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A B S T R A C T 

We present a Bayesian jackknife test for assessing the probability that a data set contains biased subsets, and, if so, which of 
the subsets are likely to be biased. The test can be used to assess the presence and likely source of statistical tension between 

different measurements of the same quantities in an automated manner. Under certain broadly applicable assumptions, the test is 
analytically tractable. We also provide an open-source code, CHIBORG , that performs both analytic and numerical computations 
of the test on general Gaussian-distributed data. After exploring the information theoretical aspects of the test and its performance 
with an array of simulations, we apply it to data from the Hydrogen Epoch of Reionization Array (HERA) to assess whether 
different sub-seasons of observing can justifiably be combined to produce a deeper 21 cm power spectrum upper limit. We 
find that, with a handful of exceptions, the HERA data in question are statistically consistent and this decision is justified. We 
conclude by pointing out the wide applicability of this test, including to CMB experiments and the H 0 tension. 

Key words: methods: data analysis – methods: statistical – software: data analysis – dark ages, reionization, first stars –
cosmology: observations. 
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 I N T RO D U C T I O N  

valuating the presence and significance of statistical tension is a 
ore part of the process of reconciling independent measurements of 
he same physical quantity. A lack of tension permits us to combine

easurements in order to place impro v ed constraints on quantities 
f interest, while the presence of tension raises the prospect of
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ontamination of some or all of the data by previously unidentified
ystematic ef fects, or ne w physical ef fects not anticipated in the
heoretical model being used to interpret the data. 

A topical example within the cosmology community is the ‘Hubble 
ension’ (Verde, Protopapas & Jimenez 2013 ; Knox & Millea 2020 ;
i Valentino et al. 2021 ; Freedman 2021 ; Riess et al. 2021 ), which

rises from apparent inconsistencies in the measured value of the 
ubble parameter, H 0 , obtained from different observational probes. 

n this case, the fact that there is a tension between at least some of
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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1 https:// github.com/mwilensky768/ chiborg 
2 In some respects this resembles the analysis suggested in this work, but 
we have elected to only consider a discrete selection of covariance models, 
whereas a typical hierarchical fitting procedure would allow this parameter 
to vary continuously. 
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he measurements is not in dispute; a difference of almost 5 σ is found
etween the reported values of H 0 from the Planck CMB mission and
ocal distance ladder measurements for example (Riess et al. 2021 ).
he question instead is which of the points are discrepant, and why.
y finding distinct subsets of the measurements that are internally

tatistically consistent (and so can be combined to produce a more
recise measurement), but in tension with other subsets, we can hope
o identify a systematic bias or physical phenomenon that explains
he tension (e.g. Di Valentino et al. 2021 ; Blanchard et al. 2022 ).
imilar tensions between other cosmological parameters have also
een tentatively identified and studied (e.g. Lin & Ishak 2017 ; Raveri
 Hu 2019 ; Lemos et al. 2021 ). 
Assessing the probability that a given measurement is discrepant

s difficult (and potentially ill-defined) without some knowledge of
he expected distribution of the measurements and possible biases,
articularly when only a handful of measurements are available.
 Bayesian approach lends itself particularly well to this kind of
uestion, as it allows us to set out the statistical questions we are
sking of the data in an explicit manner, e.g. by requiring definite
tatements of the models/hypotheses and prior assumptions. A wide
ariety of Bayesian approaches have previously been applied to
osmological tensions (e.g. Press 1997 ; Liddle 2007 ; Verde et al.
013 ; Harrison et al. 2015 ; Lucy 2016 ; Seehars et al. 2016 ; Lin &
shak 2017 ; Handley & Lemos 2019 ; Raveri & Hu 2019 ; Blanchard
t al. 2022 ), and tend to share some common features. For instance,
any employ model comparison tests between a null hypothesis

nd a variety of alternative model scenarios, inte grating o v er a
hosen prior (with an appropriate penalty/‘Occam factor’ to penalize
ore flexible models) to determine which scenario has overall

igher odds given the available data (e.g. Liddle 2007 ; Trotta 2007 ).
ome also employ methods that measure a ‘distance’ between the
mpirical distribution of the measured values and the expected/ideal
istribution (e.g. Lucy 2016 ; Nicola, Amara & Refregier 2019 ), but
hoose different ways of quantifying the distance and determining
hat counts as a significant difference. These latter two points,
lus different strategies for choosing (or ev en disre garding) priors,
ccount for much of the variety in these approaches. 

Most of the references that we have included abo v e focus on
ssessing tensions between the values of cosmological parameters
nferred from different experiments. Another common situation that
equires a similar type of assessment of statistical consistency is
he combination of different subsets or ‘seasons’ of data from a
ingle e xperiment. P articularly in CMB and radio (21 cm intensity
apping) experiments, long integration times are required to reach

ufficient signal-to-noise on the faint signals that are being targeted.
his often requires observations that stretch o v er multiple observing
easons, taken across several years and different times of the year, and
ossibly even different instrument configurations etc. The potential
or discrepancies due to varying systematic effects between subsets
f observations is therefore relatively high, and so one is usually
nterested in performing ‘jackknife’ tests that attempt to determine
hether the subsets are consistent with one another. Assuming that

hey are, the data can then be combined in order to impro v e sensitivity.
therwise, the discrepancy can be taken as evidence of systematic

ontamination that must be addressed. 
We note that Bayesian approaches seem to be less commonly used

or this kind of assessment ho we ver. Instead, frequentist simulation-
ased methods seem to be more pre v alent, for instance ones in which
any simulations of a null hypothesis are passed through the same

ata analysis pipeline and compared at the level of the measured
tatistic (e.g. a power spectrum). The measured value of each data
oint (e.g. each power spectrum bandpower) is then compared
NRAS 518, 6041–6058 (2023) 
ith the distribution of simulated null hypothesis measurements to
alculate a p -value or ‘Probability-to-Exceed’ (PTE) (e.g. Planck
ollaboration VII 2020 ; Abbott et al. 2022 ; Ade et al. 2022 ), which
ives an estimate of whether each data point can be considered
n ‘outlier’ or not, subject to a potentially large list of implicit
ssumptions. Part of the reason for the popularity of this approach
s likely to be the relativ e comple xity of the ‘forward model’
f the data analysis process, which can involve many non-trivial
teps, hence lending itself to a simulation-based method. There
s also the question of whether a more careful (and somewhat

ore cumbersome) Bayesian approach is o v erly comple x when
nly approximate agreement between subsets of data is typically
onsidered sufficient to proceed with averaging them together. 

Certain types of observation, such as CMB B-mode searches and
1 cm intensity mapping, now routinely involve data with very
arge dynamic ranges, for which a more controlled assessment of
tatistical consistency may ultimately be required in order to reco v er
he extremely faint target signals from combinations of observing
easons. In this work, we develop a Bayesian jackknife test that has
uch an application in mind. The test is constructed to determine
hether any subsets of the data are biased, and if so, which subsets.
he general framework is flexible in that the analyst may sculpt the
ias hypotheses by choosing appropriate priors, and is not limited to
 particular set of bias configurations. We implement this framework
n an open-source PYTHON software package CHIBORG , 1 named
s an alternative to ‘ χ -by-eye’ approaches to similar problems. In
ssence, the test computes the evidence (marginal likelihood) for
ach bias hypothesis, and combines these into a posterior probability
istribution (PPD). The most probable hypothesis can then be
dentified, or, depending on the application, a loss function may
e minimized o v er the posterior to decide on the outcome of the test.
hile similar approaches have been developed before, e.g. to assess

osmological parameter tensions, we place an additional focus on the
ecision-making aspect of the test, pointing out how data analysts
an use it to select or exclude subsets of the data for further averaging,
s well as to hunt down systematic effects. 

Alternative Bayesian approaches to our statistical consistency
hecks include fitting a hierarchical model where (for example)
he explanatory parameter is a covariance parameter between the
nderlying means of the data subsets, 2 and/or performing posterior
redictive checks to see if a model inferred from a subset of the data
an produce simulated data sets that are consistent with the remaining
easured data (the subset not used for the inference). Both of

hese procedures are introduced and explored in a broader statistical
ontext in Gelman et al. ( 2004 ), which re vie ws Bayesian data analysis
n general. Hierarchical modelling is more specifically explored in
elman, Hill & Yajima ( 2012 ) and Isi, Farr & Chatziioannou ( 2022 ),
hile Rubin ( 1984 ), Meng ( 1994 ), Gelman, Meng & Stern ( 1996 ),
oux et al. ( 2021 ), and Moran, Cunningham & Blei ( 2022 ) focus
n posterior predictive methods. In posterior predictive checks, one
imulates fictitious data by sampling its PPD as inferred from (a
ubset of) the data, and then exposes the original data to a well-
efined consistency test within the simulated data such as a χ2 test
whose sampling distribution can be built up from the ensemble of
imulated data). They are appealing since they are well-formulated

https://github.com/mwilensky768/chiborg
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nd clearly assess the question of statistical consistency. Ho we ver, 
mplementations that focus on the posterior predictive p -value suffer 
rom the need to arbitrate statistical significance, i.e. it is arbitrary 
hen to accept or reject the hypothesis of statistical consistency. 
e address this by integrating our inference into a decision-making 

rame work. The relati v e consistenc y between the data subsets is
epresented by a set of hypotheses each with an associated Bayesian 
osterior. These posteriors can be weighed against a loss function 
ased on inference error in order to determine the optimal conclusion 
or the needs at hand. In a hierarchical modelling scheme, one could
n principle perform the same e x ercise after obtaining the posterior
or the explanatory parameter. Another important strength of our 
ackknife test is that it assesses the question of statistical consistency 
y pointing directly to the problematic data subsets in an easily 
nterpreted fashion. In other words, once the data are known to 
ontain inconsistencies, the next most immediate question is often 
which data are inconsistent?’ 

We have in mind a particular scenario in the analysis of 21 cm
rray data from the Hydrogen Epoch of Reionization Array (HERA) 
n The HERA Collaboration ( 2022 ), which moti v ated the design of
his test, and its application when only small numbers of subsets of
ata are available (so that the distribution of the subsets is difficult
o determine empirically). Specifically, we use the test in order to 
evelop a (post hoc) statistical justification for coherently combining 
everal disjoint subsets of data into one data set for the purposes of
lacing an impro v ed upper limit on the cosmological 21 cm power
pectrum signal. We explain this in more detail in what follows. For
pecific re vie ws on the subject of 21 cm cosmology, we direct the
eader to Furlanetto, Oh & Briggs ( 2006 ), Morales & Wyithe ( 2010 ),
nd Liu & Shaw ( 2020 ), among others. 

This paper is laid out as follows. In Section 2 , we lay down
 theoretical foundation for the test. We also explain from an 
nformation theoretical standpoint how to design the test for different 
pplications. We then apply the test to a suite of simple simulations in
ection 3 in order to explore the performance and behaviour of the test

n different circumstances. In Section 4 , we use the test on simulated
ERA power spectra using the HERA validation pipeline (Aguirre 

t al. 2022 ), as well as the actual power spectrum measurements from
he HERA Collaboration ( 2022 ). Finally, we provide a summary of

he work and our conclusions in Section 5 . 

 MA  T H E M A  T I C A L  FORMALISM  

n this section, we establish the mathematical formalism for detecting 
iases in data. We begin by stating the problem and defining our test
n terms of a null hypothesis and alternate hypotheses, stating what 
ach of these means mathematically. We then analytically derive the 
osterior probabilities of these hypotheses given some data. 

.1 Problem statement 

e consider the general problem of inferring whether a set of
ormally distributed data points are drawn about the same mean. We 
ave in mind a particular choice of data in the HERA power spectrum
stimation pipeline, and use this example in order to guide the 
iscussion with a concrete scenario. Ho we ver, the formalism could be 
pplied in other data analysis problems, such as determining whether 
ifferent measurements of the Hubble parameter are statistically 
onsistent. 

Consider a scenario in which the HERA analysts have carefully 
repared data for the estimation of the 21 cm power spectrum signal,
nd have chosen to separate the data into N observing epochs, 
ll disjoint (e.g. 20 nights, separated into N = 4 disjoint sets of
v e nights), and e xpected to be similar in quality. F or the final
ower spectrum limits, these epochs will be combined into one 
easurement. Ho we ver, as an auxiliary data set, they form power

pectrum estimates for each epoch independently. We may then ask 
he question, ‘given these power spectrum estimates, do we still 
elieve these epochs are similar in character?’ 
Clearly, we must be more specific since there are many ways in

hich the data can be inconsistent with one another. In the case of 21
m power spectrum estimation, we are often concerned with whether 
here is a systematic bias. The framework presented in this paper is
exible in that it can answer different statistical questions about the
elationships of the potential biases based on which hypotheses are 
onsidered. For instance, one question that it can answer is, ‘which
ubsets of the data are likely to possess a significant bias of unknown
trength?’ Another is, ‘given a particular strength of bias that can
ffect some data but not others (for whatever the reason), how likely
s it that this bias is present?’ Yet another is, ‘given that we believe
ome subsets of the data are biased, which partitions of these subsets
ave biases that are similar to one another?’ 
In the following subsections, we outline a Bayesian hypothesis 

est to answer these questions. We then provide a formulation of the
arginal likelihoods corresponding to a general set of relationships 

etween potential biases of unknown strength. From these likeli- 
oods and corresponding priors, we calculate the posterior odds of 
arious hypothetical bias relationships against one another, allowing 
s to form a conclusion about the nature of the biases within the data.

.2 Phrasing the hypothesis test 

e are given N data points arranged into a vector, d , and suppose
hat each datum may be biased by some unknown value, ε . In the
bsence of a bias, each datum is drawn about the same mean value,
0 (potentially unknown), according a Gaussian distribution with 
no wn cov ariance C 0 . We define this as our null hypothesis, H 0 .
n the HERA example, the data would be the bandpower estimates
or a single wave mode, and C 0 would be a diagonal matrix where
ach entry would be the estimated variance of the corresponding 
andpower. 
In the HERA problem, there are multiple choices for the inter-

retation of μ0 . For example, one could choose a value from which
ystematics are expected to be subtracted from theoretical work (such 
s the validation pipeline accompanying the data analysis software), 
 chosen reionization model to be investigated, or even the value
. In this final case, a rejection of the null hypothesis for the real
omponent of the HERA bandpower is ambi v alent between whether
t is a detection of the reionization signal or some systematic causing
he bias, and one would need to program specific hypotheses about
he bias (or perform an independent analysis) in order to distinguish
etween the two. 

In general, the scale of the problem is set by the size of the
rror bars, and we observe that differences in choice of μ0 that
re much smaller than the statistical error associated with the 
ata make imperceptible differences in the test results. This has 
otential consequences regarding a choice of prior on μ0 , explained 
n Section 2.4 . 

To answer a particular statistical question about the biases, 
e formulate hypotheses about them, and compare the posterior 
robabilities among one another using the ‘odds’ of one hypothesis 
o another, conditional on the data and known covariance. Mathe- 
MNRAS 518, 6041–6058 (2023) 
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atically, we write 

 ( H i | d , C 0 ) = 

P ( d | H i , C 0 ) P ( H i | C 0 ) 

P ( d | C 0 ) 
, (1) 

here H i is shorthand for a specification of knowledge about the
iases, formally detailed in the next subsection. In the formalism in
his paper, we do not use our knowledge of the data covariance to
nform the prior of the hypothesis, though we imagine that there can
e good reasons for doing otherwise. This allows us to write 

 ( H i | C 0 ) = P ( H i ) . (2) 

f there are Q hypotheses in consideration (including the null
ypothesis), then the denominator of equation ( 1 ) is simply calculated
s 

 ( d | C 0 ) = 

Q −1 ∑ 

i= 0 

P ( d | H i , C 0 ) P ( H i ) . (3) 

.3 Evaluating the posterior 

n order to e v aluate the posterior probability of any hypothesis,
e must handle the nuisance parameters by marginalizing o v er

orresponding priors in order to produce the likelihood. For instance,
f we expected tbe data to possess a common mean that takes the value

0 , we would say 

 ( d | C 0 , μ0 , H 0 ) = 

exp 
( − 1 

2 ( d − μ0 1 ) T C 

−1 
0 ( d − μ0 1 ) 

)
√ 

det (2 πC 0 ) 
, (4) 

here 1 is a vector for which every component is equal to 1. Similarly,
f we knew the data to be drawn from a biased Gaussian, with bias
iven by the vector ε , we would write 

 ( d | C 0 , μ0 , ε , H i ) 

= 

exp 
( − 1 

2 ( d − μ0 1 − ε ) T C 

−1 
0 ( d − μ0 1 − ε ) 

)
√ 

det (2 πC 0 ) 
. (5) 

n general, we need not assume particular values for the test. We
nstead propose that the means and biases may take a range of values,
ith weights assigned by prior probabilities: 

 ( d | C 0 , H 0 ) = 

∫ 
R 

d μ0 P ( μ0 ) P ( d | C 0 , μ0 , H 0 ) (6) 

 ( d | C 0 , H i ) = 

∫ 
R 

d μ0 P ( μ0 ) 
∫ 

R N 
d ε P ( ε | H i ) P ( d | C 0 , μ0 , ε , H i ) , 

(7) 

here P ( μ0 ) and P ( ε | H i ) are suitable priors that reflect a combina-
ion of our knowledge about the system and in some part the nature
f the types of biases we w ould lik e to inspect. We have implicitly
ssumed that P ( μ0 ) is the same regardless of which hypothesis is
rue, since the change in that parameter under a violation of the null
ypothesis is explicitly parametrized by ε . 

If one chooses Gaussian priors for these nuisance parameters, then
he calculation has a closed-form solution. We acknowledge that in
ome instances this choice of prior may seem inappropriate. In the
ERA example at hand, if μ0 is meant to represent the value of the
1 cm EoR power spectrum signal for a particular wave mode, then
ssigning non-zero probability to a ne gativ e value would be incorrect
n a very strict treatment. If this value is well known, then the width of
he prior might be such that ne gativ e values are negligibly probable
nyway. Ho we ver, the current state of the field is that this value is not
articularly well-constrained for an y wav e mode. F ortunately, this
s a one-dimensional integral, and so reasonably arbitrary positive-
efinite priors can be marginalized o v er numerically. There are also
NRAS 518, 6041–6058 (2023) 
 number of positive-definite priors with shape and scale parameters
hat can yield a closed-form solution when integrated against the
aussian likelihood, should this be the chosen interpretation for μ0 .
e show the derivation using Gaussian priors. 
An alternative interpretation for μ0 in the HERA context when

pplying this result is that it is a common bias which we expect
ach epoch to be limited by e.g. the expected strength of residual
able reflections or radio frequency interference (RFI) based on our
nderstanding of systematic mitigation. An alternative hypothesis
hen reflects an instance where systematic mitigation was not as
f fecti v e as e xpected in one or more epochs (or potentially far
tronger than expected in the case of a ne gativ e bias, indicating
ignal loss). 

We explicitly write our priors like so: 

 ( μ0 ) = 

exp 
( − ( μ0 − μp ) 2 /σ 2 

p 

)
√ 

2 πσ 2 
p 

(8) 

 ( ε | H i ) = 

exp 
( − 1 

2 ( ε − με ,i ) 
T C 

−1 
ε ,i ( ε − με ,i 

)
√ 

det (2 πC ε ,i ) 
, (9) 

here we allow for potential correlations in the bias vector by way of
 ε ,i . In other words, each alternative hypothesis, H i , is represented
y a mean value, and a relationship between variations in the bias
arameters. Having these degrees of freedom allows the analyst to
culpt the statistical question. For instance, taking the limit as C ε ,i 

oes to the 0 matrix produces a delta function in the marginalization,
hich is equi v alent to conditioning on a bias equal to με ,i . As another

xample, if one already believes that all the data are biased, then one
ay compare a hypothesis with diagonal covariance against one
ith a highly degenerate covariance, where the degeneracies probe

xact (or nearly exact) equality relationships between the biases. We
iscuss this in more detail in Section 2.4 . 
Since equation ( 6 ) is a limiting case of equation ( 7 ), we focus

n equation ( 7 ). The integral over ε is a multidimensional Gaussian
onvolution. The result, which can be derived by completing the
quare and some matrix manipulation (or the convolution theorem),
s essentially identical to the one-dimensional case. We obtain 

 ( μ0 ) ≡
∫ 

R N 
d ε P ( ε ) P ( d | C 0 , μ0 , ε , H i ) 

= 

exp 
( − 1 

2 ( d − μ0 1 − με ,i ) T ( C ε ,i + C 0 ) −1 ( d − μ0 1 − με ,i ) 
)

√ 

det (2 π ( C ε ,i + C 0 )) 
.

(10) 

e must then integrate this function, which is Gaussian in μ0 , against
he μ0 prior. Ho we ver, it is not a probability density function in μ0 ,
o we must be a little careful. By inspection of the quadratic term,
he ‘variance’ of this Gaussian function, ˜ σ 2 

i , is defined by 

1 

˜ σ 2 
i 

= 1 

T ( C ε ,i + C 0 ) 
−1 1 . (11) 

o see the ‘mean’ of this Gaussian function, ˜ μi we do a standard
aximization procedure: 

d ln f 

d μ0 

∣∣∣∣
˜ μi 

= 1 

T ( C ε ,i + C 0 ) 
−1 ( d − ˜ μi 1 − με ,i ) = 0 . (12) 

his is satisfied when 

˜ i = ˜ σ 2 
i 1 

T ( C ε ,i + C 0 ) 
−1 ( d − με ,i ) . (13) 
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Figure 1. Toy representation of the type of problem that is solvable by the formalism in this paper. Depicted are several pseudorandom draws of normally 
distributed random variables, colour coded according to their mean (dashed), and their 1 σ and 2 σ confidence interval (shaded). Definitively concluding whether 
there is a significant bias in any given data set by eye (doing a χ -by-eye) is difficult in some circumstances. By formalizing different bias scenarios as Bayesian 
hypotheses, we are able to produce the odds of different scenarios given the data (legend). Even using very broad priors about how strong the biases could be, 
we are able to resolve each correct hypothesis against its nearest competitor. Using more informative bias priors (which results in more specific versions of each 
hypothesis), we can bring the odds listed for the red data o v er 100, and the odds listed for the blue data to an extremely high exponent. 
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ompleting the square and performing the integral over μ0 yields 

 ( d | C 0 , H i ) = 

exp 
( − 1 

2 

(
˜ μi − μp 

)2 
/ ( σ 2 

p + ˜ σ 2 
i ) 
)

√ 

2 π ( ̃  σ 2 
i + σ 2 

p ) 

× exp 
(

− 1 

2 

[
( d − με ,i ) 

T ( C 0 + C ε ,i ) 
−1 ( d − με ,i ) 

− ˜ μ2 
i / ̃  σ

2 
i 

]) √ 

2 π ˜ σ 2 
i √ 

det (2 π ( C 0 + C ε ,i )) 
. (14) 

Since this is a probability distribution in d , and is of Gaussian
orm, it can be written 

 ( d | C 0 , H i ) = 

exp 
(− 1 

2 ( d − μ′ 
i ) 

T C 

′−1 
i ( d − μ′ 

i ) 
)

√ 

det (2 πC 

′ 
i ) 

. (15) 

n one final e x ercise in completing the square, one finds that 

′ 
i = με + μp 1 (16) 

 

′−1 
i = ( C 0 + C ε ,i ) 

−1 − ( C 0 + C ε ,i ) −1 1 1 

T ( C 0 + C ε ,i ) −1 

˜ σ−2 
i + σ−2 

p 

(17) 

Now that the likelihoods are calculated, all that is necessary to 
roduce the posterior probabilities is to multiply through by P ( H)
nd normalize by the total evidence (equation 3 ). We explore decision 
ules in more detail in Section 3 , but the simplest decision rule
rom these posteriors is to choose the maximum a posteriori (MAP)
ypothesis as the one ‘preferred’ by the data. 

We also make some remarks about the form of the likelihood. A
articularly interesting quantity to consider is the logarithm of the 
dds of two hypotheses: 

log O( H i , H j ) = log 

(
P ( H i | d , C 0 ) 

P ( H j | d , C 0 ) 

)
(18) 

f one conditions on a particular mean and bias and uses a flat
rior on { H i } , then this quantity reduces to a difference in χ2 
tatistics with two different assumed models – a familiar model 
omparison procedure from frequentist statistics. We can therefore 
hink of comparing hypotheses this way as a Bayesian generalization 
o comparing the χ2 statistic of the data in the face of different

odels. In other words, this is the quantified version of the ‘informed
-by-eye’ encouraged in the example we plot in Fig. 1 . 

.4 Choosing parameters for the test 

n this section, we discuss parameter choices for each part of the
est, which includes choice of prior probabilities, hyperparameters 
parameters describing the priors) for continuous priors, and odds 
hresholds. We begin by discussing the choice of prior for μ0 in
erms of the HERA problem. 

.4.1 Choosing the prior for μ0 

e break the HERA problem into three scenarios and provide 
uggestions for each one. We note that when the measurement is
ignificantly noise-dominated, the prior on μ0 does not drive the 
utcome of the inference provided it is less than the noise level. 
Residual systematics dominate the signal: In this case, a Gaus- 

ian prior may be appropriate. For non-zero μ0 , the interpretation 
ould be that μ0 represents a common value to which the epochs

re expected to be biased by systematics. Ne gativ e values for some
odes may represent large amount of signal loss. One could also

ondition on μ0 = 0, in which case a failure of the test would
ndicate the presence of significant systematics. 

Signal dominates the systematics, but is poorly constrained: 
n this case, a Gaussian prior can be inappropriate due to the true
ignal power being strictly positive. There are at least two options.
ne option is to implement numerical integration techniques that can 
andle a non-Gaussian prior. Another option is to instead condition 
n μ0 = 0 and use a hypothesis for testing where all epochs are biased
dentically (or nearly so). In this scenario, ruling the data as all biased
MNRAS 518, 6041–6058 (2023) 
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Figure 2. The mutual information provided by a hypothetical data set drawn 
according to the priors, as a function of bias prior width and mean (in units 
of the noise standard deviation, σ ). The mutual information represents the 
reduction in uncertainty between two random variables when one is known 
– in this case the data and the hypotheses (Appendix A ). Each draw has 
four data points (four epochs in the HERA example), and we consider all 
16 basic bias configurations (see the main text), leading to a total of 4 bits 
that are required to specify the state of the system. We assume an exactly 
zero-mean null hypothesis. Small fluctuations are visible due to Monte Carlo 
estimation error, whose size is proportional to the bias prior width, hence the 
increased estimator noise at the top of the plot. In general, we can use this 
as a landscape for which hypotheses are distinguishable from one another. 
Bias priors corresponding to the bottom-left sector of the plot produce data 
that are only weakly biased. When these biases are approximately the size 
of the statistical error of the data or smaller, the test is, on average, unable 
to distinguish between any hypotheses. If biases are concentrated away from 

the origin, some confusion can arise if the bias prior is wide enough to have 
significant density at the origin. 
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dentically indicates that something signal-like has been located that
s consistent between the epochs. Only further examination of the
ata can tell whether this is likely to be the signal of interest or some
ther, unexpected systematic. 
Signal dominates the systematics, and is well constrained: In

his case, we can use a Gaussian prior, where the width represents the
trength of the constraint. The bias prior mean and/or width would
eed to be larger than this constraint and the error bar for the test to
rovide statistically meaningful results. A test f ailure w ould indicate
n extreme malfunction in systematic mitigation. This is functionally
he same as when systematics dominate the signal. All that changes
s the meaning of the nuisance parameter. 

We provide an open-source PYTHON code called CHIBORG for
alculation of the posterior using analytically tractable priors as
ell as those that require numerical computation. This software is

omplete with documentation and example notebooks that explore
arious input and output options of the test to help users learn how
o formulate the test for their purposes. 

.4.2 Choosing the bias priors for alternate hypotheses 

he aim of this section is to define the subspace of bias hyperparame-
ers that produce a well-defined hypothesis test using the information
heoretical concept of ‘mutual information’. This requires concepts
rom information theory such as entropy of random variables, which
e briefly re vie w in Appendix A . In short, we wish to restrict our

ttention to scenarios (characterized by Gaussian bias priors with
articular means and variances) that can be meaningfully distin-
uished from the null hypothesis and each other. Some biases will
e too weak to distinguish from expected noise fluctuations around
he null hypothesis, in which case our test will be inconclusive.
y first finding the range of bias scenarios that are in principle
istinguishable, we can substantially ‘sharpen’ our test by only
onsidering situations where a decisive result is possible. 

In the following text, we use the mutual information to determine
he range of effects that are distinguishable using our hypothesis
est. The basic idea is that we can obtain at most S( P ( H)) bits of
nformation from the hypothesis test, where S ( P ( x )) is the Shannon
ntropy of a random variate x (we may also write S ( x )). Taking
 two-hypothesis test with a flat prior as an example, this equates
o (equation A2 ) S 2 (1/2) = 1 bit of information. With 1 bit of
nformation, we would be able to exactly specify the state of the
andom variable, H. 3 For some data, specifically those where strong
iases are common, the mutual information is close to maximal. This
eans that the average information provided by each application of

he hypothesis test is sufficient to distinguish between data that come
rom the various hypotheses. Conversely, it is difficult to distinguish
etween a weak bias and what may just be a noise fluctuation;
uch less information is available in this case. Note that since the

ctual data observed by the analyst may deviate from the priors, we
hould be wary of saying that the information gained in practice is
ecessarily reflected by this relationship. We use this only as a rough
uide for determining which priors are actually distinguishable with
he volume of data used in the test. 

In Fig. 2 , we display the mutual information between the various
est hypotheses and hypothetical data sets drawn according to the
ias priors reflected by the choice of mean and width shown on
he axes. We assume that each run of the test only has access to
NRAS 518, 6041–6058 (2023) 

 Said another way, to communicate the state of the random variable H, we 
equire the full use of 1 bit on average. See Appendix A . 

4

‘
a

our data points, and condition on the underlying mean being equal
o 0. Our hypothesis set can be represented by 16 4-bit strings,
here a 1 in the j th entry of the string indicates that the j th datum

s biased, and a 0 indicates it is unbiased. The corresponding bias
rior is formulated such that the mean vector has non-zero entries
nly for those indices in which the string is non-zero. The bias
rior covariance is diagonal, and constructed in the same way as
he mean. We will sometimes refer to this style of hypothesis set as
considering all diagonal hypotheses’. Parameter choices closer to the
ottom-left corner of the plot produce bias priors that are, in a formal
ense, close to the null hypothesis. 4 Parameter choices for which the
utual information is low indicate choices of hypotheses that are

ot reliably distinguishable from one another. Regions in which the
utual information is nearly maximal (4 bits in this example) indicate

ypothesis sets for which the test can reliably decide which of the
ypotheses is most likely. The corresponding posterior distribution
 v er the hypotheses will usually be strongly concentrated at this
ypothesis, i.e. it will be a low-entropy state. 

With only a few data points, Fig. 2 suggests that we may only be
ble to probe scenarios in which biases are frequently more than a
ew multiples of the error bar. In other words, it may only decisively
oint out visibly obvious statistical tensions. We remark that this is a
igorous, quantitati ve alternati ve to ‘ χ -by-eye’ that allows an analyst
o tune and objectively assess statistical questions with confidence.
 In the binary case (two hypotheses), the plotted quantity is known as the 
Jensen–Shannon Divergence’, and its square root satisfies the properties of 
 mathematical metric. 
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or the HERA use case, there are hundreds of groups of two to
our data points that would need to be assessed in this way, and so
his test acts as a form of data reduction. We also point out that
n easy avenue for combining more data and therefore increasing 
he information provided by the test is to combine wave modes in
he power spectrum. Formalism for this procedure is contained in 
ppendix B . 
In considering a set of priors for the alternate hypotheses, a useful

hoice for small data sets is one in which every combination of bias
onfigurations is considered (as used in Fig. 2 ). If zero-mean priors
re used, this requires 2 N hypotheses, while non-zero-mean priors 
ay need as many as 3 N hypotheses if all combinations of positive

nd ne gativ e biases for that mean are probed (assuming a single
ean is used). If the analyst possesses genuine prior information that 

an eliminate some of these possibilities, then clearly some of these 
ypotheses need not be considered. Once a set of biased data has been
dentified, it may then be useful to introduce a second stage in the test,
here the corresponding covariance matrix of the MAP hypothesis 

s partitioned to identify common biases among the biased subset 
Appendix C ). For larger data sets where this exponential growth in
ypotheses is impractical, one can imagine repeatedly bisecting the 
ata and running the test with a small hypothesis set until a confident
ositive result for a bias configuration is located. 5 For example, one 
ould use only two hypotheses: one with no biases, and one where
ll epochs are biased independently. Since data where only some 
raction of its points are biased can still be more consistent with this
lternate hypothesis than the null one, this can be a useful way to
educe a data set with a coarser hypothesis test before applying a
ore targeted one. 
The bias priors are meant to reflect hypothetical scenarios that 

he analyst is interested in knowing. Furthermore, since only a finite 
umber of hypotheses is considered, the MAP decision rule can only 
hoose the hypothesis that is closest to modelling the data within the
ontext of the considered hypotheses. An important implication of 
his concept is that even if a prior corresponding to some scenario
eems to grossly misrepresent the content of the data, it may yet be
 better match than, say, the null hypothesis. F or e xample, having
n e xcessiv ely broad prior, e.g. greater than 70 times the size of the
rror bar, but zero mean, does not prohibit the decision rule from
lassifying a 3 σ outlier as a significant bias. This means that in order
o assess fairly general propositions, such as ‘the data contain at 
east one bias’, one need not have an exhaustively precise model 
f how that bias should look, so long as the alternate hypothesis
ias priors capture the meaning of ‘significance’ intended by the 
nalyst (and the analyst is cautioned not to consider hypotheses 
ndistinguishable from the null as being significant). In other words, 
he marginalization procedure (o v er the bias priors) endows the test
ith a degree of flexibility that allows the analyst to sculpt the test

o be most sensitive to whichever scenarios they are most concerned 
bout. Ho we ver, the corresponding answer from the test is limited
n scope, in that it can only judge whether some hypothesis is more
ikely than another in consideration, e.g. ‘it is more likely that there
s at least one bias than that there are none, when these are the types
f bias configurations in consideration’. 
 One notion of ‘confidence’ is that the maximum a posteriori hypothesis 
dominates’ the other hypotheses with a substantial odds value, say 10:1 
or all hypotheses. This naturally leads to using entropy as a measure of 
onfidence. 

p  

w
i  

s  

f  

s  

p  

b

.4.3 Choosing the prior probability for the hypotheses 

he final choice of prior is that regarding each hypothesis, P ( H), i.e.
he prior probability that each of the (mutually e xclusiv e) hypotheses
s true. This is a primarily subjective prior unless one has a model for
ow often anomalous, unexpected biases should occur in the data. 
here are many concei v able choices depending on the preferred

ine of questioning. For instance, one might adopt a flat prior o v er
ll bias configurations in order to show no preference to any one
onfiguration. Ho we ver, this will gi ve preference to conclusions
egarding certain overall numbers of biases. Mathematically, there 
s only one way for all N data points to be simultaneously biased
though perhaps at a different level in each datum), but there are
N 

k 

)
ways for there to exist k biases within N data points. This

eans that with a flat prior o v er the 2 N diagonal hypotheses, if
ne asks the question ‘how many data are biased?’ rather than
which combination of biases is most like the data?’ then they are
 priori more likely to find an answer closer to N /2 (where the
ombinatorial factor is highest) than something closer to N or 0.
 similar statement holds for the various correlated partitions of 

ny one of these bias macrostates (Appendix C ). In what follows,
e choose flat priors at ev ery stage. F or the HERA problem, this

xpresses our assumption that each epoch is just as likely to be
iased as each other epoch, which we reason from the fact that data
rom each epoch were processed identically (exposed to the same 
election cuts and systematic mitigation methods). 

In subsequent sections, we apply these results to an array of
xamples of ranging realism. 

 RESULTS  WI TH  TOY  DATA  

n this section, we apply the formalism to some basic simulations
o build intuition. We then apply different decision rules to the
osteriors and subsequently examine their performance as classifiers. 
n these first examples, we examine the case when only a few data are
ombined, since this is the most analogous to the HERA example. 

.1 Formulating a decision rule 

nce the posterior probabilities of each hypothesis are calculated, 
ne may then be interested in formulating a decision about which
ypothesis to assume. A decision problem is typically formulated 
y determining an objective function that is extremized according to 
he goals of the analyst. We define a loss function, L ( H i , H j ), and

inimize the expected loss over the posterior. Formally, 

 L ( H i ) 〉 = 

Q −1 ∑ 

j= 0 

L ( H i , H j ) P ( H j | d , C 0 ) . (19) 

he quantity L ( H i , H j ) describes the specific loss associated with
ehaving as if H i is true when in fact H j is true. L ( H i ) is then the
xpected loss of behaving as if H i is true. 

Defining a loss function is sometimes arbitrary, although an 
bjective basis for one can also exist. For instance, in the HERA
roblem, one might ascribe a loss function based on how much
asted reanalysis occurs when an epoch is misidentified as contain- 

ng a bias, assuming one goes back to check on the data through
ome independent analysis when a bias is identified. The usual loss
unction chosen in a wide variety of analyses throughout the general
cientific literature is the sum of squared errors. To apply this to our
roblem we would need to formulate some sort of ‘squared distance’
etween our various hypotheses. There are various candidates from 
MNRAS 518, 6041–6058 (2023) 
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Figure 3. Classification matrices for the N = 4 system investigating the 16 basic bias combinations. The bias strength in the data is given by the column of the 
panel (labels at the top of each column), and the assumed bias strength is given by the row (labels at the right of each row), each taking the values 1, 3, and 5 in units 
of the noise standard deviation. Within each panel is a 16 × 16 matrix, where the column index indicates the particular bias configuration that was chosen by the 
MAP rule, and the row index indicates the actual simulated bias configuration. The colour indicates the fraction of samples simulated according to a particular state 
(row index) that was classified as the state indicated by the column index. In other words, diagonal entries represent proper identifications, and off-diagonal entries 
represent classification errors of some form. The annotations beside the axes tell the number of biases in the indicated state. In the upper right corner of each panel 
is listed the ‘false positive rate’ (fraction of unbiased data classified as somehow biased) and the ‘true positive rate’ (fraction of biased data classified as containing 
at least one bias, even if the biased states are incorrectly identified). When the parameters describing the alternate hypotheses do not lie in the region of high mutual 
information, there is an extremely large false positive rate. While using alternate hypotheses that are highly distinguishable generically decreases the true positive 
rate, the ratio of true positives to false positives increases, indicating that one can be more confident in positive classifications with this choice of hypothesis set. 
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he divergences of information theory, e.g. the Kullback–Liebler
ivergence or the Jensen–Shannon divergence between any two
ypotheses. The latter is equi v alent to the mutual information in
 binary test between the two hypotheses in question. If we choose a
et of hypotheses that are all mutually distinguishable as advised in
ection 2.4 , then the squared distance (measured in bits in this case)
ill be approximately 1 bit between any two hypotheses. In other
ords, there will be equal loss for any misclassification produced
y the algorithm, and 0 loss for a proper classification (identifying
xactly which epochs are biased in the HERA problem). Using such
 loss function, we would obtain 

 L ( H i ) 〉 = 1 − P ( H i | d , C 0 ) , (20) 

hich is minimized for the hypothesis whose posterior probability
s maximal. In other words, this just reproduces the MAP decision

6 
NRAS 518, 6041–6058 (2023) 

ule. 

 Even if the hypotheses are not all highly distinguishable, some hypothesis 
ets result in roughly equal Jensen–Shannon divergences anyway, which will 
lso produce the MAP rule. 

a  

i  

o
 

a  

o  
A loss function of particular rele v ance to the HERA problem
ight be to penalize false ne gativ es more severely compared to other
isclassifications. While identifying a bias where there are none

roduces concern for the quality of the power spectrum limit, a false
e gativ e fails to prevent a lower quality limit. On the other hand, the
nalysts may also worry about producing selection bias, in which
ase a loss function that minimizes false positives would be rele v ant.
n general, there is a trade-off between false ne gativ es and false
ositives, as we show in exploration below. 

.2 Classification performance 

e explore the classification performance of the jackknife test by
imulating large ensembles of biased data and examining various
etrics. First, we use the loss function of equation ( 19 ) (MAP deci-

ion rule) and count how many instances of each bias configuration
re mapped into each bias hypothesis. We also examine this ensemble
n terms of entropy. We then inspect the true and false positive rates
f a decision rule where false ne gativ es are strongly penalized. 
In Fig. 3 , we show an array of ‘confusion matrices’. We generate

n ensemble of Gaussian random vectors of length N = 4 under each
f the 16 possible bias configurations, with a standard deviation of
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Figure 4. Entropy of the posterior distribution under different choices of 
alternative hypotheses and true biases. Regions of high entropy towards 
the lower left reflect uncertain conclusions, while regions of lower entropy 
express more certainty (generally fewer competing hypotheses). 

T
t  

e  

d  

h  

w  

b  

t
 

l
o  

c  

b  

p  

o  

c
l
t  

f
a  

p
b  

j  

s  

w  

n
 

m  

e  

p  

o

L

w  

m  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/4/6041/6852951 by U
niversity of the W

estern C
ape user on 26 June 2023
 in each dimension and no correlations. We choose a true bias of
exactly) 1, 3, and 5, i.e. ε true ∈ { 1, 3, 5 } . We choose a set of alternate
ypotheses with με equal to 1, 3, and 5 as well, and C ε nearly
. Then, for each simulated data set and choice of hypotheses, we
ount how many data are most likely to come from each of the various
ypotheses. From this, we can also calculate the false positive rate, 
hich is the fraction of unbiased sample vectors that are classified as

ontaining at least one biased component, as well as the true positive
ate, which we define as the fraction of vectors with at least one com-
onent identified as biased (even if the truly biased components are 
isidentified). All off-diagonal entries in the matrix represent mis- 

lassifications, and the diagonal entries show proper classifications. 
Unsurprisingly, when biases are strong (rightmost column), the 

rue positive rate is extremely high. Ho we ver, if the alternate hy-
otheses are not sufficiently distinct from the null hypothesis (upper 
ow), the MAP rule suffers from frequent misclassification within 
he biased states. The problem is more prominent for configurations 
ith fewer biases. In addition, the false positive rate is extremely 

arge. The false positive rate is, in general, not a function of the true
iases, since the null hypothesis is identical regardless of ε true . The
xtra aggression exemplified in the top row is also manifest in the
attern of misclassified true positives. When such misclassifications 
ccur, they generally conclude that there are more biases present 
han in reality. In other words, for the top row, the most common

isclassification is that states with one bias are classified as having 
w o biases, and tw o bias states are misclassified as having three, etc.
sually the correct bias components are identified, but an extra bias 

s proposed. This is caused by an upward statistical fluctuation in 
he unbiased state appearing as a bias, which is a significantly less
ikely scenario when the assumed bias level is large compared to the
oise. For the bottom row of matrices, the misclassification pattern is
he opposite, except for when biases are extremely weak compared 
o the alternate hypotheses. When biased data are misclassified, 
hey are often classified as containing one less bias then they truly
ossess. Ho we ver, once the biases are sufficiently weak, the most
ommon misclassification is a false ne gativ e (bottom-left matrix). 
uch confusion matrices offer a way of choosing hyperparameters for 

he alternative hypotheses in terms of one’s appetite for various types 
f failures, rather than from the theoretical considerations presented 
n Section 2.4 . Ho we ver in general we see that these two methods
orrespond with one another in a logical manner. 

In Fig. 4 , we use entropy as a measure of the ‘confidence’ of the
osterior distribution. The basic idea is that if the posterior is strongly
oncentrated on a small number of states, the sample entropy for that
ata draw 

ˆ 
 ( H| d 

( i) ) ≡ −
Q −1 ∑ 

j= 0 

P ( H j | d 

( i) ) log 2 
(
P ( H j | d 

( i) ) 
)

(21) 

ill be low. If we average over all d 

( i ) in the ensemble, then we
ave the sample entropy of the data set under that particular data
enerating distribution, 

ˆ 
 ( H| d ) ≡ − 1 

D 

D ∑ 

i= 1 

ˆ S ( H| d 

( i) ) , (22) 

 being the number of samples drawn. This acts as a measure of
ow certain the algorithm is of its classifications on average. We 
epeat a similar simulation process as for Fig. 3 , but on a more
nely spaced grid of με and ε true . Additionally, we mix all bias
onfigurations at a given ε true in equal proportions. We generally 
bserve lower entropies for higher με and ε true . For low ε true , and
igh με , these low-entropy states are ‘confident misclassifications’. 
his is reasonable behaviour, since weak biases should be difficult 
o distinguish from noise when one is expecting strong biases. For
xample, if one is specifically expecting 5 σ biases and observes a
atum at 1 σ , it would be unreasonable to be in doubt about which
ypothesis is most likely. In a complementary vein, if one expects
eak biases and weak biases are often present, one should expect to
e highly uncertain about the state of the system. This corresponds
o the region of high entropy in the lower left of the plot. 

So far, we have not used much the loss function formalism. A
oss function is highly contextual. A particularly important type 
f misclassification in the HERA problem is a false ne gativ e (i.e.
oncluding no biases when at least one is present). If a bias can
e identified before coherently averaging the data to form a final
ower spectrum, then in principle the data that led to the subspectra
n which the test is being run can be reanalysed and potentially
leared of systematics. Conversely, failing to identify a bias can 
ead to a systematically dominated power spectrum upper limit 
hat could have otherwise been a v oided. One may use the loss
unction in order to more severely penalize such misclassifications 
nd therefore a v oid them more often in exchange for more false
ositi ves. Alternati vely, one might be concerned with selection 
ias effects, such as in the HERA problem where we deploy the
ackknife test on a measurement that is extremely close to the final
cientific product. In that case, one could construct a loss function
here false positives are punished more severely, so that one does
ot inadvertently label unbiased data as biased. 
To illustrate this with math, we can think of equation ( 18 ) as a loss
atrix L acting on a posterior probability vector p , where the ij th

ntry of L is equal to L ( H i , H j ) and the j th component of p is the
osterior probability of the j th hypothesis. To achieve the MAP rule,
ne would use a loss function given by 

 MAP = 1 1 

T − I Q 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

0 1 1 ... 1 
1 0 1 ... 1 
1 1 0 ... 1 
. . . 

. . . 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (23) 

here I Q is the Q × Q identity matrix. This loss matrix is a symmetric
atrix with 0s down the diagonals and 1 for all other entries, i.e. 0
MNRAS 518, 6041–6058 (2023) 
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Figure 5. True positive rates, false positive rates, and their ratio when using a bias prior mean of five times the error bar, as a function of the strength of loss 
for false ne gativ es (equation 23 ). F or larger loss values, we can obtain strong gains in true positive rates for smaller biases in exchange for a larger false positive 
rate. The odds of true to false positives decrease monotonically as the loss strength goes up, but reasonable odds can be maintained for relatively weak biases at 
an appreciable increase in true positive rate. 
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oss for proper classifications and a unit loss for any misclassification
egardless of its type. This reproduces equation ( 19 ) exactly. To
roduce a lower false ne gativ e rate at the expense of more false
ositives, one changes the top row of this matrix to some false
e gativ e loss value, L > 1, except for the diagonal entry. In math, 

 low FNR = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

0 L L ... L 

1 0 1 ... 1 
1 1 0 ... 1 
. . . 

. . . 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. (24) 

imilarly, to achieve a lower false positive rate, at the expense for
ore false ne gativ es, one replaces the first column with some loss

alue, L > 1. Explicitly, 

 low FPR = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

0 1 1 ... 1 
L 0 1 ... 1 
L 1 0 ... 1 
. . . 

. . . 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. (25) 

In Fig. 5 , we explore the effect of modulating a false ne gativ e
enalty while holding all other misclassifications at a constant loss
alue. In other words, we vary L in equation ( 23 ). When L = 1, this is
he same as the MAP rule. Using the same simulation suite as Fig. 4 ,
e analyse the true and false positive rate as we adjust the strength of

he loss for false ne gativ es relativ e to that of other misclassifications.
e only use alternate hypotheses with με = 5 σ . The left-hand panel

hows the true positive rate as a function of loss value for the chosen
iases. We see that for weak biases we can appreciably increase the
rue positive rate. The middle panel shows the false positive rate.
ombining this with the left-hand panel, one may tune the false
ositive rate and then estimate the sensitivity to various biases. For
nstance, using a loss strength of 10 for false ne gativ es increases the
rue positive rate for 1 σ biases by about 50 per cent of its MAP
alue (loss strength equal to 1) while keeping the false positive rate
t less than 10 per cent. The right-hand panel shows the ratio of true
o false positive rate. If for some reason the pre v alence of each bias
onfiguration is known (or if one is willing to use prior values), this
uickly translates to an odds of a positive result being true versus
alse. This can also be used to tune the loss function by setting an
NRAS 518, 6041–6058 (2023) 
dds threshold for a given strength of bias. In general, we see that
his ratio is monotonically decreasing as a function of loss strength,
ndicating that the false positive rate generally increases quicker than
he true positive rate. 

Using a large array of simulated data has allowed us to thoroughly
xplore the statistical properties underlying this test. Specifically,
e have illustrated a number of tools one can use in order to tune

he test to the question at hand. We have primarily focused on
he form of the jackknife test in which one is interested in all 2 N 

ias configurations without asking about interbias similarities ( C ε 

iagonal). In principle, the manner of investigation presented in this
ection may be used for any hypothesis set, e.g. those formalized
n Appendix C , or a more specific hypothesis set defined by the
nalyst’s problem. We first turn to simulations from the HERA
alidation pipeline in order to investigate the performance of the
est in a controlled yet realistic setting, and then examine the results
f the test on the measured HERA bandpowers. 

 RESULTS  F O R  H E R A  SI MULATI ONS  A N D  

ATA  

n this section, we apply the jackknife test to the simulated and
easured HERA bandpowers from their first observing season, as

onstructed and analysed in The HERA Collaboration ( 2022 ). The
ata for the observing season, spanning 94 nights after initial data
uality cuts, were split into four epochs of roughly equal size.
he data were then analysed identically, and power spectra were

ormed on a per-epoch basis. Accompanying the HERA data analysis
ipeline is a comprehensi ve v alidation pipeline designed to verify
he efficacy of the data analysis techniques using thorough and
ealistic simulations of the experiment (Aguirre et al. 2022 ). This
ncludes simulation of foregrounds, fiducial EoR signals, thermal
oise, calibration, kno wn systematic ef fects, systematic mitigation
echniques, and so on. For The HERA Collaboration ( 2022 ), all 94
ights passing initial data selection were simulated and separated into
pochs, mimicking the exact data analysis procedure. This allows us
o apply the jackknife test to both the simulated bandpowers as well
s the measured bandpowers. 
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Figure 6. Top: Bandpowers directly from the HERA validation pipeline, 
simulating foregrounds, noise, systematics, and systematic subtraction (no 
EoR signal), for band 1, field E (top). Bottom: Same bandpowers, except we 
artificially add a bias to the epoch 1 measurements of 3 × 10 6 mK 

2 h 3 Mpc −3 

(approximately two times the size of the error bar for most modes). Opaque 
data have been identified as biased according to the MAP decision rule (see 
Section 4.1 for test details). 
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Figure 7. Top: The odds against the MAP hypothesis based on the posterior 
distribution for each mode when considering the raw validation bandpowers 
(top panel of Fig. 6 ). As expected, the raw validation results are largely con- 
sistent with zero-mean noise (the plot is concentrated at the empty bias con- 
figuration with relatively few competing hypotheses). Bottom: When a bias is 
artificially added to epoch 1, we see that the hypothesis that ‘epoch 1 is biased’ 
is highly fa v oured compared to other hypotheses for about half the modes. 
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We first show the results of the jackknife test on validation 
imulations where foregrounds are simulated, but no EoR signal is 
resent. This ef fecti vely produces a data set where the null hypothesis
s satisfied almost everywhere. We then modify the outputs of these 
imulations by adding a constant bias to one of the epochs on all
odes, which is an effect that could arise, for example, due to

he presence of ultra-faint RFI (Wilensky et al. 2020 ). Note we
o not actually use the validation pipeline to simulate the effect 
f RFI (or any other systematic that might add a constant bias);
e are just artificially introducing the bias directly to the end-stage 
andpo wers. Finally, we sho w the results of the jackknife test on the
ctual measured bandpowers, demonstrating a majority null result, 
hereby justifying (post hoc) the decision to coherently average the 
pochs together to form one final power spectrum. 

.1 Results with HERA validation simulations 

n Figs 6 and 7 , we show the results of the jackknife test for a single
and and field of power spectra made using the HERA validation 
ipeline. These simulations included foregrounds, noise, instru- 
ental/analysis systematics, and systematic mitigation, but no EoR 

ignal. The jackknife settings are contained in the bulleted list below. 

(i) Hypothesis Set : all diagonal 
(ii) Bias Mean/Width : 6 σ i ± σ i 

(iii) Null Mean/Width : 0 ± 0 
(iv) Decision Rule : MAP 

We test all diagonal hypotheses (i.e. all epoch combinations, but 
ithout asking whether some are degenerate as in Appendix C ), using
 prior mean and width that are sized based on the per-epoch error bar.
e use the MAP decision rule for determining biased epochs, which 

s equi v alent in the preceding section’s formalism to using a constant
oss function o v er the range of possible misclassifications. Fig. 6
hows the bandpowers with (bottom) and without (top) the addition 
f an artificial bias to epoch 1 that is roughly two times the size of
he error bar for most modes. Fig. 7 shows the posterior probability
f each bias configuration divided by the posterior probability of the
AP hypothesis, i.e. the odds against the MAP hypothesis. Such a

lot allows us to see how competitive various hypotheses are with the
AP hypothesis. This shows us that realistic simulations intended to 

e somewhat consistent with the null hypothesis at sufficiently high 
 do appear to demonstrate this consistency. Since small residual 
ystematics still exist despite mitigation, we do not expect perfect 
onsistency with the null hypothesis. When we artificially add a bias
o epoch 1, the MAP solution shifts towards identifying epoch 1 as
iased for about half the modes, as expected. 
With these settings, we expect a false positive rate of about

.5 per cent, and a true positive rate for biases of 2 σ of 49 per cent.
hen we artificially add a 2 σ bias, the data are roughly consistent
ith this true positive rate. Examining validation outputs from 

ll bands and fields, and accounting for differences in number of
ypotheses between tests, we find that there are more data identified
s biased than expected from the false positive rate, which is between
 per cent and 2 per cent depending on the field (higher rates for
ore epochs). About 10 per cent of the validation bandpowers 
 v er all bands and fields are identified as biased. Slightly less
han half of the identified bandpowers are in the lowest k -mode.

hile efforts have been made to exclude contributions from the 
oreground wedge to these modes, it is possible that the cuts that
ro vide these e xclusions (The HERA Collaboration 2022 ) may
e imperfect, and that some residual foreground signal exists in 
hese bins. The remaining identified data points appear somewhat 
niformly scattered throughout the rest of the wave numbers. This 
 xcess abo v e the false positiv e rate suggests a potential lo w-le vel
MNRAS 518, 6041–6058 (2023) 
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Figure 8. Odds against the MAP hypothesis for (positive) bias configurations (v ertical ax es – contents of the tuple indicate which epochs are biased under the 
hypothesis) in the measured bandpowers for each observed frequency band (panel rows), celestial field (panel columns), and spherical wave number (horizontal 
axes). The horizontal white lines delineate the borders between sections of the plot where certain numbers of epochs are biased. We observe that the null 
hypothesis is most likely in the majority of instances, suggesting that the data are unlikely to contain significant biases in the bandpowers for most bands, fields, 
and modes. Interestingly, epoch 1 is often identified as a biased bandpower in band 1, field C with few or no competing hypotheses on most modes. This can be 
visually confirmed in Fig. 10 , where epoch 1 demonstrates a consistent positive bias across most k -modes. 
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iolation of the null hypothesis, such as residual systematics that are
ncompletely subtracted. F or e xample, biases at half the error bar
ave a true positive rate of about 13 per cent. With the exception of
hese potential nuances, we observe that the jackknife test performs

ore or less within expectation and proceed to applying it on the
ctual measured bandpowers. 

.2 Results with HERA data 

ig. 8 shows the posterior odds against the MAP hypothesis for
ach wave mode in the power spectra of the observed bands and
elds in The HERA Collaboration ( 2022 ). There are two bands:
ne e xtending o v er 117.19–133.11 MHz and another extending over
52.25–167.97 MHz. The fields span roughly 17 h of right ascension,
ith two small gaps between fields A and B as well as B and C.
ields C, D, and E are contiguous. They are not all equally sized,
oth in terms of angular extent and total data volume contributing.
dditionally, due to the large angular extent of the field collection,

ome epochs do not have measurements for some fields. This is
eflected in the thermal uncertainties of the measured bandpowers.
or this test, we use the same bias hypotheses as in the validation test,
hose parameters are listed in Section 4.1 . The null hypothesis, that

he data are consistent with zero-mean noise, is the MAP solution
n the majority of instances, suggesting that the data are unlikely to
ossess substantial positive biases 7 for most k -modes in the bands
nd fields that were tested. Furthermore, there is usually only a
NRAS 518, 6041–6058 (2023) 

 We also searched for ne gativ e biases, for which the algorithm reports a small 
andful of ne gativ e outliers among all the data. 

t  

i  

s  

n  
mall number of competing hypotheses compared to the size of the
onfiguration space. 

This is summarized neatly by the entropy of the posteriors, which
e show in Fig. 9 . In most instances, the entropy is less than 1 bit.

nterpreting 2 H as the ef fecti ve number of competing hypotheses,
aving less than 1 bit of entropy suggests that there is usually less
han 1 hypothesis with comparable probability to the MAP solution,
hough this may be manifest as multiple other hypotheses each with
ow-to-moderate probability. The relatively low entropy of the pos-
eriors is largely a consequence of choosing alternative hypotheses
hat are highly distinguishable by the data, cf. Figs 2 and 4 . 

Fig. 8 also allows one to easily see whether a particular epoch
s often problematic, such as epoch 1 in band 1, field C. Since the
ull posterior is available (normalized against the MAP), we can also
ead off trends in the competitive hypotheses. For instance in band 1,
eld B, the odds of a scenario where only epoch 1 is biased and the
ull hypothesis is close to 1 in a pair of high k -modes, and epoch 1 is
ighlighted for two other modes in the same panel. This suggests that
f we were to combine information o v er k -modes using the formalism
n Appendix B , then we may observe fewer null results. 

In Fig. 10 , we show the measured bandpowers for each band and
eld, along with 1 σ error bars. Opaque data were those identified
s biased according to the MAP solution, while transparent data
re classified as unbiased. Comparing to Fig. 8 , we can visually
onfirm that epoch 1 consistently measures bandpowers that are
everal error widths above 0. Given that the false positive rate with
hese settings is roughly 6 per cent, we are confident that most of these
dentified biases are true positives. Most EoR models produce power
pectrum signals that are orders of magnitude beneath the thermal
oise on these modes, meaning that these biases are probably residual
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Figure 9. Entropy of the posterior for each band and field as a function of wave number. The points of low entropy correspond to posteriors with very few 

competing hypotheses, i.e. very certain inferences. Higher entropy states, such as band 2, field B, k = 1.40 h Mpc −1 , indicate uncertain inferences. As observable 
in Fig. 10 , this particular mode has two positi ve-v alued bandpo wers slightly more than 2 σ i away from 0 – dubious evidence of a potential bias. Ultimately the 
test reasons it is unbiased under the chosen test parameters. 

Figure 10. Measured bandpowers and 1 σ error bars from The HERA Collaboration ( 2022 ). In the top row, we have compressed the upper range of the plot 
using a logarithmic scale abo v e 2 × 10 7 in order to show some extreme outliers without obscuring the clarity at lower power. Data identified as positively biased 
according to the MAP decision rule are opaque, while data classified as unbiased are transparent. Points from different epochs are slightly staggered for visual 
clarity. Note that the two lowest limits belong to band 1, field D and band 2, field C, which are quite well-behaved under the jackknife test in general. The 
particular modes from which the lowest limits come ( k = 0 . 36 h Mpc −1 and k = 0 . 34 h Mpc −1 , respecti vely) do sho w strong e vidence of biases in one epoch 
each. Note that in field C, we have removed epoch 3 from the plot for visual clarity, since it contained substantially less data in this particular field than other 
epochs, leading to large error bars that obscure the finer details in the plot. 

s
t
v
t  

t  

z

t
o  

h  

m
n  

d  

a
 

i  

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/4/6041/6852951 by U
niversity of the W

estern C
ape user on 26 June 2023
ystematic effects. This plot highlights the ability of the jackknife 
est to quantitatively identify likely outliers in circumstances where 
isual identification would be difficult. We also remark that since 
he data are considered jointly and under se veral dif ferent models,
he test is more surgical and gives different results than a simple
-score cut. Expanding on this point, the Bayesian formalism makes 
he conclusion more readily interpreted than a decision based solely 
n a z-score, which directly translates to a p -value under the null
ypothesis. A p -value under one hypothesis is non-specific to other
odels. This test provides more specific information about how the 

ull hypothesis could be violated: it points the analyst in a particular
irection when the null hypothesis is rejected. Moreo v er, it pro vides
 specific criterion for when the null hypothesis should be rejected. 

The decision to average the epochs together in each band and field
n The HERA Collaboration ( 2022 ) was made prior to the application
f this hypothesis test. Therefore, any justification that this test would
MNRAS 518, 6041–6058 (2023) 
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Figure 11. Odds of at least one significantly biased epoch in each band and field as a function of wave number (reproduced from The HERA Collaboration 
2022 ). This is calculated by summing the posterior o v er all bias configurations and dividing by the posterior probability of the null hypothesis. Regions on 
the plot are shaded according to the odds interpretation presented in Kass & Raftery ( 1995 ). The majority of points show no decisive evidence of significant 
per-epoch biases (darkest shade, odds > 10 2 ), except at lower k -modes and with a few exceptions at higher k . A modest number of points lie in the region of 
strong evidence for bias (middle shade, odds between 10 1 and 10 2 ), and a handful of points lie in the small lightly shaded region between 10 1/2 and 10 1 , which 
is a region of substantial but not strong evidence for bias. This majority null result in combination with the typically low entropies of the inferences essentially 
qualifies as a pass, except potentially for band 1, field C and band 2, field D. 
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end to such a decision is post hoc, and serves strictly as validation
f the decision. As with any decision, one may approach this in a
ariety of ways. For example, one might consider the power spectrum
s a whole and make the decision based on a summary statistic that
onsistently responds for a large number of k -modes. Following this
ine of thinking, we construct the ‘odds of at least one significantly
iased epoch’ per band, field, and mode by summing the posterior
 v er all bias configurations and dividing by the posterior probability
f the null hypothesis, displayed in Fig. 11 . We might then decide a
oherent average is unjustified if there is significant odds of a biased
poch on a large number of modes. 8 Inspecting Fig. 11 , we see that for
ost bands and fields, and modes, there is counterevidence (odds less

han 1) or weak evidence of a significantly biased epoch. Exceptions
nclude the lower order k -modes, where we suspect some residual
oreground contamination may be present, as well as band 1, field
 and band 2, field D, which appear to have consistent evidence of
ias on a large number of modes. In summary, we consider the result
f this jackknife test as largely justifying the decision to coherently
verage the epochs together in The HERA Collaboration ( 2022 ). 

 SUMMARY  A N D  C O N C L U S I O N S  

e presented the formalism for a jackknife test for identifying biases
rom a small collection of subsets of data. The Bayesian formalism
s flexible in that different questions may be asked by posing
ifferent scenarios. These scenarios, or hypotheses, are described
y prior probability distributions on the possible biases. The test
ssentially proceeds by calculating the evidence of each hypothesis.
hese evidences are marginal likelihoods of the hypotheses, and thus
NRAS 518, 6041–6058 (2023) 

 One could eliminate this mode counting step and generate posterior odds 
or the whole spectrum by applying the formalism in Appendix B . 

a  

i  

m  

f

sing Bayes’ theorem, we can combine them into a PPD o v er the
ypotheses. A decision about whether a significant bias has been
dentified in a given scenario is made by specifying a loss function
nd minimizing its expected value over the posterior. 

We show the explicit calculation of the marginal likelihoods
hen Gaussian priors on the biases and underlying mean under

he null hypothesis are used. This is not a necessary feature of the
ramework, but is appropriate in many cases and permits extremely
ast computation the posteriors. This allows for rapid exploration
f the performance qualities of the jackknife test, such as true and
alse positive rates. A key concept in our understanding of the test
s Shannon entropy, which acts as a metric of certainty for the test.
elated concepts such as mutual information allowed us to make
 good theoretical guess for what types of bias hypotheses would
ro vide informativ e jackknife tests. We then validated this theory
y simulating the classification problem and e v aluating confusion
atrices for the simulated data. In principle, these exploratory

echniques are available for whichever bias scenarios one may
ish to probe, ho we ver hypotheses for which analytic marginal-

zation fails will take longer in order to perform the rele v ant 
xploration. 

A particular hypothesis set that we spend a great deal of time
xploring is one in which any of N data points may be biased by
ome unknown amount whose mean and (diagonal) covariance we
pecify. This produces 2 N hypotheses o v er which the posterior must
e calculated. This is a fairly general hypothesis set that allows
ne to agnostically probe which data are most likely to be biased
ithout specifying potential equi v alencies between the biases. One
ay of course choose a subset of these hypotheses in order to sculpt
 more specific question, or more generally, adjust the prior weights
n order to fa v our some hypotheses o v er others. Furthermore, one
ay establish equi v alence relations between the biases using the

ormalism that we present in Appendix C . 
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As a proof of concept, we applied the jackknife method to a
ERA data set and accompanying validation simulations used for a 
ower spectrum upper limit in The HERA Collaboration ( 2022 ). 
he purpose of the test in this instance was to determine (post
oc) whether coherently combining subsets of the limit data was 
tatistically justified. The basic idea is that if a particular subset of
ata consistently showed evidence of bias, then it would have been 
rudent to exclude those data from the coherent average since this
ould indicate that it had high levels of systematic contamination. 
e found that in most instances there was little evidence of consistent

ias for any given epoch except in a minority of band/observing field
ombinations. We therefore conclude that the choice to coherently 
verage the data together was indeed justified, except potentially 
t lower k -modes. In future applications to the HERA experiment, 
e aim to implement the multi- k -mode formalism in Appendix B ,

s well as apply the test in earlier stages of the pipeline such as
he LST-averaged visibilities. We suspect that this jackknife test 
ill be a valuable tool for assessing statistical tension in other 

osmological data sets as well, for instance between different seasons 
r detector sets in CMB experiments, different dishes/baselines of 21 
m intensity mapping experiments, and so on. Analytic and numerical 
ersions of the test have been made available to the community in
he CHIBORG software. 
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PPENDIX  A :  M U T UA L  I N F O R M AT I O N  A N D  

NT ROPY  

n this appendix, we provide a brief re vie w of mutual information and
ntropy. For a thorough and accessible introduction to information
heory, and particularly these concepts, see Co v er & Thomas ( 2005 )
nd MacKay ( 2002 ). 

We define the Shannon entropy, S , of a discrete random variable,
 , as 

( X) = −
∑ 

x 

P ( x) log 2 ( P ( x)) , (A1) 

here P ( x ) is its probability mass function and the sum is o v er all
tates obtainable by the random variable. A similar definition exists
or continuous random variables, and is referred to as ‘differential
ntropy’. This is interpreted as a measure of uncertainty for the
andom variable, and is measured in bits if log 2 is used. To understand
his interpretation, consider a two-sided coin with probability p of
eturning a particular side (say ‘heads’) after a toss. The entropy of
he coin is 

 2 ( p) ≡ −p log 2 ( p) − (1 − p) log 2 (1 − p) , (A2) 

hich is sometimes referred to as the binary entropy function. This
unction is plotted in Fig. A1 . It is maximal for p = 1/2, expressing
he fact that the outcome of a fair coin is minimally predictable (or

aximally uncertain) compared to any unfair one. In the limit as p
NRAS 518, 6041–6058 (2023) 

igure A1. The binary entropy function for a coin toss of varying fairness. 
he entropy is maximal for a fair coin, and equal to 0 for a coin that al w ays 

eturns one of heads or tails when tossed. Coin flips with highly uncertain 
utcomes have a high entropy , and inversely , coin flips with highly certain 
utcomes have low entropy. In general, we can use the entropy as a measure 
f uncertainty of a random variable. 
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oes to 0 or 1, the binary entropy function goes to 0, expressing that
uch a coin will al w ays occup y a certain state after a toss. 

We define the conditional entropy of the random variable, X ,
onditioned on another random variable, Y , as 

( X| Y ) ≡ −
∑ 

x,y 

P ( x, y) log 2 ( P ( x| y)) , (A3) 

here P ( x , y ) is the joint probability mass function of X and Y ,
nd P ( x | y ) is the conditional distribution of X given Y . This should
e interpreted as the average remaining uncertainty about X after
onsidering a known value for Y . When X and Y are independent,
his quantity is equal to S ( X ), and when the state of Y completely
pecifies the state of X , this quantity is equal to 0. For our purposes,
e can define the mutual information between X and Y as 

 ( X; Y ) ≡ S( X) − S( X| Y ) 

= S( Y ) − S( Y | X) , (A4) 

here the second equality indicates symmetry in the argument. In
oncordance with our previously stated interpretations, the mutual
nformation is the average reduction in uncertainty about one random
ariable after gaining knowledge of the state of the other. If (and
nly if) X and Y are independent, they have 0 mutual information,
nd therefore knowledge about one cannot reduce uncertainty about
he state of the other. The mutual information is al w ays non-ne gativ e
Co v er & Thomas 2005 ). 

