dc.contributor.author | Witbooi, P.J. | |
dc.date.accessioned | 2016-08-12T10:40:10Z | |
dc.date.available | 2016-08-12T10:40:10Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Witbooi, P.J. (2013). Stability of an SEIR epidemic model with independent stochastic perturbations. Physica A: Statistical Mechanics and its Applications, 392(20): 4928-4936 | en_US |
dc.identifier.issn | 0378-4371 | |
dc.identifier.uri | http://hdl.handle.net/10566/2380 | |
dc.description.abstract | For an epidemic model of the type mentioned, we prove a theorem on almost sure exponential
stability of the disease-free equilibrium. For small values of the diffusion parameter,
?, we describe the stability of the disease free equilibrium point in terms of an appropriate
analogue, R? , of the basic reproduction number R0 of the deterministic special case.
Whenever ? > 0 then R? < R0. For small values of ?, the stability theorem guarantees
almost sure exponential stability whenever R? < 1. We also discuss the effect of increasing
?. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | |
dc.rights.uri | http://www.sherpa.ac.uk/romeo/issn/0378-4371/ | |
dc.source.uri | http://dx.doi.org/10.1016/j.physa.2013.06.025 | |
dc.subject | SEIR model | en_US |
dc.subject | Basic reproduction number | en_US |
dc.subject | Stochastic differential equation | en_US |
dc.title | Stability of an SEIR epidemic model with independent stochastic perturbations | en_US |
dc.type | Article | en_US |
dc.privacy.showsubmitter | FALSE | |
dc.status.ispeerreviewed | TRUE | |
dc.description.accreditation | Scopus | en_US |