Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Natural Sciences
    • Physics and Astronomy
    • Research Articles (Physics)
    • View Item
    •   DSpace Home
    • Faculty of Natural Sciences
    • Physics and Astronomy
    • Research Articles (Physics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The preferentially magnified active nucleus in IRAS F10214+4724 - III. VLBI observations of the radio core

    Thumbnail
    View/Open
    Deane_The preferentially magnified_ 2013.pdf (1.816Mb)
    Date
    2013
    Author
    Deane, Roger P.
    Rawlings, S.
    Jarvis, Matt
    Garrett, M. A.
    Heywood, Ian
    Klöckner, H. R.
    Marshall, P. J.
    McKean, J. P.
    Metadata
    Show full item record
    Abstract
    We report 1.7GHz very long baseline interferometry (VLBI) observations of IRAS F10214+4724, a lensed z = 2.3 obscured quasar with prodigious star formation. We detect what we argue to be the obscured active nucleus with an effective angular resolution of <50pc at z = 2.3. The S1.7 =210µJy (9σ) detection of this unresolved source is located within the Hubble Space Telescope rest-frame ultraviolet/optical arc, however, 100 mas northwards of the arc centre of curvature. This leads to a source-plane inversion that places the European VLBI Network detection to within milliarcseconds of the modelled cusp caustic, resulting in a very large magnification (μ ∼70), over an order of magnitude larger than the CO (1→0) derived magnification of a spatially resolved Jansky Very Large Array (JVLA) map, using the same lens model. We estimate the quasar bolometric luminosity from a number of independent techniques and with our X-ray modelling find evidence that the AGN may be close to Compton thick, with an intrinsic bolometric luminosity of log10( Lbol, QSO /L ) = 11.34 ± 0.27dex. We make the first black hole mass estimate of IRAS F10214+4724 and find log10(MBH/M ) = 8.36 ± 0.56 which suggests a low black hole accretion rate (λ = ˙M/ ˙ MEdd ∼3±7 2 percent). We find evidence for an MBH/Mspheroid ratio that is one to two orders of magnitude larger than that of submillimetre galaxies (SMGs) at z ∼ 2. At face value, this suggests that IRAS F10214+4724 has undergone a different evolutionary path compared to SMGs at the same epoch. A primary result of this work is the demonstration that emission regions of different sizes and positions can undergo significantly different magnification boosts (>1dex) and therefore distort our view of high-redshift, gravitationally lensed galaxies.
    URI
    http://hdl.handle.net/10566/3079
    Collections
    • Research Articles (Physics)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV