Show simple item record

dc.contributor.authorWitbooi, P.J.
dc.date.accessioned2016-08-12T10:40:10Z
dc.date.available2016-08-12T10:40:10Z
dc.date.issued2013
dc.identifier.citationWitbooi, P.J. (2013). Stability of an SEIR epidemic model with independent stochastic perturbations. Physica A: Statistical Mechanics and its Applications, 392(20): 4928-4936en_US
dc.identifier.issn0378-4371
dc.identifier.urihttp://hdl.handle.net/10566/2380
dc.description.abstractFor an epidemic model of the type mentioned, we prove a theorem on almost sure exponential stability of the disease-free equilibrium. For small values of the diffusion parameter, ?, we describe the stability of the disease free equilibrium point in terms of an appropriate analogue, R? , of the basic reproduction number R0 of the deterministic special case. Whenever ? > 0 then R? < R0. For small values of ?, the stability theorem guarantees almost sure exponential stability whenever R? < 1. We also discuss the effect of increasing ?.en_US
dc.language.isoenen_US
dc.publisherElsevier
dc.rights.urihttp://www.sherpa.ac.uk/romeo/issn/0378-4371/
dc.source.urihttp://dx.doi.org/10.1016/j.physa.2013.06.025
dc.subjectSEIR modelen_US
dc.subjectBasic reproduction numberen_US
dc.subjectStochastic differential equationen_US
dc.titleStability of an SEIR epidemic model with independent stochastic perturbationsen_US
dc.typeArticleen_US
dc.privacy.showsubmitterFALSE
dc.status.ispeerreviewedTRUE
dc.description.accreditationScopusen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record