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Abstract
Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most 
ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We 
distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such 
as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory 
diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also 
discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic 
degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural 
change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 
359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the 
most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with 
land-based sources responsible for 80–90% of pollution, while ocean-based sources account for only 10–20%. Microplastics 
induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and 
genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in 
gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, 
and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse 
effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual 
behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly 
reduced plastic consumption to 8–85% in various countries worldwide. The microplastic minimisation approach follows 
an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with 
disposal as the least preferable option.

Keywords Microplastic pollution · Water treatment · Biodegradable plastics · Microplastic detection · Microplastic 
control · Microplastic toxicity

Introduction

Water is an essential resource on the surface of the earth, 
crucial for all industrial, agricultural, and humans activities 
as well as the biological processes of all non-human beings, 
to sustain life (Eltaweil et al. 2022; Hosny et al. 2022a; El-
Maghrabi et al. 2021; Crini and Lichtfouse 2019). Although 
water covers more than two-thirds of the earth’s surface, 
only 0.1% is available for fresh water to all living organisms, 
including humans. Despite the actual availability of fresh 
water resources, humans are dramatically disrupting the 
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natural ecosystems and contaminating this water by dump-
ing vast amounts of various types of water contaminants, 
including organic such as pharmaceutical wastes, dyes, 
plastics, and pesticides, and inorganic wastes, e.g. heavy 
metals, into different aquatic bodies (Hosny et al., 2022b; 
Mahmoud et al. 2022; Abd El-Monaem et al. 2022; Rashid 
et al. 2021; Osman et al. 2022; Naqash et al. 2020). Conse-
quently, these contaminants and their remediation started 
to gain the researcher’s interest by investigating numerous 
water treatment techniques (Abdelfatah et al. 2021; Oliveira 
et al., 2020). One of the emerging contaminants that seri-
ously affect water quality is microplastics, which are thor-
oughly discussed in this review article.

Microplastics, which are tiny plastic particles measuring 
less than 5 mm in length, have been found to have significant 
negative impacts on both human health and the environment. 
The term "microplastics" was first coined 19 years ago by 
Thompson et al. (2004), who studied oceanic plastic pol-
lution in the UK. Since then, microplastics have attracted 
the attention of the scientific community, governments, non-
governmental organisations, and others. While plastics are 
relatively new materials that came into use during the second 
half of the last century (Gündoğdu and Çevik 2017), their 
excessive production and use in various products and indus-
tries have resulted in a significant threat to the environment 
(Osman et al. 2020; Qasim et al. 2020). Primary microplas-
tics, such as cosmetic microbeads used in facial washes, are 

intentionally made tiny and are therefore classified as such 
(Wang et al. 2019). Nanoplastics are of particular concern 
as they pose a greater risk to living organisms than micro-
plastics due to their higher abundance and reactivity. Their 
small size allows them to easily penetrate living cells and 
reach remote locations, exacerbating their potential harm 
(Sharma et al. 2022).

This review focuses on various aspects of microplastics, 
including their formation, biological detection, toxicological 
profile, detrimental health effects, and potential treatments, 
as shown in Fig. 1. Further, this article includes sources 
and effects of microplastics on the environment and human 
health, global initiatives and responses to reduce the release 
of microplastics, public perception and awareness of micro-
plastics, and various approaches that can be taken to improve 
this. The review also examines the link between microplas-
tic pollution, climate change, and biodiversity loss. It com-
pares potential treatment techniques and control strategies 
to mitigate microplastic pollution and enhance the reuse and 
recycling of plastics.

Production of plastic and microplastics

During the last 70  years, global plastic production has 
risen from 1.5 million tonnes to approximately 359.0 mil-
lion tonnes (Bui et al., 2020) and is expected to reach 500.0 

Fig. 1  Microplastic effects and pathways on the environment and 
human health. Microplastics' formation is detectable in several bio-
logical samples. Microplastic has toxicological effects, necessitating 
the implementation of treatment technologies. The cycle of micro-
plastic ingestion ends primarily in seafood and its associated health 

problems. UVA, UVB, and UVC are different ultraviolet (UV) radia-
tion types. UVA has the longest wavelength, is the least energetic, and 
is the most common type of UV radiation. UVB has a medium-range 
wavelength and is more energetic than UVA. UVC has the shortest 
wavelength and is the most active type of UV radiation
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million tonnes by 2025 (Huang et al., 2021a). In 2013, China 
produced approximately 63.0 million tonnes of plastic, 
accounting for most plastic production worldwide. When 
this number is combined with the plastic production of other 
Asian countries, the total plastic production reaches approxi-
mately 114.0 million tonnes. (Ryan 2015). The European 
Union was the second-largest region for plastic production, 
with nearly 50.0 million tonnes produced. North America 
also contributed significantly, with 49.0 million tonnes of 
plastic produced. However, Latin America, Commonwealth 
countries, Africa, and the Middle East collectively produced 
only 37.0 million tonnes of plastic.

Unfortunately, the majority of plastic waste is being incin-
erated, dumped in landfills, and released into the environ-
ment, causing significant environmental and health problems 
(Wang et al. 2020a), with only a tiny percentage that does 
not exceed 10.0% recycled in the USA (Cessi et al. 2014). In 
addition, it is worth mentioning that plastic wastes constitute 
more than 75.0% of marine waste materials, owing to their 
rigid and non-biodegradable nature (Zhang et al., 2021a). 
Although the Mediterranean Sea region is considered one 
of the essential resources for human life, it has unfortunately 
become one of the most highly polluted areas with plas-
tics and microplastics (Cózar et al. 2015). The majority of 
plastics released into the Mediterranean are contributed by 
five countries, with Turkey being the largest contributor of 
approximately 144.0 tonnes per day of plastic waste, fol-
lowed by Spain at 126 tonnes, Italy at 90.0 tonnes, Egypt at 
77.0 tonnes, and France at 66.0 tonnes (Sharma et al., 2021).

Furthermore, microplastics can also form unintention-
ally through the degradation of larger polymers, which can 
occur due to physical, chemical, or biological factors, such 
as tire debris. These microplastics are known as secondary 
microplastics, as depicted in Fig. 2 (Andrady 2017). On the 
other hand, primary microplastics are intentionally added 
to consumer and commercial products, such as cosmetics, 
detergents, paints, medications, nappies, and insecticides 
(Duis and Coors 2016). Microplastics can be categorised 
into five major types: fragments, fibres, foam, pellets, and 
films (Anderson et al. 2017). Moreover, microplastics can be 
classified into six categories based on their chemical com-
position: polyethylene, polystyrene, polypropylene, polyu-
rethane, polyvinyl chloride, and polyethylene terephthalate, 
as shown in Fig. 2 (He et al. 2022).

In recent years, the production of microplastics has sig-
nificantly risen, with their concentrations detected on the 
coasts of some marine areas reaching thousands of particles 
per cubic meter. Without adequate measures, these numbers 
are expected to double in the next few years (Isobe et al. 
2019). Moreover, the issue is further complicated by the lack 
of reliable and accurate sampling techniques, which means 
that the reported concentrations of microplastics in marine 
ecosystems may not reflect the actual amounts, leading to 
a potential underestimation of the problem (Brandon et al. 
2020).

These tiny particles significantly impact the environment, 
particularly aquatic bodies, as they can accumulate and leach 
toxic organic and inorganic pollutants, such as persistent 

Fig. 2  Different classifications 
of microplastics. Microplastics 
can be classified into two cat-
egories: primary microplastics 
and secondary microplastics. 
Primary microplastics are 
intentionally manufactured and 
added to consumer and com-
mercial products like cosmet-
ics, personal care products, 
pharmaceuticals, detergents, 
and insecticides. Secondary 
microplastics, on the other 
hand, are unintentionally 
formed by the breakdown of 
larger plastic materials through 
physical, chemical, or biological 
processes, such as fishing gear, 
plastic bottles, plastic bags, and 
plastic food containers. Micro-
plastics can also be classified 
based on their chemical compo-
sition, which includes polyethyl-
ene, polypropylene, polystyrene, 
and other materials
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organic pollutants and heavy metals (Van Emmerik et al. 
2018). Microplastics are also known for their stability and 
inability to degrade, meaning they can persist in the envi-
ronment for decades (Xiang et al. 2022). The life cycle of 
microplastics, which involves bioaccumulation, is shown in 
Fig. 3. This cycle usually begins with the release of primary 
or secondary microplastics into the terrestrial and aquatic 
ecosystems, followed by their transport into water systems.

Consequently, microplastics enter the food chain of 
aquatic organisms and undergo bioaccumulation in their 
tissues, gradually working their way up the trophic levels 
as zooplankton, small fish, larger fish, and other organ-
isms consume them. Swallowing these pollutants has been 
shown to have toxic effects on aquatic life, including fish, 
oysters, mussels, and sea turtles, such as compromising 
their immune and digestive systems and potentially lead-
ing to their demise (Matsuguma et al. 2017; Hipfner et al. 
2018; Caron et al. 2018). Microplastics have the potential 
to directly affect human health, as they can enter the human 
food chain through the consumption of contaminated fish or 
other aquatic organisms. Studies have shown that microplas-
tics can have cytotoxic effects on human brain cells (Schir-
inzi et al. 2017). In addition to carrying toxic chemicals, 
microplastics can adsorb various contaminants, including 

antibiotics, due to their large surface area, further exacerbat-
ing the problem of microplastic pollution (Li et al. 2018) . 
Furthermore, the cycle of microplastics in the environment 
continues as they may be excreted by humans or discharged 
as plastic waste materials.

Microplastics have been recently monitored in drink-
ing water in many countries and in bottles of mineral water 
(Schymanski et al. 2018). Hence, it is imperative to develop 
new methods and innovative techniques for removing plas-
tics from water sources, as conventional methods are inef-
fective in eliminating microplastics due to their small size. 
This has led to an increase in the prevalence and persistence 
of microplastics in the environment. (Hou et al. 2021). The 
review thoroughly investigates several innovative treatment 
strategies, including the removal of plastic microbeads 
from cosmetics and personal care products, the utilisation 
of bioplastics like polyhydroxyalkanoates that can be bio-
logically degraded in the environment, the enhanced reuse 
and recycling of plastics, the development of efficient waste 
separation strategies in waste treatment facilities, and the 
use of bioremediation treatments (Wu et al. 2017; Calero 
et al. 2021).

It is worth noting that research into removing micro-
plastics is relatively new, having only started in 2014. The 

Fig. 3  Life cycle of microplastics in the environment. The discharge 
resulting from diverse activities flows into aquatic systems, introduc-
ing microplastics into the food chain and their subsequent bioaccu-

mulation in the tissues of aquatic organisms. This accumulation can 
result in significant adverse effects on the aquatic ecosystem, and 
these effects can be directly transmitted to humans and birds
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number of publications related to microplastic removal 
was very low in the first two years, with only one publi-
cation each in 2014 and 2015. However, this number has 
significantly increased recently, reaching 145 in 2020. This 
increase in research could be attributed to a combination of 
factors, including the free time researchers had due to coro-
navirus disease 2019 (COVID-19) lockdowns and a growing 
scientific interest in addressing the microplastics issue and 
finding effective solutions in line with global initiatives to 
minimise plastic waste.

Sources of microplastics and problem statement 

There is ample evidence that watercourses contain micro-
plastics with various shapes, sizes, densities, structures, 
and chemical compositions (Auta et al. 2017). Table 1 lists 
various types of microplastics in different countries, with 
numerous forms and sizes.

Generally, there are many sources of microplastics, 
but they are mainly classified into land- and ocean-based 
sources, as shown in Fig. 4.

Land‑based sources of microplastics

Land-based sources are responsible for 80–90% of micro-
plastics in water bodies (Duis and Coors 2016). These 
sources include plastic bags, bottles, personal care products, 
construction materials, and clothing. Plastic incinerators, 
which generate bottom ash that contains microplastics, are 
also a land-based source of these particles (Yang et al. 2021). 
Construction materials, household products, packaging 
items, food and drink packaging waste, and waste generated 
from shipbuilding are some of the most significant sources 
of larger plastic objects on land (Čulin and Bielić, 2016; 
Alomar et al. 2016). Sewage sludge and industrial activities, 
particularly those using granules and small resin pellets, are 
other probable sources of microplastic discharge into the 
aquatic environment (Rolsky et al. 2020; Hale et al. 2020). 
In addition to medicines and construction materials, certain 
cosmetics and personal care products are also considered 
potential sources of plastic pollution, as they may contain 
microplastics used as drug carriers or as ingredients (Roch-
man 2018). Face washes, hand soaps, hand gels, laundry 
detergents, washing powder, toothpaste, facial creams, mas-
caras, lipsticks, sunblock, and shower gels are some of the 
common examples of such products (Guerranti et al. 2019). 
Many synthetic fibres, such as polyester, nylon, and acryl-
ics, have been found to shed off clothing and discharge with 
the stream wastewater into water bodies (Carney Almroth 
et al. 2018). Tire wear and tear of cars greatly release micro-
plastics into the environment (Kole et al. 2017). Therefore, 
It is clear that numerous sources of microplastics must be 

effectively controlled and minimised to the greatest extent 
possible.

Single-use products made of polymeric plastics, such 
as drinking bottles, straws, cutlery, coffee cups, and bags, 
have been identified as a significant source of plastic pollu-
tion in the environment (Fadare et al., 2020). Furthermore, 
the excessive use of single-use face masks made of plastic 
polymers, such as polyesters and polypropylenes, during 
the coronavirus disease 2019 (COVID-19) has significantly 
increased microplastic waste (Fadare and Okoffo 2020). 
Replacement of conventional plastic materials used in face 
masks and other products with sustainable, eco-friendly 
materials that can be easily degraded is necessary should 
future waves of COVID-19 occur.

Ocean‑based sources of microplastics

Approximately 10–20% of microplastics discharged into 
the aquatic environment come from ocean-based sources, 
including seaside tourism, commercial fishing, marine ves-
sels, and offshore industries (Li 2018; Karbalaei et al. 2019). 
Discarded or lost fishing gear, such as plastic monofilament 
lines and nylon nets, are a significant source of microplas-
tics that can float at different depths in the ocean (Naji et al. 
2017). Over 600,000 tonnes of fishing gear are thrown 
away in the ocean each year, contributing to the problem 
(Good et al. 2010). Shipping microplastic waste, commonly 
released from shipping and naval vessels, also adds to the 
problem (Peng et al. 2018). Moreover, a massive quantity of 
plastic waste from offshore industries, such as petrochemi-
cals, is being released into marine ecosystems (Calero et al., 
2021). While the contribution of ocean-based sources to 
microplastic pollution is not as high as land-based sources, 
it is still significant. Control strategies are needed to reduce 
this contribution.

Microplastics pollution problem 
and international response 

Recently, microplastics have been found in freshwater eco-
systems, including rivers, lakes, estuaries, wetlands, and 
groundwater (Wong et al., 2020; Du et al., 2021). While the 
concentration of microplastics in freshwater environments 
is lower than in marine environments, contamination of 
freshwater is rapidly increasing at an unprecedented rate (Li 
et al. 2020a). Water quality, human activities, urbanisation, 
and wastewater treatment technologies are key factors that 
regulate microplastic pollution levels in freshwater systems 
(Zhang et al. 2022a). Wetlands are among the largest eco-
systems that receive microplastics from municipal, agricul-
tural, and industrial wastewater, making them a significant 
sink for microplastics (Kumar et al. 2021). Microplastics are 
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more likely to settle in lakes than rivers as they represent a 
closed-water body and have lower current rates that control 
microplastic transport (Lu et al. 2021a).

Additionally, the presence of microplastics in freshwater 
is influenced by varying rainfall patterns (Eo et al. 2019). 
With the increasing contribution of various sources of 
microplastics to freshwater systems, it is crucial to employ 
innovative, highly effective, and sustainable mitigation 
measures to protect freshwater resources, especially given 
the current overpopulation growth and water shortage in 
most countries worldwide.

Concerns about the impact of plastic and microplastic 
contamination have boosted public awareness and respon-
sive actions. Schools have adopted instructional activities 
on plastics, non-governmental organisations have launched 
campaigns, and certain corporations have pledged to mini-
mise plastic usage (Messing 2021). As an international 
response to the aggravating problem of microplastics, the 
USA enacted the Microbead-Free Waters Act in 2015 to ban 

the addition of plastic microbeads in the manufacturing of 
personal care products (McDevitt et al. 2017). In addition, 
other countries, including the European Union countries, 
have recently started to phase out plastic microbeads from 
numerous products like cosmetics (Wu et al. 2017). Europe 
also called for the recycling of plastic materials in 2018 by 
embracing the so-called European Strategy for Plastics in a 
Circular Economy as well as implementing other initiatives 
to protect the environment, such as "Zero Plastics to Land-
fill" (Du et al., 2021).

On the level of the Far East countries, China advocated 
"Opinions on Further Strengthening the Control of Plastic 
Pollution" at the beginning of 2020 (Du et al. 2021). There-
fore, it is unequivocal that most countries seek the phase-
out of plastics and search for sustainable alternatives. At 
the fourth United Nations Environment Assembly in March 
2019, Officials (ministers) of the environment from more 
than 150 nations pledged to substantially eliminate single-
use plastic goods by 2030 (Xu et al. 2021a). This action 

Fig. 4  Land-based and ocean-based microplastics' sources. Land-
based sources contribute 80–90% of microplastics to water bodies, 
which include plastic bags, plastic bottles, personal care products, 

plastic incinerators, construction materials, and textiles. Ocean-based 
sources contribute 10–20% of microplastic discharge into water bod-
ies, mainly marine vessels, plastic litter on beaches, and fishing gear
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came after a previous assembly agreement highlighting 
the necessity of long-term microplastic removal from the 
oceans. Additionally, governments agreed three years ago, 
in May 2019, to modify the Basel Convention by officially 
asking for the importing countries' consent for contaminated 
plastic trash (Agamuthu et al. 2019). Moreover, many coun-
tries worldwide are now adding taxes on plastics that cannot 
be recycled to limit the production of these plastic materials 
(Silva et al. 2020).

Toxicological profiles of microplastic 
exposure 

Microplastics have been found to have adverse effects on 
the environment and living organisms, including humans. 
Numerous studies have investigated the toxic effects of 
microplastics, including both in vitro studies (Choi et al., 
2021a; Chan et al. 2017; Stock et al. 2021; Han et al. 2020; 
Hwang et al. 2020) and in vivo studies, primarily in marine 
organisms (Jin et al. 2018; Akhbarizadeh et al. 2018; Olivi-
ero et al. 2019; Mateos-Cárdenas et al. 2019) and a few on 
rodents (Devriese et al. 2017; Li et al. 2020b; Santana et al. 
2018). Moreover, studies have investigated the accumulation 
of microplastics from human samples in a clinical setting, 
including stool, colectomy samples, human placenta, and 
meconium (Wibowo et al., 2021; Ibrahim et al. 2021a; Braun 
et al. 2021). In the absence of epidemiological data, various 
in vitro studies have utilised different types of human cells to 
evaluate the effects of microplastics on humans (Danopoulos 
et al. 2021). The types of human cells used include human 
lung epithelial cells (Dong et al. 2020), human adenocar-
cinoma cell line (Wang et al. 2020b), human dermal fibro-
blasts (Hwang et al. 2020), peripheral blood mononuclear 
cells (Hwang et al. 2020), with a total of ten different types 
of human cells being used.

One of the issues is whether exposure to microplastics 
may lead to crucial adverse effects on human health. Based 
on this concern, Danopoulos et al. (2021) evaluated the 
exposure using meta-regression analysis on secondary data 
from different in vitro studies using human cells. A total 
of 168 publications were screened, and only 24 full arti-
cles were assessed. Seventeen full articles were eligible for 
the rapid review, and only eight proceeded for quantitative 
meta-regression analysis. The findings of the toxic effects 
on human cells were grouped into the biological endpoint 
categories: cytotoxicity, immune response, oxidative stress, 
barrier attributes, and genotoxicity. Among five biological 
endpoints, four were confirmed to be the effects of micro-
plastics on human cells. For instance, irregular shapes of 
microplastics had significant biological effects. The minimal 
dosages of 10 μg/mL (5–200 μm) and 20 μg/mL (0.4 μm) 
were found to cause cytotoxicity and immunological 

responses, respectively. The human adenocarcinoma cell line 
cells are strongly associated with microplastic effects on cell 
viability. Additionally, the concentration of microplastics (g/
mL) and exposure time significantly influenced cytotoxicity 
and immune response (Danopoulos et al. 2021). These find-
ings suggest that exposure to microplastics may adversely 
affect human health, and further research is needed to fully 
understand these effects' scope.

Aquatic mammals have been reported to ingest various 
polymers, including polyether-sulphone, nylon, cotton, poly-
ester, polyethylene, polypropylene, and ethylene-propylene 
(Nelms et al. 2019; Meaza et al. 2021). Microplastics can 
also contribute to the bioaccumulation of pollutants in 
aquatic mammals due to their hydrophobic surface and 
larger surface area-to-volume ratio (Nabi et al. 2022; Wang 
et al. 2020b; Verla et al. 2019). Besides, in vivo studies using 
marine organisms have shown that microplastics have sig-
nificant toxic effects on animals through different exposure 
routes, such as intravenous, subcutaneous, intraperitoneal, 
oral, and skin exposure. The effects of microplastic exposure 
can vary depending on the route of exposure, either direct 
or indirect. Du et al. (2020) state that direct exposure occurs 
when pollutants come into direct contact with an organism, 
typically causing short-term acute toxicity. Indirect exposure 
occurs when microplastics and pollutants integrate into the 
food web, causing chronic organ toxicity.

Furthermore, in vivo have investigated the effects of vari-
ous microplastic sizes, concentrations, and exposure dura-
tions. Most studies on marine organisms have focused on 
acute exposure rather than chronic exposure, and microplas-
tics with sizes less than 5 mm have been commonly used. 
These studies have shown that microplastics accumulate and 
distribute in the gastrointestinal tract, gills, and fish muscles. 
Ingestion of microplastics in marine animals has been linked 
to alterations in gastrointestinal tract physiology, immune 
system depression, oxidative stress, cytotoxicity, differen-
tial gene expression, and growth inhibition (Oliviero et al. 
2019; Meaza et al., 2021; Kedzierski et al. 2018; Nabi et al. 
2019; Amin et al. 2020; Ugwu et al. 2021). These findings 
are confirmed by Danopoulos et al. (2021), who reported on 
the biological endpoint caused by microplastics to different 
human cells. In addition, studies have shown that microplas-
tics can cause harmful alterations in the gastrointestinal tract 
physiology of marine organisms, such as an imbalance of gut 
microbiota in adult zebrafish, splitting of enterocytes, and 
cracking of villi (Jin et al. 2018; Lei et al. 2018). Qiao et al. 
2019 also proved that after 21-day exposure to microplastics, 
the zebrafish exhibited microbiota dysbiosis, which altered 
the normal metabolism process (Qiao et al. 2019).

In addition to the effects observed in fish and mammals, 
microplastics were also found to cause adverse effects on coral 
and sea urchins. Tang et al. (2018) showed that acute exposure 
to microplastics activated the stress response in Scleractinia 
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coral Pocillopora damicornis while suppressing its immune 
system and detoxification processes through the c-Jun N-ter-
minal kinases and extracellular signal-regulated kinases signal-
ling pathways (Tang et al. 2018). Meanwhile, Oliviero et al. 
(2019) reported that exposure to microplastics led to reduced 
larval length and blocked larval development of sea urchins, 
with the magnitude of the effect depending on the dose of 
exposure. Furthermore, Qiao et al. (2019) observed that micro-
plastics induced oxidative stress in zebrafish by elevating cata-
lase and superoxide dismutase levels in intestinal tissues and 
altering glutathione levels (Qiao et al. 2019). Overall, these 
studies demonstrate microplastics' potential wide-ranging 
harmful effects on different marine organisms.

Amphipods were the primary target of studies on the harm-
ful effects of microplastics against invertebrates in the mari-
time environment. Several studies have reported that micro-
plastics cause growth inhibition and decrease the growth of 
invertebrates. For instance, Deng et al. (2017) proved that 
microplastics could inhibit the growth of Skeletonema cos-
tatum, and freshwater algae Chlorella pyrenoidosa and Tet-
raselmis chuii were also inhibited (Davarpanah and Guilher-
mino 2019). In addition, chronic microplastic exposure can 
promote reproductive toxicity in Daphnia magna, Daphnia 
pulex, and Ceriodaphnia dubia (Jaikumar et al. 2019). Fur-
thermore, Mateos-Cárdenas et al. (2019) reported that micro-
plastic exposure to amphipods for 24 and 48 h did not signifi-
cantly affect their mortality and mobility.

Besides marine organisms, several in vivo studies have 
examined the effects of microplastics on different animals, 
such as nematodes, Oligochaeta, arthropods, earthworms 
and rodents. Lei et al. (2018) reported that the size of the 
microplastics used affected the effects of microplastics on 
nematodes. In particular, exposure to 1.0 µm polystyrene at a 
concentration of 1 mg  L−1 significantly downregulated gene 
expression associated with damage to cholinergic and gamma-
aminobutyric acid-ergic neurons in nematodes. Similarly, 
Deng et al. (2017) found that the tissue accumulation of micro-
plastics in mice was influenced by the size of the microplastics 
tested, with a significantly higher accumulation of 5 µm poly-
styrene in the kidney and gut compared to 20 µm polystyrene. 
The study also revealed that microplastics affected neurotrans-
mission in mice. On the other hand, Zhu et al. (2018) found 
that the effects of microplastics on Oligochaeta were mainly 
dependent on the exposure concentration.

Current knowledge and awareness 
of microplastic pollution

Various interrelated environmental issues exist today, such 
as the association between microplastic pollution, cli-
mate change, and biodiversity loss (Garcia–Vazquez and 
Garcia-Ael 2021). Rachel Carson, a renowned pioneer in 

environmental sciences, speculated about these intercon-
nections in her influential book "Silent Spring," published 
in 1962 (Carson 2015). The correlation can be easily justi-
fied due to the high production of greenhouse gases while 
manufacturing microplastic-based products that require fos-
sil fuels. Consequently, when these products are used, their 
waste materials are released into the aquatic environment, 
causing harmful effects on all living organisms, including 
phytoplankton, zooplankton, and top consumers (De Sá et al. 
2018). This results in the disturbance of the entire ecosystem 
and the loss of species and ecosystem diversity, which can-
not be restored.

It is worth mentioning that the public’s comprehension 
of these environmental issues, their root causes, their nega-
tive impacts, and their mitigation measures is a key solu-
tion and a quintessential step in tackling and controlling all 
these issues. However, the lack of basic knowledge, ambigu-
ous facts, and the absence of clear information about envi-
ronmental issues, particularly microplastic pollution, thus 
hinders the mitigation process of these issues (Deng et al., 
2020b). In addition, a prevalent misunderstanding among 
the general public, including the well-educated, about the 
distinction between plastics and microplastics and the dif-
ficulty in identifying certain microplastic-based products 
exacerbates the issue. This was highlighted in a study that 
explored the knowledge levels of people in Shanghai, China, 
through surveys and questionnaires (Deng et al. 2020b). To 
address this, several measures must be implemented, which 
will be extensively discussed in this section, to enhance 
public awareness of microplastic concerns and facilitate the 
development of effective solutions.

The first step in microplastic control is to ensure that 
all aspects of microplastic issues, including their various 
origins, types, effects, fates, and other related factors, are 
covered in school and university curricula. By introducing 
this topic early on, students and young people can become 
familiar with the issue as early as possible. This approach 
could be implemented by teaching and connecting the 
microplastics issue through different subjects, as recently 
demonstrated in high schools in the San Diego area in the 
USA (Schiffer et al. 2019). For instance, chemistry courses 
taught students to differentiate between different types of 
plastics based on their properties and structures. Environ-
mental science courses covered how these materials degrade 
into microplastics when released into the environment, and 
marine science courses explored their negative impacts on 
aquatic organisms. Additionally, students learned to apply 
computational models and machine learning techniques to 
investigate and speculate about plastic materials' degradation 
pathways and fate.

Furthermore, students should be encouraged to par-
ticipate in research projects and write scientific reports to 
develop a solid background and offer practical solutions 
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for microplastic issues. The American Chemical Society 
recently introduced new guidelines to the plastics and poly-
mer industry and innovative research techniques to bach-
elor’s students in the USA, providing a great example of 
such an approach (Wenzel et al. 2015). Overall, it cannot be 
overstated how critical it is to introduce microplastic issues 
in school and university curricula by covering multiple 
aspects and involving students in critical thinking to sug-
gest solutions to tackle this challenging and growing issue 
of microplastics.

The media has raised public awareness of microplastics 
in many countries, including the UK. The British Broadcast-
ing Corporation (BBC), for example, has produced several 
documentaries and television shows that present the issue 
of plastic pollution in a simple and easily understandable 
way, encouraging the public to avoid using single-use plastic 
items. Through these efforts, the media has helped educate 
people about the impact of microplastics on the environment 
and motivated them to reduce their use of plastics (Hender-
son and Green 2020). The media is responsible for providing 
information and guidelines to the public and helping the 
constitutional authorities, political parties, and policymakers 
make the right decisions and reach real solutions for many 
urging environmental issues (Hansen 2018). In addition, the 
internet, in its different social media platforms, has recently 
constituted a powerful source for providing general and 
meticulous scientific information about microplastics (Gar-
cia–Vazquez and Garcia-Ael 2021). In this regard, a group 
of researchers from Spain has recently tried to investigate the 
public’s response to the detrimental effects of microplastics 
on the marine environment by analysing more than 140,000 
tweets on Twitter (Otero et al. 2021). The authors consid-
ered such investigation a vital tool in identifying the main 
spots of microplastic pollution worldwide by analysing the 
exact locations and languages of the posted tweets. Thus, it 
is unequivocal that everyone should be cautious about using 
plastic and microplastic-based products, seek to reduce their 
reliance on them as much as possible, and look for other 
environmentally friendly alternatives like bioplastics.

Another approach is the public’s perception of consumer-
ism. Excessive consumerism became common in most coun-
tries, owing to the industrial revolution that started in the 
eighteenth century and, more specifically, after experienc-
ing significant economic development and prosperity after 
the Second World War (Khan et al. 2020). Consequently, 
people started to experience the luxurious lifestyle and give 
more value to buying and those who purchase more. Such a 
societal concept was one of the main reasons behind the sub-
stantial increase in the amount of produced waste materials, 
not just limited to microplastics but also extending to other 
sorts of wastes, such as food, drugs and cosmetics, clothes, 
electric devices like phones and computers (Tamazian et al. 
2009). Although changing the public’s societal behaviours 

is not reckoned an easy task, it is highly required to restrain 
the vast amounts of released waste materials and help the 
governments control the exacerbating issue of microplastics.

It is worth noting that in many countries, governmental 
policies have effectively reduced plastic consumption. For 
example, some countries have implemented bans, taxes, or 
pricing on plastic carrier bags, encouraging the public to use 
reusable bags and significantly reducing plastic consump-
tion. In China, the use of plastic bags decreased by 49% 
following the introduction of a plastic bag ban (He 2012), 
while Botswana saw a 50% reduction in plastic bag use after 
implementing a plastic bag tax (Dikgang and Visser 2012). 
Similarly, Denmark achieved a 66% reduction in plastic bag 
use after implementing a plastic bag tax (Dikgang et al. 
2012), and Portugal saw a 74% reduction after introducing 
a plastic bag tax (Martinho et al. 2017). In Washington, the 
use of plastic bags decreased by 80% following the introduc-
tion of a plastic bag fee (Romer and Foley 2011), and the UK 
saw reductions of between 8 and 85% after implementing a 
plastic bag charge (Poortinga et al., 2016). These examples 
illustrate the significant impact that governmental policies 
can have on reducing plastic consumption and mitigating the 
issue of microplastics in the environment. The implemen-
tation of these policies was not without challenges, given 
the numerous benefits that plastic carrier bags offer, such as 
sturdiness, longevity, water resistance, and more. However, 
the encouraging results demonstrated the effectiveness of 
controlling the utilisation of plastics and microplastics by 
enforcing restrictions, fostering international cooperation 
among different nations, and, most importantly, enhancing 
public awareness.

Biological specimens for the detection 
of microplastics

Exposure to microplastic mainly affects the cellular and 
molecular components of living organisms. Understanding 
the origin, circulation, and susceptibility of microplastics 
in humans is essential for maintaining good health. Due to 
their position at the apex of the food chain, several animals, 
including humans, have been found to have accumulated 
microplastics in their circulatory systems (Sikdokur et al. 
2020). Water consumption and food contamination signifi-
cantly contribute to human microplastic exposure (Danop-
oulos et al. 2020). Food contaminated with microplastics, 
particularly seafood, is the primary source of exposure route 
for humans (Toussaint et al. 2019). It is also possible that 
people might be exposed to microplastics via air ingestion 
or through skin contact. When breathed in or consumed, 
microplastics may produce local particle toxicity stimulating 
immunological responses (Enyoh et al. 2020). A growing 
body of research suggests that people are often exposed to 
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various plastics, ranging from microbeads to large bottles. 
As the evidence of microplastic exposure and the toxicity 
effect is prominent, it is necessary to assess the presence of 
microplastics in the human body through biological samples 
such as faeces, sputum, and placenta.

The reported in vitro and in vivo studies do not fully 
assess the risk of adverse effects of microplastics on human 
health, with some studies being conducted in the clinical 
setting. Specifically, the clinical studies examined the accu-
mulation of microplastics from different human biological 
samples. For example, Wibowo et al. (2021) collected stool 
samples from healthy participants from a fisherman com-
munity living in the coastal region of Kenjeran, Surabaya, 
and Indonesia. They found that 50% of the participants were 
positive for microplastics in their stool, with high-density 
polyethylene spotted as the most predominant contaminant. 
However, Ibrahim et al. (2021a) reported that 100% of the 
sample collected had microplastic in human colectomy spec-
imens, in which nine subjects had colorectal cancer, and 
another two were healthy subjects.

Interestingly, the study considered the potential micro-
plastic airborne contamination and preventive steps. In addi-
tion, researchers found that samples taken from the human 
placenta and foetal meconium contained polyethylene, 
polypropylene, polystyrene, and polyurethane (Braun et al. 
2021a). The study's primary limitation was that microplas-
tics were detected in the control sample, indicating the pos-
sibility of contamination in the samples. Due to the potential 
high risk of environmental contamination with microplas-
tics, clinical investigations are constrained. Therefore, pre-
cautions must be taken in clinical research in the future to 
avoid environmental contamination. Future research is also 
required to confirm and further explore the harmful effects 
of microplastics on human health as well as the underlying 
mechanisms. In addition, evaluating risk factors that may 
affect human exposure to microplastics is also beneficial.

Microplastics in faeces

Microplastics are widely present in food and water sources, 
making human consumption unavoidable or unknowing. In 
a preliminary study, researchers used mass spectrometric 
analysis to examine polyethylene terephthalate and polycar-
bonate microplastics in faecal samples obtained from infants 
and adults. Although the polycarbonate microplastic content 
was the same in both groups, the researchers suspect infants 
may be more exposed to microplastics due to their frequent 
use of items such as bottles, teethers, and toys (Zhang et al. 
2019). Fifteen different types of microplastics were identi-
fied in the faecal samples, with polyethylene terephthalate 
and polyamide being the most frequently detected (Yan 
et al. 2022a). It is unclear whether microplastic consump-
tion causes a health concern. In recent research, microplastic 

content in the faeces of patients with inflammatory bowel 
disease was greater than that of healthy persons. These stud-
ies also indicate a strong correlation between the severity of 
inflammatory bowel disease and faecal microplastics (Yan 
et al. 2022a).

Detecting multiple types of microplastics in human fae-
cal samples suggests that these particles are inadvertently 
ingested from various sources (Schwabl et al. 2019). While 
numerous studies have reported finding microplastics in 
human faeces, there is currently no standardised method 
for extracting them from these samples. One of the main 
challenges in extracting microplastics from human faeces 
is distinguishing between organic and inorganic materials. 
Digestion techniques involving nitric acid  (HNO3), hydro-
gen peroxide  (H2O2), potassium hydroxide (KOH), sodium 
hydroxide (NaOH), and enzymes are commonly used to 
extract microplastics (Yan et al., 2020). Plastic particles may 
be damaged by powerful chemical reactions and high tem-
peratures, which necessitates the use of necessitating gentler 
procedures. Yan et al. (2020) suggested using Fenton's rea-
gents for sample identification, nitric acid, and ethyl alcohol 
to break down materials and ethyl alcohol to remove resi-
dues on microplastic surfaces. This could preserve various 
types of plastic polymers in human faeces. Proteins, lipids, 
bacteria, and other faecal compounds must be digested for a 
comprehensive sample (Zhang et al., 2021c).

Microplastics in sputum, saliva, 
and bronchoalveolar lavage fluid 

The contamination of microplastics in the air may have 
resulted from various sources, such as microfibre leakage 
into the water cycle from washing garments. However, direct 
release from textiles might significantly contribute to micro-
plastic pollution, with less attention (Napper and Thompson 
2016; De Falco et al. 2020). Modest amounts of microplas-
tics in the respiratory tract have triggered the release of reac-
tive oxygen species, which may lead to alterations in lung 
cell metabolism, proliferation, and cohesiveness (Goodman 
et al. 2021). The research identified 21 kinds of microplas-
tics in sputum samples, with polyurethane constituting the 
majority. This research suggests that inhalation is a potential 
entry point for microplastics (Huang et al., 2022a).

Comparatively, a study conducted in Iran showed that 
saliva might not be a great choice for investigating the pres-
ence of microplastics in the human body as it exhibited 
relatively lower content than samples taken from hair and 
skin (Abbasi and Turner 2021). Bronchoalveolar lavage fluid 
obtained by instilling and recovering a saline solution from 
one or more lung segments may provide useful information 
about alveoli and foreign materials in respiratory airways 
(Sartorelli et al., 2020). Fourier transform infrared spectros-
copy and scanning electron microscopy-energy dispersive 



Environmental Chemistry Letters 

1 3

spectroscopy proved the presence of microplastics in human 
bronchoalveolar lavage fluid. This finding correlates with 
the link between microplastic content and possibly damaged 
and decreased lung function (Baeza-Martinez et al. 2022).

Microplastics in blood and placenta

Blood is an ideal biological sample for testing the presence 
of plastics because it is directly obtained from the body and 
does not come into contact with any plastics. Leslie et al. 
(2022) established the bioavailability of plastic microparti-
cles in the human bloodstream. They found four high poly-
mers used in plastics, such as polyethylene terephthalate, 
polyethylene, polymers of styrene, and methyl methacrylate, 
in the blood of 22 healthy participants. The researchers used 
steel syringe needles and glass tubes to avoid contamination 
and evaluated for background levels of microplastics using 
blank samples. According to new research, scientists have 
discovered microplastics for the first time in the human pla-
centa, raising concerns that the compounds may interfere 
with embryonic development. Raman microspectroscopy 
was used to evaluate six human placentas collected from 
women who agreed to have their pregnancies monitored 
for microplastics. The sample was processed in a confined 
and controlled environment to avoid cross-contamination, 

revealing the presence of 12 microplastic fragments (Ragusa 
et al., 2021a).

In a separate study using the placenta, researchers devel-
oped a new technique analysing multiple contaminations for 
their plastic components, and the results were compared to 
the placenta, meconium, and maternal faeces. The samples 
collected through caesarean and breech deliveries enabled 
greater management of potential plastic contamination. 
Using pre-cleaned metal containers to store biological sam-
ples promptly readied samples for shipment and analysing 
negative samples ensures minimal cross-contamination, thus 
increasing the reliability of the result (Braun et al., 2021b). 
Table 2 highlights the biological specimens for the detection 
of microplastics.

Detrimental effects of microplastics 
ingestion on human health

The associated molecular mechanisms underlying micro-
plastics' impacts on human health are summarised in 
Fig. 5. Exposure to the human body through ingestion of 
food containing plastic particles may pose potential health 
risks to humans, including cancer, immunotoxicity, intes-
tinal diseases, pulmonary diseases, cardiovascular disease, 

Table 2  Biological specimens for detection of microplastics. Microplastic contamination was found in biological specimens such as blood, spu-
tum, meconium, faeces, saliva, bronchoalveolar lavage fluid, and placenta

The widespread contamination of microplastics is a concerning issue.

Study participants Locations Technique of analysis Polymer types Reference

Three meconium, six infants, 
and ten adult faeces

New York Mass spectrometry Polyethylene terephthalate and 
polycarbonate

Zhang et al. (2019)

Faeces of patients with inflam-
matory bowel disease and 
healthy people

China Raman spectroscopy Polyethylene terephthalate and 
polyamide

Yan et al. (2022a)

Faeces of eight healthy volun-
teers aged 33 to 65 years

Europe and Asia Fourier transform infrared 
spectroscopy

Polypropylene and polyethyl-
ene terephthalate

Schwabl et al. (2019)

Sputum of 22 patients suffer-
ing from different respira-
tory diseases

China Fourier transform infrared 
spectroscopy

Polyurethane polyester, chlo-
rinated polyethylene, and 
alkyd varnish

Huang et al. (2022a)

8000 samples of saliva from 
adult

Iran Raman spectroscopy Not detected Abbasi and Turner (2021)

Bronchoalveolar lavage fluid 
from 44 adult patients under-
going a bronchoscopy

Europe Fourier transform infrared 
spectroscopy

Microfibres (rayon/viscose 
polyester cellulose and 
cotton)

Baeza-Martinez et al. (2022)

Blood samples from 22 
healthy volunteers

Netherlands Fourier transform infrared 
spectroscopy

Polyethylene terephthalate, 
polyethylene, and polymers 
of styrene

Leslie et al. (2022)

Placenta from healthy women 
and have a vaginal delivery

Italy Raman microspectroscopy Polypropylene Ragusa et al. (2021a)

Placental tissue and meco-
nium specimens during two 
caesarean sections for breech 
deliveries

Austria Fourier transform infrared 
spectroscopy

Polyethylene, polypropylene, 
polystyrene, and polyure-
thane

Braun et al. (2021b)
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inflammatory diseases, as well as pregnancy and maternal 
exposure to progeny. This section summarises the toxic 
mechanisms and effects of microplastics potentially caus-
ing harm to humans.

Microplastic‑induced cancer

Microplastics have recently been linked to several health 
problems, including toxicity and carcinogenicity, when 
consumed by humans (Gasperi et al. 2018; Blackburn and 
Green 2022). Due to the small size of microplastics, they 
have a high ratio of surface area to volume. Materials with 
a high surface area are highly cytotoxic to cells and tissue 
and can damage deoxyribonucleic acid (DNA) inside the 
cells. These mutations occur due to deoxyribonucleic acid 
damage that can lead to cancer (Campanale et al. 2020). 
Furthermore, uncontrolled waste of microplastics in water 
tends to absorb hydrophobic organic pollutants from water 
(Rodrigues et al. 2019). These harmful organic pollutants are 
carcinogenic, and long-term exposure can cause deoxyribo-
nucleic acid mutations that contribute to cancer formation 
(Mishra and Rahi 2022). In addition, heavy metals such as 
arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), 
and lead (Pb) used in the production of plastics are carcino-
genic, according to the International Agency for Research 
on Cancer (IARC).

Epidemiological studies have shown that long-term expo-
sure to microplastics is highly associated with cancer devel-
opment in humans and animals (Karimi et al. 2021). Due to 
their small size, microplastics can be directly consumed by 
various marine organisms and contaminate the human food 
chain via the bioaccumulation process (Zhao 2022). Given 
the data and information on the levels of seafood consumed 
globally, humans are likely to be exposed to microplastics 
at a certain level (Campanale et al. 2020). For instance, 
a study by Smith et al. (2018) showed that the consump-
tion of bivalves by Europeans was estimated to be up to 
11,000 microplastics per person per year. Once consumed 
by humans, the particles of microplastics with sizes less than 
2.5 mm can enter the digestive tract via a cellular process 
called endocytosis by the microfold cells of Peyer’s patches.

The amount of microplastic consumed influences 
the accumulative effect due to properties such as 

hydrophobicity and chemical composition. Based on the 
microplastic levels in humans at the gastrointestinal level, 
this hypothesis was further validated by microplastics in 
the human stool samples. These studies provide direct 
evidence of plastic consumption in humans that may lead 
to the development of various cancers (Campanale et al. 
2020; Sharma et al., 2020).

Prata et al. (2020b) showed that microplastic intake 
might cause chronic inflammation and irritation, leading 
to deoxyribonucleic acid damage. Previously, it was also 
reported that the release of pro-inflammatory mediators 
that produce angiogenesis has resulted in the formation 
and progression of malignancies (Chang 2010a). For 
example, polycyclic aromatic hydrocarbons in food and 
water have become a general concern (Sharma and Chat-
terjee 2017). The cancer assessment risk study on the 
effects of microplastics evaluated by Sharma et al. (2020) 
revealed that microplastics adsorbed at around 236 ug/L 
of polycyclic aromatic hydrocarbons from water. This 
study demonstrates that microplastic leaching from plastic 
products is approximately 1000 times more dangerous than 
benzo[a]pyrene. The toxicological studies revealed that the 
toxic equivalent factor of microplastic linked with poly-
cyclic aromatic hydrocarbons was calculated at 88.21 μg, 
implying that the cancer risk was 1.28 ×  10–5 higher than 
the approved value of  106.

Because microplastics are primarily absorbed through the 
stomach, they pose a risk of cancer development. Although 
several research works have explored the effects of plastic 
on humans, its impact on the stomach is still unclear (Cam-
panale et al. 2020). Recently, Kim et al. (2022) demonstrated 
that long-term exposure to microplastics can increase the 
risk of stomach cancer. The presence of microplastics has 
caused the enhanced expression level of asialoglycoprotein 
receptor 2 (ASGR2). The elevated level of ASGR2 indi-
cates the presence of typical cancer hallmarks such as CD44, 
N-cadherin, programmed death ligand 1 and proliferation. 
In addition, the excess exposure to microplastics caused a 
decrease in survival rate and an increase in the growth of 
tumours (Kim et al. 2022).

Wang et al. (2020c) reported that the different size of 
microplastics affects their toxicity in humans. The high 
toxicity to human cancer coli-2 cells (Caco-2) activity 
was observed in the microplastics with the size of 0.3 mm, 
0.5 mm and 6 mm. Still, lower toxicity was demonstrated 
in 1 and 3 mm microplastic sizes. The toxicological studies 
were conducted by observing the reaction of Caco-2 cells to 
microplastics with different particle sizes. The uptake rates 
of microplastics were high (73%) at a small particle size and 
low (30%) at a large particle size. This finding shows that as 
the surface area is increased, the cellular oxidative stress is 
increased. Along with the adsorption characteristic, using 

Fig. 5  Detrimental effects of microplastic ingestion on human health 
and toxic mechanisms. Microplastics found in everyday items, includ-
ing bottle packaging, can have harmful effects on human health 
when ingested. Once absorbed through the intestines, they can travel 
through the circulatory system to other organs. Different mechanisms 
can take microplastics, such as membrane damage, clathrin/caveolin-
dependent, caveolin-dependent, clathrin-dependent, and micropino-
cytosis. High levels of microplastics can increase oxidative stress, 
producing inflammatory cytokines, apoptosis, cytotoxicity, and gene 
expression disturbances

◂
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bisphenol A as a plasticiser and microplastic nano-scale size 
has shown synergistic toxicity on Caco-2 cells.

On the other hand, a study showed that bisphenol A expo-
sure could lead to local inflammation and affect colon cell 
permeability. This process was mediated by elevated lev-
els of interferon-g, interleukin-17 and immunoglobulin A 
(Malaisé et al. 2018). Interferons are proteins that are part 
of human nature and defences. They signal the immune sys-
tem when germs or cancer cells are detected in the body. 
Meanwhile, interleukin-17 promotes cancer cell survival 
and induces resistance to conventional chemotherapeutic 
agents (Bastid et al. 2020). In addition, an elevated level of 
serum immunoglobulin A has been observed in patients with 
breast, colon and liver cancers (Qiu et al., 2003).

Besides, exposure to bisphenol A caused similar effects 
on the colon cell and local inflammation in rats (Braniste 
et al. 2010). The process was related to the binding of bis-
phenol A to oestrogen receptor beta, primarily found in 
humans' intestines (Campbell-Thompson et al., 2001). The 
overexpressed colon cancer cells due to bisphenol A expo-
sure in oestrogen receptor beta were associated with colon 
cancer growth. Bisphenol A appeared to block the oestrogen 
actions produced by the respective receptor. For example, 
the oestrogen-induced activation of the apoptotic cascade 
was impaired by the presence of bisphenol A, which affected 
the protection of endogenous oestrogen hormone in stopping 
colon cancer cell growth. Therefore, it can be concluded 
that bisphenol A exposure affects the immune functions and 
variation of microbiota, causing a pro-tumour inflammation 
in the human colon that favours colon cancer's growth (Bolli 
et al. 2010).

The digestive tract is another potential point of micro-
plastic entry in humans. The studies conducted by Good-
man et al. (2021) demonstrated evidence of microplastic 
in lung tissues with sizes smaller than 5.5 mm. The types 
of polymers used were polyethylene and polypropylene. 
Adverse health effects may be associated with the heteroge-
neous characteristic of these microplastics in the respiratory 
system.

Meanwhile, research studies by other groups have 
revealed that microplastics in human lungs affect cell pro-
liferation and activate morphological changes (Amato-
Lourenço et al. 2021). For example, different-sized micro-
plastic was exposed to human alveolar A549 cells. It was 
further shown that sizes caused a significant reduction in cell 
proliferation with different cytotoxicity values. This distur-
bance at the proliferative levels of human cells proved that 
airborne microplastics might have a toxicological impact on 
cancer development (Amato-Lourenço et al. 2021).

The tri-o-cresyl phosphate, one of the isomers of plas-
ticisers, is reported to have neurotoxic effects and cause 
liver and reproductive toxicity (Böckers et  al., 2020). 
Investigations on the impact of tri-o-cresyl phosphate 

utilisation in microplastic showed that growth impairments 
affect reproduction and fertility in aquatic animals (Liu 
et al., 2020). Therefore, there is a high possibility of leach-
ing from microplastics that affect the endocrine system. 
Another group (Böckers et al., 2020) studied the effects 
of tri-o-cresyl phosphate on human breast cancer cell 
line (MCF-7) and oestrogen receptor α human embryonic 
kidney-oestrogen receptors (HEK-ESR) cells. The study 
demonstrated that the coordination of tri-o-cresyl phos-
phate to oestrogen receptor α in silico had a high tendency 
to induce tumour growth by overexpressing angiogenesis 
and nutritional supply. This action promoted invasion and 
metastasis, affecting the cell cycle. Therefore, such action 
reveals that tri-o-cresyl phosphate exposure affects the 
endocrine system as oestrogen receptor α cells HEK-ESR 
and MCF-7 breast cancer cells.

Although exposure to plasticisers such as bisphenol A 
and tri-cresyl phosphate has been confirmed in the devel-
opment of breast cancer, little is known about the mecha-
nisms of cancer development. To obtain a clear view of 
the mechanism, Deng et al. (2021) exposed human breast 
cancer cell line (MCF-7) cells to bisphenol A at differ-
ent concentrations and reaction times (Deng et al., 2021). 
This study showed that bisphenol A exposure significantly 
promoted the proliferation and migration of MCF-7 cells. 
Interestingly, the protein expression levels of pituitary 
tumour-transforming gene 1 (PTTG1) were enhanced 
considerably under bisphenol A exposure. Besides, the 
increased expression of PTTG1 was due to the inhibi-
tion of microRNA (miR-381-3p). The expression of miR-
381-3p was low and exhibited an inverse correlation with 
the expression of PTTG1 in breast cancer tissues. There-
fore, these findings reveal that bisphenol A can cause high 
protein expression of PTTG1 and affect the cell cycle to 
increase MCF-7 cell proliferation by suppressing the 
expression of miR-381-3p).

Similar to the pathophysiology of breast cancer, pros-
tate cancer is also subjected to the activity of steroid and 
androgen receptors (Dobbs et al. 2019). It was demonstrated 
that the excess bisphenol A exposure could affect the deox-
yribonucleic acid by breaking the double strand, causing 
instability of genomic and chromosome rearrangements. 
Moreover, the modifier effect of bisphenol A on the cellular 
epigenome and metabolome has the potential risk of caus-
ing secondary mutagenesis and tumour development (Allard 
and Colaiácovo 2010). Hu et al. (2021a) investigated the 
principal component analysis plot based on 96 trinucleotide 
context of sample prostate adenocarcinoma (PRAD-CA) 
and showed mutation spectra in the respective tumour sam-
ple. This result indicated that bisphenol A exposure leads 
to the damage of deoxyribonucleic acid and caused causes 
mutagenesis in human cells, thus inducing complex muta-
tional effects in somatic genomes. Such findings are close to 
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those in patients with stomach and ovarian cancer. Table 3 
shows microplastics' impacts on cancer development and 
associated molecular mechanisms.

Immunotoxicity

Numerous immune cells underneath the intestinal epi-
thelium coordinate the immune response by presenting 
antigens, generating antibodies, and releasing cytokines. 
Another element of the immunological barrier is secre-
tory immunoglobulin A, mostly found on the surface of the 
human body's intestinal mucosa, which may interact with 
symbiotic bacteria to protect against infections (Shi et al. 
2021; Hirt and Body-Malapel 2020a). In other words, the 
intestinal immune system defends against non-pathogenic 
commensal organisms and harmless food antigens while 
reacting quickly to infectious threats and toxins. Several 
mechanisms support this sensitive effort, including myeloid 
cells, innate lymphoid cells, and T cells. Immunotoxicity is 
the term used to describe the negative effects of pollutants 
on the immune system. Microplastics have been shown to 
have various immune system problems, such as immune cell 
death, altered surface receptor expression, and interleukin 
production (Sun et al. 2021).

The interactions between microplastics and the immune 
system may have immunotoxicity and adverse effects, 
including immunosuppression (decreased host resistance 
to infectious agents and tumours), immune activation 

(increased risk of developing allergic and autoimmune 
diseases), and abnormal inflammatory responses (chronic 
inflammation, tissue or organ damage and dysfunction) 
(Lusher et al. 2017). The absorption and toxicity of poly-
meric microparticles have been examined in mammalian 
systems (Wright and Kelly 2017; Blackburn and Green 
2022). According to the research, microplastics affect the 
immune system and cell health. For instance, in rats, 10% of 
the dose was found in the gastrointestinal tract after a five-
day oral course of 60 nm polystyrene nanoparticles (Hirt and 
Body-Malapel 2020a). Microplastics are not absorbed but 
remain attached to the apical region of intestinal epithelial 
cells. This action may result in intestinal inflammation and 
local immune system consequences. The primary location of 
microplastic absorption occurs in Peyer's patches with many 
microfold cells (Carr et al. 2012).

In another study, 0.3% of microplastics administered 
orally could penetrate the epithelium, demonstrating the 
ineffectiveness of microparticle excretion. The intestinal 
absorption of the particles may result in systemic expo-
sure that is toxicologically significant. As a result, ingested 
microplastics can interact with intestinal tissues, enter the 
bloodstream, and probably stimulate the immune response 
(Bouwmeester et al. 2015). In this context, mice exposed to 
polyethylene microplastics (10–150 μm, 20 and 200 μg/g) 
for five weeks experienced changes in the serum levels of 
interleukin-1α and granulocyte colony-stimulating factor 
(G-CSF) (Li et al., 2020c). Additionally, the regulatory T 

Table 3  Impacts of microplastics on cancer development and associated molecular mechanisms.

 Various cancer types can be developed due to microplastic exposure, which induces several inflammatory responses and deoxyribonucleic acid 
damage.
MCF-7 and RNA refer to the human breast cancer cell line and ribonucleic acid, respectively

Biological effect/cancer type Mechanism

• Chronic inflammation and irritation
• Deoxyribonucleic acid damages

• Pro-inflammatory mediators
• Progression of malignancies

• Lead to cancer hallmarks such as CD44, N-cadherin, 
programmed death ligand 1, and proliferation

• Decreased survival rate
• Increased the growth of tumours

• Enhanced the expression level of asialoglycoprotein receptors (ASGR2)

• Increased cellular oxidative stress • The toxicological reaction of cancer-coli 2 (Caco-2) cells
• Inflammation and colon cell permeability are affected
• Breast, colon, and liver cancers

• Elevated levels of interleukin-17 and immunoglobulin A
• Induced resistance to conventional chemotherapeutic agents

• Cause liver and reproductive toxicity
• Growth impairments
• Breast cancer

• Overexpressing angiogenesis and nutritional supply
• As oestrogen receptor α, the endocrine system mediates human embryonic kidney-

oestrogen receptors (HEK-ESR) and human breast cancer cell line (MCF-7) breast 
cancer cells

• Breast cancer • High protein expression of pituitary tumour-transforming gene 1 (PTTG1)
• Increased MCF-7 cell proliferation by suppressing the expression of microRNA 

(miR-381-3p)
• Breast cancer
• Prostate cancer
• Secondary mutagenesis
•Tumour development

• Breaking the deoxyribonucleic acid by double strands causes instability of genomic 
and chromosome rearrangements
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cell count was lowered, and the fraction of T helper type 17 
cells in splenocytes was increased. In a mice study of the 
cross-generational effects of polyethylene exposure (7 μm, 
0.125 to 2 mg/day/mouse, for 90 days), blood neutrophil 
counts and immunoglobulin A levels were increased in the 
dams with spleen lymphocytes changed in both the dams and 
the offspring (Park et al. 2020).

Immunotoxicity caused by polycyclic aromatic hydro-
carbons has been found in humans and animals. Numerous 
studies on human exposure have suggested that polycyclic 
aromatic hydrocarbons may stress the body's immune sys-
tem. For instance, exposure to polycyclic aromatic hydro-
carbons during pregnancy was significantly linked to higher 
percentages of a cluster of differentiation (CD),  CD3+ and 
 CD4+, lymphocytes and lower percentages of  CD19+ and 
natural killer cells in umbilical cord blood. This finding 
suggests that exposure to polycyclic aromatic hydrocarbons 
during pregnancy may impact foetal immune development 
through changes in the lymphocyte distribution of the cord 
blood (Herr et al. 2010).

However, the molecular targets and mechanisms by which 
polycyclic aromatic hydrocarbons affect T lymphocytes’ 
immunotoxicity were not understood until the discovery 
of the global transcriptional activity of the B-activator pro-
tein in activated human T lymphocytes. B-activator protein 
inhibited chemokine ligand 12-induced T-cell chemotaxis, 
and trans-endosomal migration and interferon signalling 
pathways were activated (Liamin et al. 2018). For instance, 
concanavalin A-induced T cell proliferation in mice was 
considerably suppressed under B-activator protein expo-
sure conditions, and the interferon, interleukin-2, and inter-
leukin-4 were reduced (Guan et al. 2017). However, new 
research has identified several crucial immunomodulatory 
substances, including interleukin-27 and interleukin-28B, 
as immunotherapeutic agents for inflammation and lesions 
caused by polycyclic aromatic hydrocarbons (Majumder 
et al. 2020). Thus, ingestion of microplastics may affect 
the human body in various ways, such as altering intestinal 
homeostasis or altering immune cell recruitment or cytokine 
production levels. The vulnerability of the immune system to 
microplastics adds to the dangers to human health.

Microplastic‑induced intestinal diseases 

The intake of microplastics is around 39,000 to 52,000 par-
ticles per person per year (Cox et al. 2019). After inhalation, 
microplastic particles can enter the gastrointestinal system 
through food contaminated with microplastics or muco-
ciliary clearance. This can lead to various negative health 
effects, including increased gut permeability, alterations in 
gut microbiome composition, and changes in metabolism 
(Salim et al. 2014).

Microplastics with a dimension greater than 150 μm are 
not absorbed. They remain bound to the intestinal mucosal 
layer and directly in contact with the apical part of the intes-
tinal epithelial cells. This effect could lead to gut inflam-
mation and a local impact on the immune system (Hirt and 
Body-Malapel 2020b). The smaller particles (dimension less 
than 150 μm) can cross the mucus barrier (Hirt and Body-
Malapel 2020b). Several mechanisms of size-dependent 
uptake of nano- and microparticles have been explained, 
namely (i) endocytosis through enterocytes, (ii) transcyto-
sis through microfold cells, (iii) crossing of the barrier by 
particles (persorption), and (iv) paracellular uptake (Powell 
et al. 2010). Although the intestinal uptake of microparti-
cles is low (Carr et al. 2012), intestinal absorption of par-
ticles could lead to systemic toxicity as nanoplastics can 
infiltrate deep into organs (Hirt and Body-Malapel 2020b). 
Research has revealed that upon internalisation by human 
gastric adenocarcinoma cells, polystyrene particles can 
alter gene expression, reduce cell viability, and trigger pro-
inflammatory responses and morphological changes (Forte 
et al. 2016).

The increasing prevalence of microplastics in consumer 
foods and beverages, the impact of plastics on the activity 
of the gut microbiome, and the potential for microplastics 
to degrade through digestion and interaction with intesti-
nal microbes have been widely acknowledged (Tamargo 
et al. 2022a). Plastic particles found in foods have a major 
systemic and local negative impact on human health, such 
as mouth irritations or intestinal dysbiosis (Tamargo et al. 
2022a). In addition, microplastic consumption may result 
in minor transcriptional alterations in the colon, indicating 
disturbances of the plasma membrane and mild inflamma-
tion (Rawle et al. 2022). The primary symptoms of micro-
plastic intestinal toxicity are fatigue, diarrhoea, blood in 
stool, abdominal pain and cramping, reduced appetite, and 
unintended weight loss. These complications lead to cholera, 
gut dysbiosis, inflammatory bowel disease, irritable bowel 
disease, chronic bowel disease, metabolic disturbances, and 
other stomach issues.

Microplastic ingestion is more common in urban areas; 
however, an Indonesian study conducted in rural areas 
found microplastics in 7 of 11 collected stool samples. 
The concentration of microplastics found in the faeces 
was 6.94–16.55 μg/g (Wibowo et al. 2021). All colectomy 
samples collected from 11 adults in Northeastern Peninsu-
lar Malaysia contained microplastics in a study that used 
stereo- and Fourier-transformed infrared spectroscopy for 
analysis (Ibrahim et al. 2021b). This finding indicates that 
the prevalence of microplastics in the human gut system is 
becoming more prevalent and require more studies using 
human subjects. A study utilising a combined harmonised 
static model and dynamic gastrointestinal (SIMGI) model, 
which simulated various digestive tract regions in different 
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physiological states, found that a single dose of polyethylene 
terephthalate microplastics undergoing biotransformations 
in the gastrointestinal tract and the colon, resulting in the 
production of different particles. Hence, microplastics can 
change human microbial colonic community composition, 
and the colonic microbiota could attach to the microplastics 
surface to induce biofilm formations (Tamargo et al. 2022b).

A systematic review of the effect of microplastics on the 
intestinal microbiota showed that they are potential triggers 
of intestinal dysbiosis, portrayed by the enrichment of Chla-
mydia, Firmicutes, and Proteobacteria. Exposure to micro-
plastics resulted in increased intestinal permeability and the 
expression of immune signatures associated with inflamma-
tion, such as interleukin-6, interleukin-1α, interleukin-1β, 
tumour necrosis factor-α, and interferon -γ. This effect is 
likely due to microplastics trapping and stimulating intes-
tinal inflammatory infiltration (Souza-Silva et al. 2022). 
Microplastics can also display structural changes in response 
to secondary exposure (Souza-Silva et al. 2022).

Microplastic analysis of faecal samples from healthy indi-
viduals and inflammatory bowel disease patients showed 
a significantly higher concentration of microplastics in 
patients with inflammatory bowel disease. In addition, 15 
types were detected, and there was a positive correlation 
between faecal microplastics and inflammatory bowel dis-
ease status (Yan et al. 2022b).

An assessment was conducted on the impact of micro-
plastics on lipid digestion in another study. The study dem-
onstrated that five types of microplastics (i.e. polystyrene, 
polyethylene terephthalate, polyethylene, polyvinyl chloride, 
and poly(lactic-co-glycolic acid) significantly inhibited lipid 
digestion using an in vitro gastrointestinal system. Polysty-
rene showed the highest level of inhibition at 12.7%, and the 
study also found that lipid digestion decreased with increas-
ing concentrations of polystyrene. The analysis suggested 
that microplastics reduced the bioavailability of lipid drop-
lets by forming large lipid-microplastics heteroaggregates, 
adsorbing lipase, and altering the secondary structure of 
the enzyme. These findings indicate that microplastics can 
negatively impact lipid digestion, posing a human health 
risk (Tan et al. 2020).

A study evaluated the effect of polystyrene-microplastics 
consumption (0.5 μm size) for two weeks on mid-colon mor-
phology. The study showed that microplastics reduced the 
thickness of mid-colon mucosa, muscle, flat luminal surface, 
and crypt layer. It was also noted that the microplastic treat-
ment increased the expression levels of nucleotide-binding 
oligomerisation domain-like receptor pyrin domain-con-
taining protein (NLRP) 3, apoptosis-associated speck-like 
protein containing a C-terminal caspase recruitment domain 
and cleaved caspase (Cas)-1 proteins. Additionally, the 
protein levels of inflammatory markers (i.e. nuclear factor 
kappa light chain enhancer of activated B cells (NF-κB), 

interleukin-6, tumour necrosis factor-α, interleukin-1β) were 
also increased in the treatment group (Choi et al., 2021b).

Consuming polyvinyl chloride microplastics at 100 mg/
kg concentration for 60 days in adult mice reduced intesti-
nal mucus secretion and enhanced intestinal permeability 
(Chen et al. 2022b). The treatment also reduced messen-
ger ribonucleic acid expression levels of colonic mucus 
secretion-related genes, indicating a dysfunction in intesti-
nal mucus secretion. This finding is supported by a reduced 
expression of messenger ribonucleic acid levels of genes 
related to colonic mucus secretion. Gut microbiota analysis 
showed that microplastic consumption changes the com-
munity composition of gut microbiota, for instance, lower 
Verrucomicrobia and Epsilonbacteraeot and higher Firmi-
cutes, Bacteroidetes, Tenericutes, and Patescibacteria phy-
lum abundance (Chen et al., 2022b).

A study investigated the effects of polyethylene micro-
plastics on the progression of Helicobacter pylori infection. 
When mice were administered polyethylene microplastics 
or a combination of polyethylene microplastics and Heli-
cobacter pylori, the results showed that they tested posi-
tive for Helicobacter pylori infection in the 10th and 14th 
weeks of the study. At the same time, those infected with 
Helicobacter pylori first and Helicobacter pylori alone were 
positive only in the 14th week after treatment (Tong et al. 
2022). In addition, the microplastic fragments' diameter in 
the liver was greater than in gastric or intestinal tissues. In 
mice treated with a combination of microplastics and Heli-
cobacter pylori, or microplastics followed by Helicobacter 
pylori, the rate of inflammatory cell infiltration was signifi-
cant. The mice treated with a combination of microplastics 
and Helicobacter pylori showed the highest induction levels 
in the gastric organ index, myeloperoxidase, tumour necrosis 
factor-α, and interleukin-6. These findings suggest that the 
interaction between microplastics and Helicobacter pylori 
contributed to the improved colonisation of gastric mucosal 
epithelial cells, increased the efficiency of microplastics' 
entry into tissues, and induced gastric injury and inflamma-
tion in mice; thus, microplastics may provide a stable habitat 
for the growth of pathogenic bacteria such as Helicobacter 
pylori (Tong et al. 2022). Table 4 depicts the impacts of 
microplastics on the development of intestinal diseases and 
associated molecular mechanisms.

Microplastic‑induced pulmonary diseases 

Microplastics have been detected in indoor and outdoor air; 
if inhaled, they could reach the human airway and lungs 
(Levermore et al. 2020). Previous studies have linked occu-
pational exposure to airborne microplastics in workers of 
the synthetic textile, flock, and vinyl chloride or polyvinyl 
chloride industries to respiratory diseases such as airway and 
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interstitial lung disease. In vivo studies have successfully 
replicated the lesions associated with these conditions (Prata 
et al., 2020b). Microplastics have been reported in human 
lung tissues obtained from autopsies (Amato-Lourenço et al. 
2021).

Exposure to polystyrene nanospheres with a diameter 
of 64 nm has been shown to cause neutrophil influx and 
inflammation in rat lungs and proinflammatory gene expres-
sion in epithelial cells. This effect is most likely due to the 
high oxidant activity caused by the large surface area of the 
nanospheres. Additionally, exposure to microplastics has 
been shown to induce the expression of pro-inflammatory 
interleukin-8 protein in A549 epithelial cell lines (Brown 
et al. 2001).

In a separate study, researchers used natural lung sur-
factant obtained from porcine lungs to investigate the inter-
action between lung surfactant and microplastics (Shi et al., 
2022b). The study demonstrated that microplastics altered 
the lung surfactant's phase behaviour, surface tension, and 
membrane structure. Interestingly, polystyrene adsorp-
tion of phospholipids components of lung surfactant was 
significantly higher than that of proteins. Polystyrene also 
expedited ascorbic acid and deoxyascorbic acid conversion, 
promoting hydrogen peroxide formation in the lung fluid 
containing surfactant and increasing hydroxyl radicals (Shi 
et al., 2022b).

A study found that polystyrene microplastics with diam-
eters of 1–10 μm significantly inhibit the proliferation of 
human alveolar A549 cell lines. However, the microplastics 
had a little cytotoxic effect, as shown by trypan blue and 
Calcein-acetoxymethyl staining. Despite low cytotoxicity, 
further analysis showed a population-level decrease in meta-
bolic activity parallel to the reduction in the proliferation 
rate. Additionally, microscopic examination revealed sig-
nificant changes in cell morphology following exposure to 
microplastics. The uptake of 1-μm microplastics in cells can 
result in toxicological effects at the systemic level. (Good-
man et al. 2021).

Xu et al. (2019) evaluated the effects of two different sizes 
of polystyrene nanoplastics (25 nm and 70 nm) on human 
lung A549 alveolar epithelial cells. They found that 25-nm 
polystyrene nanoplastics were more rapidly absorbed by 
A549 cells than 70 nm. The nanoplastics markedly decreased 
the cell viability, induced cell cycle deoxyribonucleic acid 
synthesis phase arrest, stimulated inflammatory gene tran-
scriptions and modified the expression of proteins linked 
with cell cycle and pro-apoptosis. Nanoplastics also mark-
edly induced upregulation of pro-inflammatory cytokines 
such as interleukin-8, nuclear factor kappa-light-chain-
enhancer of activated B cells (NFκB), and tumour necrosis 
factor-α, as well as pro-apoptotic proteins (i.e. caspase 3, 
caspase 8, caspase 9, death receptor 5 and cytochrome c) 

(Xu et al., 2019). These results show that environmental 
nanoplastics could pose serious health effects on humans.

The same group also tested the effects of polystyrene 
nanoplastics on A549 cells and found that nanoplastics 
exposure increased migration and epithelial-to-mesenchymal 
transition markers, with the upregulation of reactive oxygen 
species and nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase 4 (NOX4). NADPH-NOX4 is a reactive 
oxygen species generator in the endoplasmic reticulum and 
mitochondria. Polystyrene nanoparticles also induced mito-
chondrial dysfunction, shown by membrane changes and 
declined cellular energy metabolism, and activated endo-
plasmic reticulum stress as demonstrated by the increased 
endoplasmic stress markers. Interestingly, NOX4 gene-
silenced cells reversed these effects, which were confirmed 
by the involvement of NOX4 in epithelial-to-mesenchymal 
transition (EMT) induction in A549 cells (Halimu et al., 
2022).

Exposure of polystyrene microplastics (1–1000 μg/cm2) 
to human non-tumorigenic lung epithelial cell line (BEAS-
2B) caused pulmonary cytotoxicity and inflammation, with 
microplastics exposure above 1000 μg/cm2 inducing inter-
leukin-6 and interleukin-8 production by inducing reactive 
oxygen species.

Microplastics can also impair the pulmonary barrier 
by reducing transepithelial electrical resistance by reduc-
ing zonula occludens proteins and the α1-antitrypsin lev-
els in BEAS-2B cells. This finding shows that polystyrene 
microplastics inhalation can increase the risk of developing 
chronic obstructive pulmonary disease (Dong et al., 2020).

In a study, Sprague Dawley rats were exposed to 100-
nm, 500-nm, 1-μm, and 2.5-μm polystyrene microplastics 
for three days. Intrathecal instillation of saline or 100 nm 
polystyrene with concentrations of 0, 0.5, 1, and 2 mg/200 μl 
was performed every two days for two weeks. The authors 
found that 100-nm and 1-μm polystyrene microplastics were 
deposited in the lungs, with alveolar destruction and bron-
chial epithelium disarrangement in the treated group. Pro-
inflammatory cytokines, including interleukin-6, tumour 
necrosis factor-α, and interleukin-1β, were upregulated in 
the polystyrene microplastic group. Deoxyribonucleic acid 
sequencing showed upregulation of long non-coding ribo-
nucleic acids (lncRNA XLOC_031479) and circular ribo-
nucleic acids (circRNA 014,924 and 006,603, and down-
regulation of the expression of lncRNA XLOC_014188 and 
circ003982 in the treated group. These findings suggest that 
the identified circRNAs and lncRNAs may be essential in 
microplastic-induced lung inflammation (Fan et al., 2022).

Lu et al. (2021b) investigated the effects of microplas-
tic exposure on normal and asthmatic physiology using 
a house dust mite-induced allergic asthmatic mouse 
model. Results showed that nasal microplastic exposure 
increased pulmonary inflammatory cells in normal mice 
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and exacerbated airway inflammation in asthmatic mice. 
Immunofluorescent staining demonstrated increased mac-
rophage accumulation and phagocytosis following micro-
plastic exposure. Both normal and asthmatic mice exposed 
to microplastics exhibited increased mucus production and 
higher levels of immunoglobulin G1, whereas the micro-
plastics plus asthmatic group showed significant effects on 
Immunoglobulin E. Moreover, microplastic exposure in 
asthmatic mice caused higher concentrations of interleu-
kin-4, interleukin-5, and T helper 1 type tumour necrosis 
factor-α in bronchoalveolar lavage fluid. Bioinformatics 
analysis revealed that microplastics stimulated tumour 

necrosis factor and immunoglobulin production, activat-
ing a group of transmembrane B-cell antigens, cellular 
stress responses, and programmed cell death (Lu et al., 
2021b). The impact of microplastics on the development 
of developing pulmonary diseases and associated molecu-
lar mechanisms is summarised in Table 5.

Microplastic‑induced cardiovascular diseases

The impact of microplastics on the cardiovascular sys-
tem has garnered significant interest in both human and 
animal studies, given the potential for a range of health 

Table 5  Impacts of microplastics on the development of pulmonary 
diseases and associated molecular mechanisms. Microplastics can 
induce various harmful effects on lung health, such as inflamma-
tion, disruption of lung surfactant integrity, antiproliferative activity 

against human alveolar cells, lung fibrosis, loss of elasticity, exacer-
bation of asthma, and pathological changes that may lead to chronic 
obstructive pulmonary disease

NFκB is the nuclear factor kappa-light-chain-enhancer of activated B cells and NADPH is the nicotinamide adenine dinucleotide phosphate oxi-
dase 4 (NOX4).

Biological effect on the lung Mechanism Reference

Inflammatory responses More significant neutrophil influx into rat lung after instil-
lation of 64 nm polystyrene

Increased lactate dehydrogenase and protein in bronchoal-
veolar lavage

Increased expression of interleukin-8 in adenocarcinoma 
human alveolar basal epithelial (A549) cells

Brown et al. (2001)

Altering lung surfactant properties Microplastics modified the phase behaviour, surface ten-
sion, and membrane structure of the lung surfactant

Microplastic adsorbs phospholipid components of lung 
surfactants better and promotes the production of free 
radicals

Shi et al. (2022b)

Inhibition of human alveolar cells proliferation
Potential toxicity

Population-level decrease in metabolic activity parallel to 
the reduction in the proliferation rate

Significant changes in the morphology of cells exposed to 
microplastics of 1 μm

Goodman et al. (2021)

Reduced cell viability, induced cell cycle S phase arrest, 
stimulated inflammatory gene transcriptions and modi-
fied the expression of proteins linked with cell cycle and 
pro-apoptosis

Induced up-regulation of pro-inflammatory cytokines such 
as interleukin-8, NFκB and tumour necrosis factor-α, as 
well as pro-apoptotic proteins such as caspase 3, caspase 
8, caspase 9, death receptor 5, and cytochrome c

Xu et al. (2019)

Increased migration and epithelial-to-mesenchymal transi-
tion markers

Membrane potential changes and impaired cellular energy 
metabolism

Upregulation of reactive oxygen species and NADPH 
oxidase 4 (NOX4)

Causes mitochondrial dysfunction
Activation endoplasmic reticulum stress

Halimu et al. (2022)

Pulmonary cytotoxicity and inflammation by inducing 
reactive oxygen species in human non-tumorigenic lung 
epithelial cell line (BEAS-2B)

Increase expression of interleukin-8 and interleukin-6, and 
induce reactive oxygen species

Disruption of lung epithelial barrier through oxidative 
stress and inflammation

Dong et al. (2020)

Induces inflammation, deposition of microplastics, lung 
histological changes

Alveolar destruction and bronchial epithelium disarrange-
ment

Interleukin-6, tumour necrosis factor-α and interleukin-1β 
were upregulated

Modulation of lncRNAs and circRNAs

Fan et al. (2022)

Worsens airway inflammation
Increased phagocytosis
Increased cellular stress responses and programmed cell 

death in the asthma model

Increased pulmonary inflammatory cells
Increased macrophages accumulation and phagocytosis
Increased production of mucus, immunoglobulin G1, and 

Immunoglobulin E
Increased interleukin-4, interleukin-5, and Th1 type 

tumour necrosis factor-α

Lu et al. (2021b)
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implications. Several studies have suggested that micro-
plastics can have detrimental impacts on the cardiovascu-
lar system of humans. For instance, Lett et al. (2021) and 
Posnack (2021) highlight the effects of microplastics on 
human health, with a specific emphasis on the cardiovascu-
lar system and its potential to cause various health problems. 
The characteristics of microplastics, such as their size and 
chemical properties, strongly influence their interaction with 
human and animal systems, particularly in the cardiovascu-
lar system (Miller 2014).

