Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Natural Sciences
    • Earth Sciences
    • Research Articles (Earth Sciences)
    • View Item
    •   DSpace Home
    • Faculty of Natural Sciences
    • Earth Sciences
    • Research Articles (Earth Sciences)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transformation between phreatic water and soil water during freeze–thaw periods

    Thumbnail
    View/Open
    Chen_Transormation-betwen_2018.pdf (6.822Mb)
    Date
    2018
    Author
    Chen, Junfeng
    Gao, Xuguang
    Zheng, Xiuqing
    Miao, Chunyan
    Liu, Ping
    Du, Qi
    Xu, Yongxin
    Metadata
    Show full item record
    Abstract
    During freeze–thaw periods, the exchange between shallow groundwater and soil water is unusually strong and bidirectional, which causes soil salinization and affects the accuracy of water resources assessment. The objectives of this study were to explore the laws of transformation between phreatic water and soil water through nine different groundwater table depths (GTDs) and three kinds of lithologies during three successive freeze–thaw periods using field lysimeters. The results showed that phreatic evaporation increased with smaller average soil particle sizes. The differences between phreatic evaporation and recharge to groundwater (DPR) and GTDs were well fitted by the semi-logarithmic model, and the regression coefficients A and B of the model were well fitted by the linear relationship with the average soil particle size. With the increase of soil particle size, the change of DPR decreased with the change rate of soil particle size. The extent of transformation between phreatic water and soil water decreased with the increase of soil particle size. During the whole freeze–thaw period, the negative value of DPR increased with an decrease in GTD. The groundwater depths of zero DPR (D-zero) of sandy loam, fine sand and sandy soil during the freeze–thaw periods were 2.79 m, 2.21 m and 2.12 m, respectively. This research is significant for the prevention of soil salinization disasters and the accurate assessment of water resources.
    URI
    http://dx.doi.org/10.3390/w10040376
    http://hdl.handle.net/10566/3595
    Collections
    • Research Articles (Earth Sciences)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV