

LS . The de- 
rivative 0 /L

jw H   can be easily calculated by: 

 

0
0

0

1   

1   

0    o

L
jL

j L
j

if w H
w

if w H
H

therwise

  
    
 



                             (8) 



R. Chandra et al. / Journal of Environmental Informatics 13(1) 56-65 (2009) 

 

61 

 The derivative /l
jS H   for neurons in hidden layers l 

can be recursively computed similarly: 
 

1
1

1

(1 )
l l lm
j jil l l l i

j j i ji
i

S w S
S S S w

H H H






   
       

               (9) 

 
where 

l
jiw  connects neuron i, in layer l – 1, with neuron j in 

the next hidden layer, l. The derivative /l
jiw H   can easily 

be calculated by: 
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There is a need for a “bootstrap” equation in the case wh- 

ere node j is in the first hidden layer (l = 0), i.e. 

1l
iS 

 does not 
depend on H since it is equal to the value of input neuron i. 
Therefore, 

1 / 0l
iS H    and equation v simplifies to: 
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The same equations also apply to the neuron biases. This 

method has been successfully applied to a problem in molecu- 
lar biology (Snyders and Omlin, 2000) and medical diagnosis 
(Omlin and Snyders, 2003). In the next section, its applica- 
tion to biodiversity and conservation is presented. 

4. Prediction of Renosterveld  

4.1. Data and Initial Domain Theory 

The Renosterveld dataset was collected by Gershon Naid- 
oo at the University of Western Cape. The dataset consists of 
600 samples of field data with attributes of elevation (in me- 
ters), geographical aspect (in degrees), two soil types (quatzi- 
tic and shale/grain), slope (in degrees) and annual rainfall (in 
mm); the class attribute indicates the presence/absence of the 
vegetation. Table 1 shows the statistical distribution of the da- 
taset. Please note that the geographic coordinates are not in- 
cluded as the objective is to develop a decision support sys- 
tem for Renosterveld conservation which is independent of the 
specific geographic location. The dataset was equally divided 
into positive and negative samples, i.e. 300 each. 80% of the 
available data was randomly chosen for training and the remai- 
ning 20% was used for testing. 

As a preprocessing step, the attribute elevation was divi- 
ded into 16 categories from 0 to above 750 meters in steps of 
50 meters, the attribute aspect into 16 classes in steps of 22.5 
degrees, the attribute slope into 16 categories in steps of 1 de- 
gree, and the attribute rainfall into 13 categories ranging from 
less than 300 mm to more than 850 mm of annual rainfall in 
steps of 50 mm. The attributes for soil type are binary attribu- 
tes. The division of the attributes into different number of ca- 

tegories was done in order to explicitly represent and encode 
the attribute as binary values. This is further illustrated in Figure 
4 where four neurons were used to represent the attribute Ele- 
vation which was divided in 16 intervals. Four binary neurons 
are sufficient to represent 16 categories. Furthermore, an extra 
neuron was used to represent that the elevation is between 200 
to 400 meters as appeared in the expert knowledge. The data 
was preprocessed in such a way that the value of this “extra 
neuron” which represents elevation of 200 to 400 meters is hi- 
gh according to the corresponding data samples in the attribu- 
te elevation. The number of categories for each attribute was 
determined by examining the distribution of data. The range 
of the attribute and the rules to be encoded directly affected the 
choice for the number of intervals for a particular attribute. 

 
Table 1. The Statistical Distribution of the Renosterveld 
Vegetation Dataset 

Attribute Mean Range 

Elevation 120.4 0 – 1296 meters 
Aspect 129.7 0 – 360 degrees 
Quatzitic soil - [0, 1] 
Shale/grain - [0, 1] 
Slope 2.7 0 – 36 degrees 
Rainfall 508.2 101 – 1005 mm 

 
Table 2. Neural Network Training without Prior Knowledge  

Exp. Time (epochs) Training (%) Testing (%) 

1 611 97.8 77.4 

2 326 97.2 71.3 

3 1272 97.8 72.2 

4 179 97.8 80 

5 1500 96.8 76.5 

6 468 97.2 73.9 

7 189 97.2 73 

8 207 97.8 72.2 

9 150 97.8 77.4 

10 277 97.4 79.1 

11 329 97.8 73 

12 274 97.4 73 

13 175 97.4 78.3 

14 221 97.4 73 

15 246 97.8 76 

16 437 97.4 67 

17 345 97.6 73.9 

18 210 97.2 74.8 

19 222 97.2 75.7 

20 1500 97.2 75.7 

21 218 98 77.4 

22 240 97.4 73 

23 383 98.3 72.2 

24 277 97.8 74.8 

25 193 98.3 70 

Note: The results of 25 training runs on randomly selected 80% of 
the training data, and the prediction performance of the trained 
network on the training and test data are shown, respectively. 
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4.2. Training without Expert Knowledge 

In this section, 25 training experiments done with random- 
ly selected 80% of the available with a learning rate of 0.9. 
This value was selected by examining the performance of the 
network on learning rate values from 0.1 to 1.0. All neural net- 
works were trained until one of the three following stopping 
criteria was satisfied: (1) on 100% of the training examples, 
the activation of every output unit was within 0.2 of the desi- 
red output; or (2) a network had been trained for 1,500 epochs; 
or (3) a network classified at least 97% of the training exam- 
ples correctly, but had not improved it's ability to classify the 
training. 

Neurons had sigmoidal discriminant functions and all net- 
works were trained using the standard quadratic error function. 
The individual results for training time, prediction performan- 
ce on the training and test sets, respectively, are shown in Table 
2. The mean and 95 percent confidence intervals for training 
time (measured in number of epochs), training and generaliza- 
tion performance (both measured in percentage of correctly cla- 
ssified instances ) are 417 ± 151 epochs, 97.6% ± 0.1% and 
74.4% ± 1.1%, respectively. 

Note that 8 hidden neurons were used for all training. Tri- 
al experiments were done using 8, 10, 12 and 16 neurons in the 
hidden layer. The results showed that 8 neurons were sufficient 
for the best generalization performance; therefore, in all expe- 
riments, 8 neurons were used in order to compare different tr- 
aining paradigms. Furthermore, all the rules can be represented 
and encoded minimally using 8 neurons for knowledge based 
neural networks. 

 

4.3. Training with Expert Knowledge 

The expert knowledge about the presence of the Renos- 
terveld vegetation is summarized in the following rules: 

 If the sand is shale or granite and the rainfall is between 
300 to 700 mm, then the probability of occurrence of Renos- 
terveld is high. 

 If the sand is Quartzitic and the rainfall is greater than 

700 mm, then the likelihood of occurrence of Renosterveld is 
high. 

 If the sand is of Quartzitic type and the rainfall is below 
300 mm, and if the altitude is between 200 m to 400 m, and 
the slope is 0 to 10 degrees, then the chances of the presence 
of Renosterveld is high. 

 If the sand is of Quartzitic type and the rainfall is be- 
tween 300 mm to 700 mm, and if the altitude is between 200 
m to 400 m, and the slope is 0 to 10 degrees and faces a sou- 
therly direction, then the chances of occurrences is high. 

Please note that the above expert knowledge only makes 
statements about the presence of Renosterveld and its depen- 
dence on the attributes; they do not describe conditions for the 
absence of the vegetation. The expert knowledge only explains 
approximately 55% of the presence of Renosterveld. This in- 
formation was gathered by checking the expert knowledge in 
relation to the field data at the preprocessing stage. Therefore, 
the initial domain theory which explains only 55 % of field 
data is far from complete.  

The initial domain theory was mapped into a neural net- 
work as shown in Figure 4. The attribute values for elevation, 
rainfall, aspect and slope was mapped into non-overlapping in- 
tervals. Each interval was assigned a unique separate identi- 
fier in the form of a binary number. For instance, the attribute 
elevation was split into 16 intervals. Four binary neurons were 
used to represent the corresponding value in the dataset since 4 

digits in binary can well represent 16 intervals as explained 
earlier in the data preprocessing section. Similar preprocessing 

and knowledge insertion for the remaining attributes results in 
a pre-structured neural network is shown in Figure 4. The pri- 
mary objective of this chosen input encoding is to keep the 
number of neurons and the number of weighted connections 

small. A one-to-one correspondence between attribute value 
intervals and input neurons is possible, but leads to a much 
larger network; see Figure 5 for the resulting network architec- 
ture. Since smaller networks generally have better generaliza- 
tion performance, the discussion is limited to the former. 

 
 

Figure 4. Knowledge insertion. 
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Figure 5. Alternate knowledge representation in the network. 
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Figure 6. Training performance as a function of inductive 
bias H. 

 

Figure 6 shows typical training times for fixed training set 
and prior knowledge as a function of H. It is observe that the 
proposed heuristic for choosing an explicit inductive bias yields 
good training time performance. From the graph of the func- 
tion /E H  , it is observed that the function /E H   has a 
maximum near the inductive bias H ≈ 1.0. This confirms that 
the initial domain theory does not fully explain the given trai- 
ning data. A weak inductive bias seems to indicate the program- 
med network's lower confidence in the prior knowledge. This 
is due to the small training data set and the incomplete overlap- 
ping in between the initial domain theory and the data which 
leads the proposed heuristic to choose a weak inductive bias. 
In applications where the initial domain theory and the train- 
ing data represent similar concepts, it is observed that they have 
a synergistic effect on the training performance of neural net- 
works (Snyders and Omlin, 2000). Note that the standard value 
of H = 4 results in significantly slower training. 

The results from 25 experiments for training time, predic- 

tion performance on the training and test sets, respectively, wi- 
th prior knowledge for standard inductive bias H = 4 and for 
our heuristic are shown in Table 3. The mean and 95 percent 
confidence intervals for training time (measured in number of 
epochs), training and generalization performance (both mea- 
sured in percentage of correctly classified instances) are 885 ± 
192 epochs, 97.3% ± 0.2% and 73.4% ± 1%, respectively, for 
the standard value of H = 4 are shown in Table 3. The corres- 
ponding performance measures for the proposed inductive bi- 
as H for the same application data indicates 268 ± 100 epochs, 
97.5% ± 0.3 % and 74.1% ± 1.3%, respectively and is shown 
in Table 4.  

 
Table 3. Neural Network Training with Prior Knowledge 
using Standard Inductive Bias H = 4 

Exp. Time (epochs) Std. Bias 
(H) 

Training (%) Testing (%)

1 525 4 97.2 73 
2 1094 4 97.2 71.3 
3 1500 4 96.3 75.7 
4 192 4 97.4 75.7 
5 321 4 97.2 73.9 
6 755 4 97.2 78.3 
7 273 4 96.7 74.8 
8 1395 4 97.2 73 
9 853 4 98.3 75.7 
10 306 4 97.4 73.9 
11 328 4 98 75.7 
12 343 4 98 67.8 
13 1500 4 97 77.4 
14 268 4 97.2 69.6 
15 1121 4 97.6 71.3 
16 619 4 97.6 73 
17 968 4 97.2 77.4 
18 1500 4 96.7 67.8 
19 502 4 97.4 74.8 
20 1500 4 97 73.9 
21 603 4 97.2 71.3 
22 1500 4 98.3 73.9 
23 1500 4 96.7 72.2 
24 1500 4 98 73 
25 1173 4 97.2 71.3 

Note: The results of 25 training runs on randomly selected 80% of 
the training data, and the prediction performance of the trained 
network on the training and test data are shown, respectively. 
 

The results show that the training time for our adaptive 
inductive bias H (268 ± 100 epochs ) is significantly lower 
compared to the standard value of H = 4 (885 ± 192 epochs). 
Training with expert knowledge using standard value of H = 4 
performs worse compared to training without expert knowle- 
dge (417 ± 151 epochs). This inferior training performance wi- 
th carelessly chosen inductive bias H over the training perfor- 
mance without prior knowledge clearly emphasizes the need 
for careful selection of H. The results also show that there is 
not a significant difference in the training and generalization 
performance of the two comparable paradigms. This is so be- 
cause of the noise in the dataset and the fact that the expert 
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knowledge only explains 55% of field data, which implies that 
the expert knowledge inserted does not affect the neural net- 
work training in a greater scale, but only provide a little hint 
in training. In general, it can be said that our proposed know- 
ledge insertion technique, which uses an inductive bias H, has 
shown good performance in neural network training time. 

