Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Natural Sciences
    • Chemistry
    • Environmental & Nano Sciences Group
    • Research Articles (ENS)
    • View Item
    •   DSpace Home
    • Faculty of Natural Sciences
    • Chemistry
    • Environmental & Nano Sciences Group
    • Research Articles (ENS)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rare earths’ recovery from phosphogypsum: An overview on direct and indirect leaching techniques

    Thumbnail
    View/Open
    mukaba_et_al_rare_earth_elements_recovery_2021.pdf (5.955Mb)
    Date
    2021
    Author
    Mukaba, J.-L.
    Eze, C.P.
    Pereao, O.
    Petrik, Leslie
    Metadata
    Show full item record
    Abstract
    The need for rare earth elements (REEs) in high-tech electrical and electronic-based materials is vital. In the global economy, deposits of natural REEs are limited except for countries such as China, which has prompted current attempts to seek alternative resources of REEs. This increased the dependence on major secondary rare earth-bearing sources such as scrap alloy, battery waste, spent catalysts, fly ash, spent magnets, waste light-emitting diodes (LEDs), and phosphogypsum (PG) for a substantial recovery of REEs for use. Recycling REEs from these alternative waste sources through hydrometallurgical processes is becoming a sustainable and viable approach due to the low energy consumption, low waste generation, few emissions, environmental friendliness, and economic feasibility. Industrial wastes such as the PG generated from the production of phosphoric acid are a potential secondary resource of REEs that contains a total REE concentration of over 2000 mg/kg depending upon the phosphate ore from which it is generated. Due to the trace concentration of REEs in the PG (normally < 0.1% wt.) and their tiny and complex occurrence as mineral phases the recovery process of REE from PG would be highly challenging in both technology and economy. Various physicochemical pre-treatments approaches have been used up to date to up-concentrate REEs from PG prior to their extraction. Methods such as carbonation, roasting, microwave heating, grinding, or recrystallization have been widely used for this purpose. This present paper reviews recent literature on various techniques that are currently employed to up-concentrate REs from PG to provide preliminary insight into further critical raw materials recovery. In addition, the advantages and disadvantages of the different strategies are discussed as avenues for the realization of REE recovery from PG at a larger scale. In all the different approaches, recrystallization of PG appears to show promising advantages due to both high REE recovery as well as the pure PG phase that can be obtained. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
    URI
    10.3390/min11101051
    http://hdl.handle.net/10566/6882
    Collections
    • Research Articles (ENS)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV