Show simple item record

dc.contributor.authorHuber, Matthew D.
dc.contributor.authorKovaleva, Elizaveta
dc.contributor.authorClark, Martin D.
dc.contributor.authorRiller, Ulrich
dc.contributor.authorFourie, Francois D.
dc.date.accessioned2022-02-24T07:46:36Z
dc.date.available2022-02-24T07:46:36Z
dc.date.issued2021-11-24
dc.identifier.urihttp://doi.org/10.1016/j.icarus.2021.114812
dc.identifier.urihttp://hdl.handle.net/10566/7292
dc.description.abstractThe timescale of the modification stage of basin-sized impact structures is not well understood. Owing to ca. 10 km of erosion since its formation, the Vredefort impact structure, South Africa, is an ideal testing ground for deciphering post-impact modification. Here, we present geophysical and geochemical evidence from the Vre defort Granophyre Dikes, which were derived from the - now eroded - Vredefort impact melt sheet. The dikes have been studied mostly in terms of their composition, while the timing and duration of their emplacement remain controversial. We examined the modern depth extent of five dikes, with three from the inner crystalline core of the central uplift, and two from the boundary between the core and the supracrustal collar of the central uplift, using two-dimensional electrical resistivity tomography. We found that the core dikes terminate near the present erosion surface (i.e., <5 m depth). In contrast, the dikes at the core-collar boundary extend to a depth ≥ 9 m. These observations suggest that the core dikes are exposed near their lowermost terminus. In addition, we obtained bulk geochemical composition of the dikes, finding that the andesitic composition phase is present in the core-collar dikes that is not found in the core dikes. The presence of this phase indicates the episodic emplacement of impact melt into subvertical crater floor fractures. We conclude that the dike formation was protracted and occurred over a time span of at least 104 years. The sequential formation of the Vredefort Granophyre Dikes points to horizontal extension of crust below the impact melt sheet above a kinematic velocity discontinuity, a crustal instability resulting from the dynamic collapse oen_US
dc.description.sponsorshipNational Research Foundation Deutsche Forschungsgemeinschaft Universiteit van die Vrystaaten_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc.en_US
dc.subjectVredefort domeen_US
dc.subjectCrustal relaxationen_US
dc.subjectDynamic collapseen_US
dc.subjectImpact melt rock dikesen_US
dc.subjectMelt differentiationen_US
dc.subjectElectrical resistivityen_US
dc.subjectHorizontal extensionen_US
dc.titleEvidence from the Vredefort Granophyre Dikes points to crustal relaxation following basin-size impact crateringen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record