5. Conclusions 

Conservation of Renosterveld is a typical example of an 
environmental management application: the obtained results 
are complex and their interpretation requires expert knowledge. 
Knowledge-based neural networks have proven useful as they 
can synergistically combine this expert knowledge with induc- 
tive learning from data. The expert knowledge provides an ex- 
plicit inductive bias for the network training: (1) it determines 
the network architecture; and (2) instead of initializing all 
network weights to small random values, it programs weights 
that correspond to prior knowledge to a value H. This process 
results in superior training and generalization performance.  

 
Table 4. Neural Network Training with Prior Knowledge 
using Adaptive Inductive bias H. 

Exp. Time 
(epochs) 

Inductive Bias 
(H) 

Training 
(%) 

Testing 
(%) 

1 1500 1 97.4 76.5 
2 127 0.9 97.8 64.3 
3 289 1.2 97.6 79.1 
4 262 0.9 97.6 73 
5 222 1 97.8 78.3 
6 225 1 97 74.8 
7 203 0.9 98.7 72.2 
8 169 1 97.4 68.7 
9 171 0.9 97.8 75.7 
10 301 0.9 97.2 76.5 
11 186 0.9 98.5 67.8 
12 218 0.9 95 74.8 
13 215 0.9 97.2 75.7 
14 235 1 97.6 75.7 
15 198 1.1 97.2 74.8 
16 266 1.1 97 71.3 
17 198 1 97.6 75.7 
18 326 1 97.4 77.4 
19 167 1 97.2 73 
20 159 1 97.6 76.5 
21 239 1.1 97.8 73 
22 153 1 97.2 73.9 
23 178 1.1 98 75.7 
24 237 1 97.6 73.9 
25 256 1 97.2 73.9 

* The results of 25 training runs on randomly selected 80% of the training 
data, and the prediction performance of the trained network on the 
training and test data are shown, respectively. 

 
In this paper, the open question is addressed: What streng- 

th of the inductive bias H yields good training and generaliza- 
tion performance? It has been shown that, for this complex real- 

world domain, the proposed heuristic for choosing the induc- 
tive bias H outperforms the suggested standard inductive bias 
H = 4. The proposed heuristic chooses the inductive bias H 
such that the derivative /E H   of the error function E is ma- 
ximal. The premises of this heuristic are (1) to start the search 
for a local minimum in weight space where gradient-descent 
can rapidly converge to a local minimum, and (2) that good lo- 
cal minima are more likely to be found at the base of deep ra- 
vines rather than in shallow areas. The experiments have shown 
that this heuristic is not sensitive to the values of initial wei- 
ghts that are not programmed; it takes the initial domain theo- 
ry, the training data, the network structure and learning algori- 
thm into consideration when choosing a value of H. Thus, the 

proposed heuristic is able to determine its confidence in the pri- 
or information and how well it explains the training data. In 
this application, the data and the initial domain theory did not 
represent sufficiently similar concepts; thus, the heuristic chose 
a low value for the inductive bias H.  

A statistically significant improvement in the training per- 
formance has been observed. Therefore, it can be concluded 
that the proposed heuristic gives a quantitative measure for su- 
ccessfully dealing with uncertainty in the initial domain theo- 
ry. Although the results are statistically significant, experiments 
with more data are necessary to fully utilize this knowledge 
for biodiversity and conservation biology. From a neural net- 
work learning perspective, it would be interesting to investi- 
gate whether the prior knowledge can not only be used to pre- 
structure a neural network prior to training, but whether it can 
also be used during training to find a solution in weight space 
with superior performance and how extracted knowledge com- 
pares to the initial expert knowledge. 

The proposed system can be used as a general paradigm 
to understand, gather and validate expert knowledge in differ- 
ent areas of ecological modeling where field data and expert 
knowledge are available. Another application of the proposed 
technique is in the development of intelligent decision support 
systems for environmental management. In the case where 
there is a need to gather expert knowledge from field data, 
knowledge extraction from trained neural networks is feasible 
(Towell and Shavlik, 1993). Another approach would to use 
decision trees to extract knowledge directly from field data. 
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