Show simple item record

dc.contributor.authorStorer, Dara
dc.contributor.authorDillon, Joshua S.
dc.contributor.authorKittiwisit, Piyanat
dc.date.accessioned2022-02-24T08:25:43Z
dc.date.available2022-02-24T08:25:43Z
dc.date.issued2022
dc.identifier.citationStorer, D., Dillon, J.S., Jacobs, D.C., Morales, M.F., Hazelton, B.J., Ewall‐Wice, A., Abdurashidova, Z., Aguirre, J.E., Alexander, P., Ali, Z.S. and Balfour, Y., 2022. Automated Detection of Antenna Malfunctions in Large‐N Interferometers: A Case Study With the Hydrogen Epoch of Reionization Array. Radio Science, 57(1), p.e2021RS007376.
dc.identifier.urihttps://doi. org/10.1029/2021RS007376
dc.identifier.urihttp://hdl.handle.net/10566/7298
dc.description.abstractWe present a framework for identifying and flagging malfunctioning antennas in large radio interferometers. We outline two distinct categories of metrics designed to detect outliers along known failure modes of large arrays: cross-correlation metrics, based on all antenna pairs, and auto-correlation metrics, based solely on individual antennas. We define and motivate the statistical framework for all metrics used, and present tailored visualizations that aid us in clearly identifying new and existing systematics. We implement these techniques using data from 105 antennas in the Hydrogen Epoch of Reionization Array (HERA) as a case study. Finally, we provide a detailed algorithm for implementing these metrics as flagging tools on real data sets.en_US
dc.language.isoenen_US
dc.subjectAntenna Malfunctionsen_US
dc.subjectLarge-N Interferometersen_US
dc.subjectHydrogen epochen_US
dc.subjectReionization arrayen_US
dc.titleAutomated detection of antenna malfunctions in large-n interferometers: A case study with the hydrogen epoch of reionization arrayen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record