In an inference problem, we are concerned with how informative
he data are for a given set of hypotheses. In other w ords, we w ant to
now I ( H; d ), where H is the set of hypotheses. Due to P ( d ) being
 mixture distribution, this problem prohibits analytic calculation of
he mutual information. Ho we ver, we can quickly estimate it using

onte Carlo methods using the second form of equation ( A4 ). In
his case, we have 11 

 ( H; d ) = S( d ) −
Q −1 ∑ 

i= 0 

P ( H i ) S( d | H i ) . (A5) 

ince the conditional distributions are all Gaussian with known
ean and covariance, their individual entropies can be calculated

nalytically. The left-hand term involves integrating the logarithm
f a Gaussian mixture against that mixture. To estimate this term,
e generate D data points from the mixture distribution P ( d ) =
 

i P ( d | H i ) P ( H i ), and then compute the sample entropy: 

ˆ 
 ( d ) ≡ − 1 

D 

D ∑ 

j= 1 

log 2 

( Q −1 ∑ 

i= 0 

P ( d 

( j ) | H i ) P ( H i ) 

)
, (A6) 

here d 

( j ) is the j th sample of the mixture. The mutual information
etween a hypothetical data set and the hypothesis may be estimated
s 

ˆ 
 ( H; d ) = 

ˆ S ( d ) −
Q −1 ∑ 

i= 0 

1 

2 
log 2 ( det (2 πeC 

′ 
i )) P ( H i ) . (A7) 

PPENDI X  B:  EVALUATI NG  T H E  POSTERIO R  

O R  V E C TO R  VA LUED  MEASUREMENTS  

n Section 2.3 , we showed how to evaluate the posterior probability
or a situation in which multiple measurements were made of a
ingle quantity, such as several measurements of a single wave mode
n the 21 cm power spectrum. However, it is sometimes of interest
1 For brevity, we are dropping C 0 in this expression. 
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o combine information about several measured quantities, such as 
 xamining sev eral modes in the power spectrum simultaneously. This
ill be useful in HERA since systematics can be mildly delocalized 

cable reflections; Kern et al. 2020 ) or totally delocalized (RFI;
ilensky et al. ( 2020 ) in the power spectrum. The general result

f this consideration is that one takes the result from Section 2.3 and
 v aluates all elements of vector and matrix quantities blockwise. In
ore detail, let d j be a column vector of length M representing the

 th measurement of the M quantities (wave modes) in consideration. 
hen let 12 

 = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

d 0 

d 1 

. . . 
d N−1 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(B1) 

nd define 

≡

⎛ 

⎜ ⎜ ⎜ ⎝ 

μ0 

μ1 

. . . 
μM−1 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(B2) 

o hold the expected values of the separate quantities (power in each
ave mode) under the null hypothesis. We then pack ε in the same
ay as d , and each element of C 0 and C ε ,i is replaced by a matrix
f shape M × M . For the HERA example, each diagonal block
epresents the covariance between the different wave-modes within 
 given epoch, and the off-diagonal blocks describe correlations 
etween both wave modes and different epochs. 

Since the common mean is now vector valued, the final marginal- 
zation is o v er the vector, μ. This means that in the case of H i , the

arginalization o v er the biases must also report something o v er that
ector. The correct answer is to do the following replacement: 

0 1 → 1 ⊗ μ. (B3) 

he symbol, ⊗, represents the Kroneckcer product. This replacement 
akes μ and concatenates N copies of it columnwise. We then 
all the result of the bias marginalization f ( μ), which is now an
mproperly normalized multi v ariate Gaussian o v er μ. Proceeding as
n the previous section, one may see that this Gaussian has covariance
atrix, ˜ C i , equal to 

˜ 
 

−1 
i = 

N−1 ∑ 

m = 0 

N−1 ∑ 

n = 0 

( C 0 + C ε ,i ) 
−1 
mn , (B4) 

here each element of the sum is the mn ’th block of shape M ×
 in the matrix ( C 0 + C ε ,i ) −1 . This is really just the blockwise

eneralization of equation ( 10 ), where in that case the operation
ums o v er scalar elements of the inv erse co variance matrix, rather
han its blocks. In other words, if one takes equation ( 10 ) and writes
t in terms of elementwise addition rather than in matrix notation, one
chieves the identical expression as above but with the meaning of the 
ymbols slightly changed. We can package this using the Kronecker 
roduct to obtain 

˜ 
 

−1 
i = ( 1 ⊗ I M 

) T ( C 0 + C ε ,i ) 
−1 ( 1 ⊗ I M 

) , (B5) 
2 The exact packing order is inconsequential as long as it is consistent between 
uantites, but this is a natural packing order for the HERA problem since 
pochs are uncorrelated, meaning this packing produces a block-diagonal 
 0 . 

e  

c  

t  

s
 

t  
here I M 

is the M × M identity matrix. Similarly, equation ( 12 )
eneralizes to 

˜ = 

˜ C i ( 1 ⊗ I M 

) T ( C 0 + C ε ,i ) 
−1 ( d − με ,i ) . (B6) 

ollowing all this though, equations ( 15 ) and ( 16 ) generalize to 

′ 
i = με ,i + 1 ⊗ μ. (B7) 

 C 

′ 
i ) 

−1 = ( C 0 + C ε ,i ) 
−1 − ( C 0 + C ε ,i ) 

−1 ( 1 ⊗ I M 

) 

× (
C 

−1 
p + 

˜ C 

−1 
i 

)−1 
( 1 ⊗ I M 

) T ( C 0 + C ε ,i ) 
−1 , (B8) 

here we have implicitly generalized the prior o v er the common
ean to a multi v ariate Gaussian. 
For interpretations of μ where Gaussian priors are inappropriate, 

he final multi v ariate marginalization can present significantly more 
umerical difficulty if many quantities (modes) are considered 
imultaneously. 

PPENDI X  C :  PA RTI TI ONI NG  A  B I A S  

O N F I G U R AT I O N  I N TO  C O R R E L AT E D  A N D  

N C O R R E L AT E D  SUBSETS  

n most of this paper, we consider the hypothesis set in which any
ombination of subsets of data may be biased; each datum has one
ean value it may take when biased, the bias priors have diagonal

ovariances, and only data biased under the hypothesis have non- 
ero covariance entries. Due to these last two points, we refer to
his as the ‘diagonal hypothesis set’. In certain applications, it may
e beneficial to ‘partition’ each diagonal hypothesis into correlated 
nd uncorrelated subsets. As we show, this generates a huge number
f hypotheses, ho we ver it may be useful for investigating particular
ystematic effects that are expected to affect some data and not others. 

As a simple example, we consider the N = 2 case with equal bias
rior widths in all hypotheses. As pointed out in the main text, the
ull hypothesis corresponds to the bias covariance 

 ε , 0 = 

(
0 0 
0 0 

)
. (C1) 

ssuming equal width in the bias priors for the alternative hypothe-
es, we can write the rest of the diagonal entries down as 

 C ε ,i : 1 ≤ i ≤ 3 } = 

{(
1 0 
0 0 

)
, 

(
0 0 
0 1 

)
, 

(
1 0 
0 1 

)}
. (C2) 

his set of hypotheses provides no constraint on the relative equiv-
lence between the biases. We may consider a fifth hypothesis with
ovariance, C ε , 4 , defined by 

 ε , 4 ≡
(

1 1 
1 1 

)
. (C3) 

ince this matrix is degenerate, this hypothesis establishes an exact 
qui v alence relation between the two bias parameters of the form 

 1 = ε 0 + b, (C4) 

here b is a constant in terms of the bias prior means for those data.
 slope can be added using different prior widths for the data, and the

qui v alence can be softened to a correlation by choosing a correlation
oefficient less than 1, thus removing the de generac y. These are all
he hypotheses for the N = 2 case, since no other hypotheses in this
et may be further partitioned. 

Let us now take a brief foray into the N = 3 case before generalizing
o arbitrary N . When all three diagonal elements are ‘on’, we have a
MNRAS 518, 6041–6058 (2023) 
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 = 

⎧ ⎨ 

⎩ 

⎛ 

⎝ 

1 0 0 
0 1 0 
0 0 1 

⎞ 

⎠ , 

⎛ 

⎝ 

1 1 0 
1 1 0 
0 0 1 

⎞ 

⎠ , 

⎛ 

⎝ 

1 0 1 
0 1 0 
1 0 1 

⎞ 

⎠ , 

×
⎛ 

⎝ 

1 0 0 
0 1 1 
0 1 1 

⎞ 

⎠ , 

⎛ 

⎝ 

1 1 1 
1 1 1 
1 1 1 

⎞ 

⎠ 

⎫ ⎬ 

⎭ 

. (C5) 

These represent the five possible equi v alence relations between
hree numbers, where the diagonal matrix reflects that they are all
ndependent, the middle three matrices represent scenarios where two
ave an exact equi v alence, while the third is unrelated, and the final
atrix represents a scenario in which all are exactly related. Notice

o we ver that we must also partition all 
(3 

2 

)
matrices in which only

wo diagonal elements are ‘on’, which is described by the previous
xample (two matrices for each pair – one with off-diagonals ‘on’
nd one with them ‘off’ i.e. the diagonal case). Of course, we must
lso include the remaining 

(3 
1 

)
hypotheses where only one element

s ‘on’, and the null hypothesis in which none are on. 
In other words, the total number of hypotheses for the N th case,

enoted B N + 1 , is such that 

 N+ 1 = 

N ∑ 

k= 0 

(
N 

k 

)
B k (C6) 

 0 = 1 , (C7) 

here this last relation reflects that there is only one null hypothesis.
This turns out to define a set of well-studied numbers known as

ell numbers (Sloane & OEIS Foundation Inc. 2022 ). The N th bell
umber describes how many ways there are to partition a set of N
lements, or equally well, the total number of equi v alence relations
n a set of such a size. They also arise in the moments of the Poisson
istribution. For our N th case, we must sum over all sub-partitions
s well as the final case where all diagonal elements are on, meaning
e have B N + 1 hypotheses in consideration for a jackknife with N
ata points. The Bell numbers increase extremely rapidly. The first
ew are 1, 1, 2, 5, 15, 52, 203, 877, 4140, . . . . 

Due to this extremely rapid increase, we do not recommend an
 xhaustiv e search o v er all of the hypotheses. Rather, we recommend
urgically choosing a subset of them where equi v alence relations
re e xpected. F or instance, if two data are expected to be affected
y a similar systematic that is not present in other data within
he jackknife, then one might include the partition in which this
qui v alence relation between only these two is posed (e.g. different
xperimental methods of constraining the Hubble parameter). 
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