Translocation is the process by which some microplastics 
can move through the digestive epithelium after entering the 
human body and be transported to the cells and other tissues 
by the circulatory system (Ribeiro et al. 2019). Microplas-
tics internalise in humans via translocation, in which the 
particles pass through the intestinal epithelial cells or are 
absorbed by specific microfold cells (Prata et al., 2020b). 
In rats, microplastics with a size of approximately 0.90 mm 
entered the bloodstream within 15 min (Eyles et al. 1995). 
The particle size of microplastics influences the efficiency of 
translocation, and Paul-Pont et al. (2018) investigated vari-
ous sizes of microplastics, which were less than 300 mm. 
Under normal circumstances, microplastics larger than 
0.5 mm are difficult to move through the gastrointestinal 
wall. In normal circumstances, microplastics larger than 
0.5 mm are difficult to move through the gastrointestinal wall 
(Lusher et al. 2020). Browne et al. (2008) showed that plastic 
particles smaller than 10 mm could move into the mussel's 
circulatory system and have more profound consequences.

Various studies have shown that microplastics exposure 
can cause cardiovascular toxicities in animals. Despite the 
complexity of understanding the mechanism that triggers the 
diseases mentioned above, recent studies have supported the 
idea that particulate matter causes oxidative stress, which 
results in cardiovascular damage, which can be similar to 
what effect would microplastic exposure produces on the 
cardiovascular system (Kelly and Fussell 2017). Pitt et al. 
(2018) found that exposure of zebrafish embryos to poly-
styrene microplastics resulted in the translocation of micro-
plastic particles into the heart and a subsequent decrease in 
heart rate. Similarly, Wang et al. (2022) found that exposure 
of Daphnia magna to polyethylene microplastics of 20 and 
30 mm size resulted in a suppressed heart rate. The study 
also revealed that different particle sizes had varying toxic 
effects on Daphnia magna, with larger microplastic sizes 
causing the degradation of amino acid metabolites.

Li et al. (2020b) investigated the effects of polystyrene 
on cardiac fibrosis in rats to understand better the mecha-
nisms underlying how microplastics cause cardiovascular 
diseases. They found that microplastics triggered oxidative 
stress, leading to apoptosis in cardiomyocytes and the acti-
vation of the Wnt/beta-catenin pathway, resulting in cardiac 
fibrosis and dysfunction. Similarly, Wei et al. (2021) studied 

the impact of microplastics on cardiac tissues and discovered 
the role of pyroptosis and oxidative stress in cardiomyocyte 
injury. They found that microplastics exposure activated the 
nucleotide-binding oligomerisation domain-like receptor 
protein 3 inflammasomes in heart tissue, leading to inflam-
matory stimuli caused by oxidative stress that activated the 
Caspase-1-dependent signalling pathway. These findings 
shed light on the possible mechanisms by which microplas-
tics cause cardiovascular diseases, although more research 
is needed in this area.

Zhang et al. (2022b) investigated the effects of micro-
plastics on primary cardiomyocytes in chickens and pro-
posed a mechanism for the observed effects. They found 
that microplastics disrupted antioxidant enzyme levels and 
increased levels of reactive oxygen species, leading to car-
diac inflammation and pyroptosis. They suggested that the 
presence of microplastics altered several pathways, includ-
ing nuclear factor kappa light chain enhancer of activated 
B cells-Nod-like receptor protein 3-gasdermin D (NF-κB-
NLRP3-GSDMD) and adenosine monophosphate-activated 
protein kinase-peroxisome proliferator-activated receptor 
gamma coactivator-1α (AMPK-PGC-1α). This alteration 
produced oxidative stress, myocardial pyroptosis, inflam-
mation, dysfunctional mitochondria, and energy metabo-
lism (Zhang et al. 2022b).

Since humans can ingest microplastics through inhala-
tion, exposure to airborne particles of microplastics may 
cause asthma, cardiac disease, allergies, and autoimmune 
diseases (Campanale et al. 2020). Recent research suggests 
that microplastics may adhere to the external membranes 
of red blood cells, potentially impeding their capacity to 
transport oxygen (Fleury and Baulin 2021). Lu et al. (2022) 
investigated the impact of polystyrene microplastics on 
human umbilical vein endothelial cells (HUVEC), reveal-
ing that microplastics with a size of 0.5 mm damaged the 
cell membrane and reduced mechanical stability. Mean-
while, smaller microplastics (about 0.1 mm) aggregated in 
the cytoplasm, damaging the cell membrane and disrupt-
ing autophagy. These findings provide new insight into the 
potential impact of microplastics on HUVEC and contribute 
to the health risk assessment of microplastics on the car-
diovascular system. The stretching of red blood cell mem-
branes caused by microplastics can reduce their mechanical 
stability, affect their ability to transport oxygen, and lead to 
symptoms such as shortness of breath, dizziness, and weak-
ness (Lu et al. 2022).

Another situation concerning the effects of microplas-
tic exposure on the human cardiovascular system is plas-
ticiser additives such as bisphenol A and phthalate. These 
plasticisers are not covalently bound to the plastic matrix, 
so they are easily leached from plastic material (Cam-
panale et al. 2020). Biomonitoring studies have raised 
concerns for the authorities as they have reported that 
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75–90% of the general population has detectable levels of 
these chemical additives (Ramadan et al. 2020). Accord-
ing to a 10-year cohort study by Bao et al. (2020), long-
term exposure to bisphenol A was significantly associated 
with a hazard ratio of 46–49% for heart diseases. Further-
more, an epidemiological study has linked increased uri-
nary phthalate and bisphenol A levels to a higher risk of 
hypertension, coronary artery disease, acute myocardial 
infarction, and reduced heart function (Ramadan et al. 
2020). Data from a randomised controlled trial demon-
strated that drinking water from a bisphenol A-containing 
bottle rapidly increased bisphenol A levels in urine, sup-
porting the relationship between bisphenol A exposure 
and high blood pressure (Bae and Hong 2015).

On the other hand, phthalate can be regarded as a car-
dio-depressive agent. For instance, exposure to phthalate 
such as di(2-Ethylhexyl) phthalate (DEHP) can impact 
coronary circulation, leading to atrial contractile dys-
function. Furthermore, phthalate exposure may result in 
bradycardia, atrioventricular conduction disorder, and 
decreased cardiac conduction velocity (Jaimes III et al., 
2019).

Epidemiological and population-based studies may 
find it challenging to determine the underlying cause of 
these diseases. The mechanisms that lead to these effects 
are likely influenced by various factors, including oxida-
tive stress, hormones, and inflammation, as demonstrated 
in both population-based and experimental research (Pos-
nack 2021). Therefore, more research is necessary to pro-
vide further insight into the effects of plastic chemical 
exposure on cardiovascular health.

Microplastic‑mediated infectious diseases

A study showed that the consumption of microplastics led 
to inflammatory changes in the colon and worsened viral 
arthritis. In mice consuming 80 μg/kg/day of microplas-
tics dissolved in water, there was no apparent accumula-
tion in major internal organs, lymphatic fluids, or intes-
tinal tissues. However, the accumulation of microplastics 
led to significant transcriptional changes in the colon, 
potentially due to the interaction between microplastics 
and the lumen side of the colonic tissues, which could 
affect the mucosal epithelium and its barrier function 
(Rawle et al. 2022). Further research is needed to inves-
tigate the potential impact of microplastics on gastroin-
testinal health.

Consuming microplastics have been found to pro-
mote inflammation and prolong arthritic foot swelling 
in mice challenged with the chikungunya virus. This 
was associated with increased T helper type 1, natural 
killer cells, and neutrophil signatures (Rawle et al. 2022). 

The transmission of pathogens from ingested plastics to 
humans is still unclear and requires further research. The 
survival of these pathogenic organisms on plastic debris 
has not been thoroughly examined, and there is a need for 
more extensive studies to understand the transmission of 
pathogens and the associated risks of illness related to 
seafood consumption (Barboza et al. 2018).

Microplastic‑mediated inflammatory diseases 

Exposure to microplastics through contaminated food has 
been found to activate the immune system and decrease the 
number of gut microorganisms, potentially harming human 
health (Meaza et al., 2020). Studies have shown that micro-
plastics can cause cellular toxicity in human immune and 
epidermal cells, as well as an increase in the production 
of inflammatory cytokines (Hwang et al. 2019). Chronic 
inflammation caused by microplastics can lead to oxidative 
stress and toxicity. Microplastics can exacerbate oxidative 
stress by being absorbed on the surface and producing reac-
tive oxygen species during host inflammation episodes (Val-
avanidis et al. 2013). Larger microplastic particles have been 
shown to stimulate the production of various proinflamma-
tory cytokines, including interleukin-6, interleukin-1b, and 
tumour necrosis factor-α (Green et al. 1998).

Researchers demonstrated that microplastics could 
interact with the surface of SARS-CoV 2 pseudovirus, 
increasing the infection rate. Inflammatory markers such 
as caspase 3, interleukin-8, and tumour necrosis factor-α 
genes may also influence the infection rate (Zhang 2022a, 
b and c). Caputi et al. (2022) demonstrated that microplas-
tics increased inflammatory markers such as nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB), 
myeloid differentiation primary response 88 (MyD88), and 
pyrin domain–containing-3 (NLRP3) in terms of protein and 
gene expression in human gingival fibroblastic cells. Ana-
lysing the faecal sample of inflammatory bowel disease and 
healthy persons revealed a strong correlation between micro-
plastic and the disease occurrence (Yan et al. 2022a). Inhala-
tion of harmful plastic particles or their leachates seems to 
cause occupational diseases that result in an inflammatory 
response.

Inhalation of plastic particles may cause various lung 
reactions, including alveolitis, persistent pneumonia, inflam-
matory, and fibrotic modifications in the bronchial and 
peri-bronchial tissue and lesions in the interalveolar septa 
(pneumothorax) (Beckett 2000). Adducts and deoxyribonu-
cleic acid mutations arise due to prolonged inflammation, 
leading to cancer formation. Inflammatory cytokines, oxida-
tive stress, and immune system evasion may contribute to 
cancer formation (Chang 2010b). Higher cancer incidence 
is seen in synthetic textile workers with more than ten years 
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of exposure and is linked with intensity, duration, and time 
since initial exposure (Acquavella et al. 1988).

Pregnancy and maternal exposure to progeny 
or offspring 

There is rising worry over the damage that microplastics 
pose to human health. A healthy pregnancy depends on the 
complex regulation of the maternal-foetal immunological 
balance, but the risks of exposure to polystyrene in the first 
trimester are still unknown. The biological impacts and 
mechanisms of microplastic exposure during pregnancy are 
listed in Table 6.

According to Luo et al. (2019), metabolic abnormalities 
can be transferred to the offspring of pregnant mice exposed 
to 100 and 1000 μg/L of polystyrene at 0.5 and 5 μm. Addi-
tional research employing tandem mass spectrometry for 
various serum metabolites such as amino acids and acyl-car-
nitines revealed that 11 and 15 different metabolites changed 
significantly in the groups exposed to 0.5- and 5-μm micro-
plastics, respectively. Most amino acids for the male first fil-
ial offspring tended to rise after maternal microplastic treat-
ment. In contrast, most amino acids for the female first filial 
offspring tended to fall, demonstrating gender differences. 
Furthermore, the expressed hepatic genes confirmed the risk 
of fatty acid metabolism issues, as evidenced by alterations 
in free carnitine (C0)/(palmitoylcarnitine, C16 + stearoylcar-
nitine, C18), indications for clinical screening of hereditary 
illnesses. After maternal exposure to 5-mm microplastic 
therapy, the expression of genes involved in b-oxidation, 
such as peroxisome proliferator-activated receptor-alpha, 
acyl-coenzyme A oxidase, carnitine palmitoyltransferase, 
and medium-chain acyl-CoA dehydrogenase was inhibited, 
which may cause a problem with the body's energy supply.

In the offspring of pregnant and female nursing mice, 
Jeong et al. (2022) showed that maternal treatment of poly-
styrene nanoplastics during gestation and lactation affected 
the functioning of neural stem cells, neural cell composi-
tions, and brain cell histology. The outcome demonstrated 
that maternally supplied polystyrene nanoplastics particles 
transferred to offspring led to increased brain and body 
weight of postnatal progeny at 10–500 μg/day doses, with an 
exaggerated effect at 500 μg/day. Exposure to high doses of 
polystyrene nanoplastics (500–1000 g/day) has been shown 
to significantly reduce the number of proliferating cells and 
progenitor cells positively labelled with nestin, which is a 
specific marker for neural stem cells. This reduction was 
more than 60% in the hippocampus, suggesting that polysty-
rene nanoplastics exposure impacts the functioning of neural 
stem cells in specific brain regions. As expected, exposure 
to polystyrene nanoplastics decreased neural stem cell pro-
liferation, altered hippocampus neurogenesis, and visibly 
shorter neurite lengths in the neurons.

Further research is needed to investigate the potential link 
between elevated polystyrene nanoplastics exposure, gender, 
and an increased risk of neurodevelopmental abnormalities. 
In addition, gender appears to play a role in the effects of 
polystyrene nanoplastics on bidirectional synaptic plastic-
ity, as studies have shown that the effects of exposure may 
vary qualitatively according to gender. Specifically, research 
has shown that the magnitude of long-term potentiation was 
significantly different in female mice exposed to polystyrene 
nanoplastics compared to controls. These female mice had 
20% higher levels of gamma-aminobutyric acid in the hip-
pocampus than male mice. These findings suggest that expo-
sure to high levels of polystyrene nanoplastics may increase 
the risk of neurodevelopmental abnormalities and that this 
risk may differ based on gender.

According to Thongkorn et al. (2019), there are differ-
ences between the impact of prenatal bisphenol A exposure 
on genes associated with autism and their connections to 
sex-specific hippocampal functions. Ribonucleic acid-
sequential analysis of hippocampus tissues demonstrated 
that prenatal exposure to bisphenol A altered hippocampal 
transcriptome profiles in a sex-dependent manner. Up to 
5624 transcripts or 4525 genes were substantially differently 
expressed in hippocampi exposed to 5000 µg/kg maternal 
birth weight of bisphenol A rats compared to controls.

Hu et al. (2021a) investigated the effects of polystyrene 
nanoplastics exposure on the immune system of pregnant 
mice and their offspring. The results showed that expo-
sure to polystyrene particles increased the resorption rate 
of embryos in mice, indicating potential toxicity to female 
reproduction. The percentage of CD45 + leukocytes and 
decidual natural killer cells in the peripheral blood, spleen, 
and placenta was significantly lower after polystyrene expo-
sure, suggesting a drop in these immune cells. Addition-
ally, the proportion of CD49b + natural killer cells in the 
CD45 + leukocytes significantly decreased throughout the 
first trimester, as they were the most prevalent immune cells 
in the placenta. The mononuclear subpopulations segregated 
from the peripheral blood, spleen, and placenta significantly 
differed between the two groups, indicating an impact on 
immune cell function. The pro/anti-inflammatory cytokines 
ratio was also affected by polystyrene exposure, with inter-
leukin-4 increasing and tumour necrosis factor reducing. The 
study suggests that exposure to polystyrene nanoplastics dur-
ing pregnancy can lead to immune system dysfunction and 
may increase the risk of adverse pregnancy outcomes.

Hu et al. (2021b) used flow cytometry to investigate 
immune system threats in an allogeneic mating murine 
model exposed to polystyrene particles. They found a sig-
nificant increase in resorbed embryos in the microplastic-
exposed group compared to the control group (16.31% ver-
sus 5.48%; p < 0.01), indicating potential toxicity to female 
reproduction. This is likely due to the absence of uterine 
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arterioles, which are important for placental blood flow and 
protection against excessive oxidation and reactive oxygen 
species. CD45 + leukocytes and decidual natural killer cells 
significantly decreased after polystyrene exposure, with a 
notable drop in CD49b + natural killer cells during the first 
trimester. Mononuclear subpopulations from peripheral 
blood, spleen, and placenta significantly differed between 
the two groups. The pro/anti-inflammatory cytokine ratio 
was also affected by polystyrene exposure, with interleukin-4 
increasing and tumour necrosis factor decreasing (p < 0.05). 
At the same time, interleukin-2 and interferon showed a 
modest decrease in messenger ribonucleic acid levels, and 
interleukin-6 tended to increase (Hu et al., 2021b). Huang 
et al. (2022b) found that maternal exposure to polystyrene 
nanoplastics during pregnancy and lactation in mice led to 
decreased birth and postnatal body weight in their offspring. 
In male offspring, high-dose exposure to polystyrene nano-
plastics caused a reduction in liver weight, induced oxidative 
stress, inflammatory cell infiltration, increased proinflamma-
tory cytokine production, and disrupted glycometabolism. 
Exposure to polystyrene nanoplastics during the pre-and 
postnatal period also reduced testicular weight, damaged the 
seminiferous epithelium, and reduced the number of sperm 
in mouse pups. Polystyrene nanoplastics were also found to 
promote testicular oxidative damage, indicated by increased 
malondialdehyde production and altered superoxide dis-
mutase and catalase activity in the testis of mouse pups.

Fournier et al. (2020) conducted a study to examine the 
effects of maternal lung exposure to nano-polystyrene beads 
during late-stage pregnancy. On gestational day 19, preg-
nant Sprague Dawley rats were intratracheally injected with 
2.64 ×  1014 particles of 20-nm rhodamine-labelled nano-pol-
ystyrene beads. The study revealed that nano-polystyrene 
particles were found in the lungs, heart, and spleen of the 
mother, as well as in the placenta, foetal liver, lungs, heart, 
kidney, and brain, indicating translocation of nanoparticles 
from the mother's lungs to foetal tissues during late-stage 
pregnancy. Ragusa et al. (2021b) used Raman microspec-
troscopy to examine human placentas and found 12 micro-
plastic pieces, 5 on the foetal side, 4 on the maternal side, 
and 3 in the chorioamnionitis membranes, indicating that 
microplastics can reach placental tissues at all levels once 
they enter the human body.

Potential treatment strategies

The main focus of treatment strategies for microplastics is 
their removal from aquatic ecosystems, where they often 
end up. There are two broad categories of techniques for 
microplastic removal: conventional and innovative strate-
gies. Conventional strategies include coagulation, membrane 

bioreactor technology, rapid sand filtration, and adsorption. 
Innovative techniques for microplastic removal include elec-
trocoagulation, photocatalytic degradation, electrochemical 
oxidation, and magnetic separation. Each of these techniques 
has both positive and negative aspects, and the efficiency of 
microplastic removal is influenced by various factors such 
as the size and concentration of the microplastics, water flow 
rate, and pH. Table 7 summarises the different treatment 
techniques, reactions, and factors influencing their efficiency.

Conventional treatment techniques

Coagulation

Coagulation is one of the most frequently utilised tech-
niques for wastewater treatment. It uses various chemical 
agents (coagulants) to destabilise the dissolved and sus-
pended particles and enables their removal by sedimenta-
tion (Shirasaki et al. 2016). Different coagulants, such as 
iron-based and aluminium-based coagulants, have varied 
removal pathways for microplastics. However, traditional 
methods of microplastic removal, such as charge neutrali-
sation, adsorption, and sweep flocculation, remain rele-
vant in describing their removal mechanisms (Zhou et al. 
2021). Even though the coagulation process is one of the 
most common techniques used for wastewater treatment, it 
has several operational drawbacks, such as a high volume 
of resulting sludge that constitutes another environmental 
issue (Padmaja et al. 2020). This is problematic because 
the sludge generated from coagulation may contain more 
harmful substances than the original pollutants, leading 
to costly additional treatment and removal. Additionally, 
using additives to improve coagulation efficiency can 
increase the removal process's overall cost (Bahrodin et al. 
2021).

The challenge of effectively treating multiple pollutants 
simultaneously has been identified as a major limitation of 
coagulation. The diversity in the composition of wastewa-
ter also contributes to the cost of the process, as various 
coagulants must be added, and extensive optimisation of 
reaction parameters is required to treat different types of 
contaminants (Natarajan et al. 2018). Due to these factors, 
the overall operational cost of the process could become 
too high to be feasible.

Membrane bioreactor technology 

Membrane bioreactor technology is a reliable method for 
treating municipal and industrial wastewater that usually 
contains various concentrations of different contaminants 
based on nitrifying bacteria and other microorganisms 
(Dvořák et al. 2013). Such a technology has been recently 



 Environmental Chemistry Letters

1 3

Ta
bl

e 
7 

 C
om

pa
ris

on
 o

f d
iff

er
en

t t
re

at
m

en
t t

ec
hn

iq
ue

s u
se

d 
fo

r t
he

 re
m

ov
al

 o
f m

ic
ro

pl
as

tic
s

C
on

ve
nt

io
na

l s
tra

te
gi

es
 f

or
 m

ic
ro

pl
as

tic
 r

em
ov

al
 h

av
e 

be
en

 u
se

d 
fo

r 
m

an
y 

ye
ar

s 
in

 w
at

er
 tr

ea
tm

en
t p

la
nt

s 
an

d 
in

vo
lv

e 
ph

ys
ic

al
 a

nd
 c

he
m

ic
al

 p
ro

ce
ss

es
. I

n 
co

nt
ra

st,
 in

no
va

tiv
e 

m
ic

ro
pl

as
tic

 
re

m
ov

al
 te

ch
ni

qu
es

 a
re

 st
ill

 b
ei

ng
 d

ev
el

op
ed

 a
nd

 te
ste

d 
bu

t h
ol

d 
pr

om
is

e 
fo

r m
or

e 
effi

ci
en

t a
nd

 e
ffe

ct
iv

e 
re

m
ov

al
 o

f m
ic

ro
pl

as
tic

s. 
It'

s i
m

po
rta

nt
 to

 n
ot

e 
th

at
 w

hi
le

 th
es

e 
te

ch
ni

qu
es

 c
an

 b
e 

eff
ec

-
tiv

e 
at

 re
m

ov
in

g 
m

ic
ro

pl
as

tic
s f

ro
m

 w
at

er
, p

re
ve

nt
io

n 
is

 st
ill

 th
e 

be
st 

so
lu

tio
n.

 T
hi

s i
nc

lu
de

s r
ed

uc
in

g 
ou

r u
se

 o
f p

la
sti

c 
pr

od
uc

ts
 a

nd
 p

ro
pe

rly
 d

is
po

si
ng

 o
f t

he
m

 to
 k

ee
p 

th
em

 o
ut

 o
f t

he
 e

nv
iro

n-
m

en
t.

Tr
ea

tm
en

t t
ec

hn
iq

ue
Po

si
tiv

e 
as

pe
ct

s
N

eg
at

iv
e 

as
pe

ct
s

C
on

tro
lli

ng
 fa

ct
or

s
Re

ac
tio

ns
 in

vo
lv

ed
Re

fe
re

nc
e

C
oa

gu
la

tio
n

Si
m

pl
e 

an
d 

fa
st 

op
er

at
io

n,
 d

if-
fe

re
nt

 c
oa

gu
la

nt
s c

an
 b

e 
us

ed
, 

re
m

ov
e 

va
rio

us
 p

ol
lu

ta
nt

s, 
re

la
tiv

el
y 

lo
w

 c
os

t

W
ith

 a
 la

rg
e 

vo
lu

m
e 

of
 

pr
od

uc
ed

 sl
ud

ge
, a

dd
iti

ve
s 

ad
di

tio
n 

in
cr

ea
se

 th
e 

co
st 

an
d 

di
ffi

cu
lty

 o
f d

ea
lin

g 
w

ith
 

di
ffe

re
nt

 p
ol

lu
ta

nt
s s

im
ul

ta
ne

-
ou

sly

Ty
pe

 a
nd

 d
os

e 
of

 c
oa

gu
la

nt
, 

pH
 le

ve
l, 

po
llu

ta
nt

 c
ha

rg
e,

 
co

nc
en

tra
tio

n

C
ha

rg
e 

ne
ut

ra
lis

at
io

n,
 a

ds
or

p-
tio

n,
 sw

ee
p 

flo
cc

ul
at

io
n

X
u 

et
 a

l. 
(2

02
1b

)

M
em

br
an

e 
bi

or
ea

ct
or

 te
ch

no
l-

og
y

Re
m

ov
in

g 
di

ffe
re

nt
 p

ol
lu

ta
nt

s 
w

ith
 v

ar
io

us
 c

on
ce

nt
ra

tio
ns

, 
hi

gh
 e

ffl
ue

nt
 q

ua
lit

y,
 g

oo
d 

re
m

ov
al

 e
ffi

ci
en

cy

A
er

at
io

n 
lim

ita
tio

ns
, m

em
br

an
e 

fo
ul

in
g,

 th
e 

ne
ed

 to
 a

dd
 n

ut
ri-

tio
us

 m
at

er
ia

ls
 to

 m
ic

ro
or

ga
n-

is
m

s, 
hi

gh
 c

os
t

Po
llu

ta
nt

 lo
ad

, m
em

br
an

e 
ch

ar
ac

te
ris

tic
s, 

flo
w

 ra
te

, 
m

ic
ro

or
ga

ni
sm

s

C
om

bi
na

tio
n 

of
 m

em
br

an
e 

fil
tra

tio
n,

 in
cl

ud
in

g 
m

ic
ro

 o
r 

ul
tra

fil
tra

tio
n

B
ay

o 
et

 a
l. 

(2
02

0)

R
ap

id
 sa

nd
 fi

ltr
at

io
n

Re
m

ov
in

g 
va

rio
us

 p
ol

lu
ta

nt
s, 

in
cl

ud
in

g 
vi

ru
se

s, 
sm

al
l l

an
d 

ar
ea

, l
ow

 se
ns

iti
vi

ty
 to

 w
at

er
 

qu
al

ity
 p

ar
am

et
er

s, 
hi

gh
 fl

ow
 

ra
te

Lo
w

 e
ffi

ci
en

cy
, r

eq
ui

re
s e

xp
en

-
si

ve
 fl

oc
cu

la
tin

g 
m

at
er

ia
ls

, 
fr

eq
ue

nt
 m

ai
nt

en
an

ce
, h

ig
h 

co
st

Fl
ow

 ra
te

, c
on

ta
ct

 ti
m

e,
 p

ol
lu

t-
an

t c
on

ce
nt

ra
tio

n
Fl

oc
cu

la
tio

n,
 sa

nd
 fi

ltr
at

io
n

B
ay

o 
et

 a
l. 

(2
02

0)

A
ds

or
pt

io
n

H
ig

h 
re

m
ov

al
 e

ffi
ci

en
cy

, n
o 

sl
ud

ge
 w

as
te

 fo
rm

at
io

n,
 v

ar
i-

ou
s a

ds
or

be
nt

s c
ou

ld
 b

e 
us

ed

N
on

-s
el

ec
tiv

e 
ad

so
rp

tio
n

Ty
pe

 a
nd

 c
om

po
si

tio
n 

of
 a

ds
or

-
be

nt
, c

oe
xi

sti
ng

 p
ol

lu
ta

nt
s

El
ec

tro
st

at
ic

 in
te

ra
ct

io
ns

, h
yd

ro
-

ge
n 

bo
nd

 in
te

ra
ct

io
ns

, π
-π

 
in

te
ra

ct
io

ns

Zh
an

g 
et

 a
l. 

(2
02

1b
)

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
Ec

o-
fr

ie
nd

ly
, s

us
ta

in
ab

le
, h

ig
h 

re
m

ov
al

 e
ffi

ci
en

cy
H

ig
h 

en
er

gy
 re

qu
ire

m
en

t (
ul

tra
-

vi
ol

et
 li

gh
t)

Ty
pe

 a
nd

 d
os

e 
of

 p
ho

to
ca

ta
ly

st,
 

pH
 le

ve
l, 

re
ac

tio
n 

te
m

pe
ra

-
tu

re
, p

ol
lu

ta
nt

 c
on

ce
nt

ra
tio

n,
 

lig
ht

 in
te

ns
ity

El
ec

tro
n 

tra
ns

fe
r, 

fo
rm

at
io

n 
of

 
fr

ee
 ra

di
ca

ls
U

he
id

a 
et

 a
l. 

(2
02

1)

El
ec

tro
ch

em
ic

al
 o

xi
da

tio
n

H
ig

h 
effi

ci
en

cy
, d

eg
ra

da
tio

n 
of

 se
ve

ra
l o

rg
an

ic
 p

ol
lu

ta
nt

s, 
no

 n
ee

d 
fo

r a
dd

in
g 

ch
em

ic
al

 
ag

en
ts

, n
o 

sl
ud

ge
 fo

rm
at

io
n

H
ig

h 
co

st 
of

 e
le

ct
ro

de
s

Su
rfa

ce
 a

re
a 

an
d 

th
e 

m
at

er
ia

l o
f 

th
e 

an
od

e 
us

ed
, c

ur
re

nt
 in

te
n-

si
ty

, t
yp

e,
 th

e 
co

nc
en

tra
tio

n 
of

 
th

e 
el

ec
tro

ly
te

 u
se

d,
 d

eg
ra

da
-

tio
n 

re
ac

tio
n 

tim
e

A
no

di
c 

ox
id

at
io

n,
 in

di
re

ct
 

ca
th

od
e 

ox
id

at
io

n
C

he
n 

et
 a

l. 
(2

02
2a

)

El
ec

tro
-c

oa
gu

la
tio

n
N

o 
ne

ed
 fo

r c
he

m
ic

al
 c

oa
gu

la
nt

 
m

at
er

ia
ls

, r
ed

uc
ed

 o
pe

ra
tio

n 
tim

e 
an

d 
co

st,
 re

du
ce

d 
am

ou
nt

 
of

 g
en

er
at

ed
 sl

ud
ge

, h
ig

h 
effi

ci
en

cy
 w

ith
 v

ar
io

us
 w

at
er

 
qu

al
iti

es

N
ee

d 
fo

r f
re

qu
en

t c
ha

ng
e 

of
 

el
ec

tro
de

s
El

ec
tro

de
 e

ffi
ci

en
cy

, a
pp

lie
d 

el
ec

tri
ci

ty
, p

ol
lu

ta
nt

 c
ha

rg
e 

an
d 

co
nc

en
tra

tio
n

Fl
oc

s f
or

m
at

io
n,

 m
ic

ro
-c

oa
g-

ul
an

ts
 fo

rm
at

io
n,

 p
ol

lu
ta

nt
 

de
st

ab
ili

sa
tio

n

K
im

 a
nd

 P
ar

k 
(2

02
1)

M
ag

ne
tic

 se
pa

ra
tio

n
H

ig
h 

re
m

ov
al

 e
ffi

ci
en

cy
, v

ar
io

us
 

m
ag

ne
tic

 se
pa

ra
to

rs
 u

se
 to

 
re

m
ov

e 
m

ic
ro

pl
as

tic
s f

ro
m

 
se

di
m

en
t, 

fr
es

hw
at

er
, a

nd
 

se
aw

at
er

 sa
m

pl
es

N
on

-s
el

ec
tiv

e 
po

llu
ta

nt
 re

m
ov

al
Si

ze
 a

nd
 sh

ap
e 

of
 th

e 
ta

rg
et

 
po

llu
ta

nt
El

ec
tro

st
at

ic
 in

te
ra

ct
io

n,
 

hy
dr

og
en

 b
on

d 
fo

rm
at

io
n,

 
co

m
pl

ex
at

io
n

Sh
i e

t a
l. 

(2
02

2a
)



Environmental Chemistry Letters 

1 3

employed to remove microplastics from an actual waste-
water treatment plant (Talvitie et al. 2017). The notable 
positive aspects of using membrane technology are high 
effluent quality and good removal efficiency with a high 
rejection potency towards target pollutants (Lares et al. 
2018). However, certain issues still limit its removal effi-
cacy, including aeration limitations, membrane fouling, 
and the need to add nutritious materials to microorganisms 
(Al-Asheh et al., 2021), which altogether may elevate the 
operation cost.

Rapid sand filtration

Rapid sand filtration removes different contaminants, such as 
viruses (Shirasaki et al. 2016) and suspended solids of clay 
particles (Nakazawa et al. 2021). This method has recently 
been acknowledged as a viable approach for removing 
microplastics from wastewater (Hidayaturrahman and Lee 
2019). Rapid sand filtration has been identified as a promis-
ing method for microplastic removal due to its small land 
area requirement, low sensitivity to water quality param-
eters, and high flow rate (Talvitie et al. 2017). However, the 
effectiveness of this method is limited without the use of 
costly flocculating agents, and it requires frequent mainte-
nance, which further adds to the overall cost of the filtration 
process (Enyoh et al., 2022).

Adsorption

The adsorption technique's superior efficacy in removing 
microplastics from wastewater has been proved by using 
various adsorbents, including chitin and graphene oxide 
(Sun et al. 2020a). In addition, other materials exhibited 
significant adsorption efficiency, achieving up to 100% for 
microplastics and even nanoplastics, such as layered double 
hydroxides (Tiwari et al. 2020). However, the non-selective 
characteristics of the adsorption pathway restrict the overall 
performance of this technique (Bruyninckx and Dusselier 
2019). Therefore, future research efforts should prioritise 
enhancing the selectivity of adsorbent materials for micro-
plastics to achieve better removal efficiency.

Innovative treatment techniques

Photocatalytic degradation

The utilisation of photodegradation has been recognised as 
a highly effective and promising method for treating toxic 
organic pollutants, including microplastics, in wastewater 
(Liu et al. 2019). A semiconductor material absorbs visible 
or ultraviolet light in this process, generating free radicals, 
including reactive oxygen species such as singlet oxygen 
and superoxide radicals, which degrade the microplastics 

(Zhu et al. 2019). The photocatalytic semiconductor mate-
rial absorbs light energy that exceeds its bandgap energy. 
It triggers an electron transfer from the valence band to the 
conduction band, creating positive holes in the valence band. 
This process ultimately generates superoxide and hydroxyl 
radicals, which break down the microplastics. The green 
synthesised iron-zinc oxide nanocomposite has recently 
emerged as a prominent semiconductor material Lam et al. 
(2021) used in the photocatalytic degradation of polyeth-
ylene. Despite its effectiveness, the photocatalytic method 
requires appropriate disposal of the residual sludge gener-
ated and careful monitoring to prevent any adverse effects 
on aquatic ecosystems (Lam et al., 2021).

Electrochemical oxidation 

Electrochemical oxidation is a sustainable and cost-effective 
technique for wastewater treatment that includes two meth-
ods, anodic oxidation and indirect cathode oxidation (Du 
et al. 2021). This technique has been shown to effectively 
degrade various organic pollutants, including microplastics, 
antibiotics, antipyretics, and dyes, into simple and non-toxic 
products such as carbon dioxide and water vapour without 
adding chemical agents (Du et al. 2021; Ouarda et al. 2018). 
Besides, electrochemical oxidation produces potent oxidants, 
such as hydroxyl radicals, hydrogen peroxide, and ozone, 
which efficiently degrade organic pollutants while avoid-
ing the formation of any sludge waste (Kang et al. 2019). 
The electrochemical oxidation's efficiency is influenced by 
various factors, including the surface area and material of 
the anode, the current intensity, the type and concentration 
of the electrolyte used, and the duration of the degradation 
reaction (Kiendrebeogo et al. 2021). Therefore, this treat-
ment technique is currently attracting significant attention 
from researchers.

Electrocoagulation

The electrocoagulation process is a prosperous, sustainable, 
and highly efficient technique for removing microplastics 
from wastewater, integrating the positive aspects of coagula-
tion and electrochemistry (Moussa et al. 2017). Electroco-
agulation produces flocs from the cations formed by metal-
lic electrodes under an electric current. Subsequently, this 
process leads to the formation of "micro-coagulants" and the 
loss of suspended particle stability due to coagulation (Shen 
et al. 2020). Therefore, electrocoagulation is more efficient 
than conventional coagulation as it obviates the utilisation 
of chemical coagulant materials, consequently reducing the 
operation time and cost (Garcia-Segura et al. 2017). More-
over, electrocoagulation minimises the amount of sludge 
waste, produces water with lower total dissolved solids, 
and can be efficiently employed with different wastewater 
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qualities. This sustainable and cost-effective method has 
gained the interest of researchers as an alternative to con-
ventional coagulation methods.

Magnetic separation 

The efficiency of removing microplastics from wastewa-
ter using magnetic separation has been proven due to the 
lasting magnetic effect of the materials used and their high 
removal capacity (Zhang et al. 2021b; Abdel Maksoud et al. 
2020). This technique has been recently applied in removing 
microplastics from sediment, freshwater, and marine water 
samples (Grbic et al. 2019). Various materials, known as 
magnetic seeds, are used in this removal process, including 
iron nanoparticles and magnetic carbon nanotubes. Mag-
netic separation can be regulated by electrostatic interac-
tion, hydrogen bond formation, and complexation (Tang 
et al. 2021). However, the presence of other pollutants neg-
atively affects the selectivity and the removal efficiency of 
microplastics (Jiang et al. 2020), while the size and shape 
of microplastics also affect the separation process (He et al. 
2021). Consequently, more extensive research work is 
required to improve magnetic removal efficacy.

Control strategies

Various strategies are available for controlling microplastics, 
which can be categorised as short-term and long-term. Each 
strategy has limitations, including high costs, as listed in 
Table 8. Therefore, selecting a particular strategy should 
consider factors such as a country's infrastructure, economic 
conditions, types of microplastics released, alternative 
options, and public readiness to transition to a non-plastic-
dependent economy.

Reducing plastic and microplastic usage 
and production 

One of the most effective strategies for controlling the 
release of conventional plastic and microplastic products 
into the environment is to reduce their utilisation and pro-
duction (Peng et al. 2023; Yang et al. 2023). This is because 
prevention is generally better than treatment. An example 
of this strategy is the minimisation of microbeads in manu-
facturing personal care products and pharmaceuticals (Prata 
2018). Although some critics argue that this approach only 
addresses one type of microplastic pollutant (Fältström 
and Anderberg 2020), it can still have a long-term impact 
in reducing the discharge of microplastic waste into water 
systems.

The microplastic minimisation control approach follows 
an upside-down pyramid (Fig. 6a), starting with prevention, 
the most favoured option, followed by reducing, reusing, 
recycling, refusing, rethinking, regifting, recovering (7 R’s), 
and ending with disposal (Tsui and Wong 2019). Addition-
ally, the 7 R’s strategy (Fig. 6b) offers different actions to 
minimise waste materials, including microplastics, from 
being released into the environment (Glavič, 2021). How-
ever, ruling institutions and individuals often overlook these 
options, particularly in developing countries, leading to mas-
sive amounts of microplastic waste (Azevedo et al. 2019).

Reusing and recycling plastic products is a highly effec-
tive strategy for managing plastic waste. While plastics used 
in packaging materials are relatively easy to recycle (Schyns 
and Shaver 2021), some plastic materials are more difficult 
to recycle, and there are public concerns about their use, 
such as medical plastic waste, particularly in light of the 
coronavirus disease 2019 (COVID-19) (Prata et al. 2020a). 
Additionally, the increased use of single-use plastic prod-
ucts, such as face masks, during the pandemic has further 
complicated recycling efforts and exacerbated the issue of 
plastic waste (Silva et al., 2020). As a result, innovative 

Table 8  Limitations of microplastic control strategies

Plastic control strategies are highly effective for managing plastic waste to mitigate plastic pollution and its impact on the environment and natu-
ral resources. However, some plastic materials, such as medical plastic waste, are more challenging to recycle, particularly in light of the corona-
virus disease 2019 (COVID-19). Using biodegradable plastics or changing individual behaviours also has several challenges.

Control strategy Limitations

Reducing plastic and microplastic 
usage and production

It may not be feasible in some industries or for some products, could be expensive to implement, requires 
a shift in consumer behaviour, and may not address existing plastic waste

Behavioural changes towards plastic 
and microplastic products

Public fear of change, lack of trust in alternative products
It may take a long time to be achieved, requires a shift in consumer behaviour, may not be feasible for 

everyone, and may not address existing plastic waste
Using biodegradable plastics High production cost and low efficacy of bioplastics compared to conventional plastics. Not all biode-

gradable plastics are biodegradable, and they may not fully address the issue of plastic waste
Recycling and reuse of plastic waste The unsuitability of recycling and reusing certain plastic wastes, such as medical wastes, particularly dur-

ing the coronavirus disease-19 pandemic
The process can be expensive and energy-intensive
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solutions and increased efforts are needed to overcome 
these challenges and promote plastic recycling. Hydrother-
mal treatment also found not effective in plastic reusing, 
with only volume reduction can be obtained (Farghali et al. 
2022a).

Subsequently, plastic minimisation is overlooked by most 
people, which is considered the main reason for creating and 
releasing massive loads of microplastic waste into the envi-
ronment. To address this, media sources such as television 
shows, journals, and social media platforms have started to 
improve the general knowledge and awareness of microplas-
tics in recent years. Implementing these waste minimisation 
strategies on a governmental and individual level is essen-
tial to effectively control microplastic pollution (Thiele and 
Hudson 2021).

Behavioural changes towards plastic 
and microplastic products 

Encouraging changes in the everyday practices of individu-
als can have a significant impact on reducing the release of 
microplastics into waterways (Eagle et al. 2016). For exam-
ple, individuals can opt for clothing made from natural fibres 
like cotton and wool instead of synthetic polymers such 
as polystyrene, acrylic, and nylon (De Falco et al. 2019). 
Installing a microplastic filter in washing machines can also 
help to reduce the amount of microplastic fibres released into 
the water (Gaylarde et al., 2021). Choosing natural materials 
in cosmetics and personal care products is another effective 
strategy to control microplastic pollution (Sun et al. 2020b). 
Additionally, avoiding single-use plastic items like bags, 
cups, and bottles and using alternatives made from glass 

materials can be a viable strategy (Tziourrou et al. 2021). 
However, implementing these behavioural changes can be 
challenging and requires a long-term effort.

Using biodegradable plastics 

Biodegradable plastics, known as bioplastics, offer a prom-
ising solution for replacing conventional microplastics in 
various applications (Farghali et al. 2022b, Dhaka et al. 
2022). These plastics have already been used in food and 
pharmaceutical packaging materials, such as polyhydroxy-
alkanoates, and in agriculture and horticulture as mulching 
films for soil and crop protection (Filiciotto and Rothen-
berg 2021; Zhang et al. 2020). Due to their lightweight and 
durability, bioplastics are also utilised in electric and elec-
tronic appliances, such as touch screens for smartphones 
and laptops, circuit boards, and data storage. They are also 
employed in the automotive industry to cover seats and 
airbags (Moshood et al. 2021). As a result, many potential 
applications for bioplastics with high efficacy exist.

Conclusion 

Microplastics are a growing concern as a category of 
organic pollutants that have gained significant attention 
from researchers since 2014. As the impact of microplas-
tics continues to increase, it is essential to develop sustain-
able solutions to mitigate their harmful effects and reduce 
their presence in the environment. This review examines 
various aspects of microplastics, including their types, 
shapes, sources, and global response. While microplastics 

Fig. 6  Plastic minimisation strategies. Strategies begin with preven-
tion as the most favoured option a. Reuse, recycling, and recovery 
are other waste minimisation strategies. Disposal is the least favoured 

waste minimisation strategy. The 7 R’s waste minimisation approach 
includes recovering, repairing, reusing, reducing, re-gift, refusing, 
and rethinking b 
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can be found in multiple water bodies, land-based sources 
are the major contributors to environmental pollution 
(80–90%). The review also explores treatment techniques 
to mitigate their harmful effects, including conventional 
and innovative methods. In addition, we examined the 
toxic effects of microplastic exposure on human health, 
considering factors such as size, concentration, and expo-
sure duration. The study has highlighted the relationship 
between the coronavirus disease 2019 (COVID-19) and 
the surge in single-use plastic item usage, particularly 
face masks, and explored different microplastic control 
strategies. To increase public awareness of microplastic 
concerns and promote the development of effective solu-
tions, several measures must be implemented, including 
educational initiatives to raise individuals' awareness of 
microplastics and media sources like television shows, 
journals, and social media platforms. Various human bio-
logical specimens, such as faeces, sputum, saliva, blood, 
bronchoalveolar lavage fluid, placenta, and other organs, 
have been found to contain microplastics, suggesting that 
these particles may induce detrimental effects on human 
health. These effects can include potential health risks 
such as cancer, immunotoxicity, intestinal diseases, pul-
monary diseases, cardiovascular disease, inflammatory 
diseases, and adverse effects on pregnancy and maternal 
exposure to progeny.

Several research gaps and issues require further exami-
nation and exploration in future studies related to micro-
plastics. These include the need for more research on the 
impacts of microplastics on human health, identifying spe-
cific mechanisms underlying their harmful effects, explor-
ing potential risk factors affecting human exposure, and 
developing effective mitigation strategies to promote pub-
lic health. Further research is also needed to understand 
acute and chronic microplastic toxic effects on humans and 
animals and to develop suitable alternatives to single-use 
face masks and medical industry plastic waste. Microplas-
tics must be converted into valuable by-products, improve 
their separation from other pollutants, and determine their 
environmental fate. Identifying suitable alternatives to sin-
gle-use face masks is crucial while developing recycling 
and reuse methods for medical industry plastic waste. Fur-
thermore, efforts should be made to improve the quality 
and efficiency of plastic alternatives, such as bioplastics, 
and to integrate microplastic treatment technologies to 
enhance their removal efficiency and minimise negative 
impacts. Finally, selecting a strategy to reduce plastic use 
should consider factors such as infrastructure, economic 
conditions, types of microplastics released, alternative 
options, and public readiness to transition to a non-plastic-
dependent economy.
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