Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Natural Sciences
    • Physics and Astronomy
    • Research Articles (Physics)
    • View Item
    •   DSpace Home
    • Faculty of Natural Sciences
    • Physics and Astronomy
    • Research Articles (Physics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Statistical recovery of the BAO scale from multipoles of the beam-convolved 21 cm correlation function

    Thumbnail
    View/Open
    Statistical-recovery-of-the-BAO-scale-from-multipoles-of-the-beamconvolved-21-cm-correlation-functionMonthly-Notices-of-the-Royal-Astronomical-Society.pdf (2.975Mb)
    Date
    2021
    Author
    Kennedy, F.
    Bull, P.
    Metadata
    Show full item record
    Abstract
    Despite being designed as an interferometer, theMeerKAT radio array (a Square Kilometre Array pathfinder) can also be used in autocorrelation (‘single-dish’) mode, where each dish scans the sky independently. Operating in this mode allows extremely high survey speeds to be achieved, albeit at significantly lower angular resolution. We investigate the recovery of the baryon acoustic oscillation (BAO) scale from multipoles of the redshift-space correlation function as measured by a low angular resolution 21 cm intensity mapping survey of this kind. Our approach is to construct an analytic model of the multipoles of the correlation function and their covariance matrix that includes foreground contamination and beam resolution effects, which we then use to generate an ensemble of mock data vectors from which we attempt to recover the BAO scale. In line with previous studies, we find that recovery of the transverse BAO scale is hampered by the strong smoothing effect of the instrumental beam with increasing redshift, while the radial scale is much more robust. The multipole formalism naturally incorporates transverse information when it is available however, and so there is no need to perform a radial-only analysis. In particular, the quadrupole of the correlation function preserves a distinctive BAO ‘bump’ feature even for large smoothing scales. We also investigate the robustness of BAO scale recovery to beam model accuracy, severity of the foreground removal cuts, and accuracy of the covariance matrix model, finding in all cases that the radial BAO scale can be recovered in an accurate, unbiased manner.
    URI
    10.1093/mnras/stab1814
    http://hdl.handle.net/10566/6749
    Collections
    • Research Articles (Physics)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV