Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Natural Sciences
    • Physics and Astronomy
    • Research Articles (Physics)
    • View Item
    •   DSpace Home
    • Faculty of Natural Sciences
    • Physics and Astronomy
    • Research Articles (Physics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Powder characteristics blending and microstructural analysis of a hot-pack rolled vacuum arc-melted gamma-tial-based sheet

    Thumbnail
    View/Open
    ellard_powder characteristics blending_2022.pdf (1.056Mb)
    Date
    2022
    Author
    Ellard, John
    Mathabathe, Ntsoaki
    Bolokang, Sylvester
    Metadata
    Show full item record
    Abstract
    In the quest for cost-effective fabrication processes capable of producing sound γ-TiAl products, the microstructure and mechanical properties of a modified second-generation hot-rolled γ-TiAl-based alloy with nominal composition Ti-48Al-2Nb-0.7Cr-0.3Si were investigated in this work. The alloy was fabricated using a processing route that involved uniaxial cold-pressing of powders and vacuum arc re-melting. Prior to the cold pressing, the elemental powder characteristics, such as particle sizes and morphologies, were blended to minimise porosity in the compact that might be inherited by the final ingot. A hot-pack rolling process was carried out directly from the melted button-ingot using a conventional two-high rolling mill to produce a 4 mm-thick sheet. The relative density results of both as-compacted and as-melted alloy parts showed a significant reduction of porosity in the alloy. In addition, both the optical and the scanning electron microscopy micrographs of the rolled sheet revealed a typical 'duplex' microstructure with a mean grain size of about 9 urn. Moreover, the results from a room-temperature indentation plastometry test of the hot-rolled sheet indicated good mechanical properties with recorded yield strength of about 600 MPa, an ultimate tensile strength of about 850 MPa, and a true plastic strain of about 3%.
    URI
    http://dx.doi.org/10.7166/33-3-2809
    http://hdl.handle.net/10566/9074
    Collections
    • Research Articles (Physics)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV