Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Natural Sciences
    • Chemistry
    • Environmental & Nano Sciences Group
    • Research Articles (ENS)
    • View Item
    •   DSpace Home
    • Faculty of Natural Sciences
    • Chemistry
    • Environmental & Nano Sciences Group
    • Research Articles (ENS)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fusion-assisted hydrothermal synthesis and post-synthesis modification of mesoporous hydroxy sodalite zeolite prepared from waste coal fly ash for biodiesel production

    Thumbnail
    View/Open
    shabani_fusion-assisted hydrothermal synthesis_2022.pdf (2.585Mb)
    Date
    2022
    Author
    Shabani, Juvet Malonda
    Ameh, Alechine E.
    Petrik, Leslie
    Metadata
    Show full item record
    Abstract
    Increases in biodiesel prices remains a challenge, mainly due to the high cost of conventional oil feedstocks used during biodiesel production and the challenges associated with using homogeneous catalysts in the process. This study investigated the conversion of waste-derived black soldier fly (BSF) maggot oil feedstock over hydroxy sodalite (HS) zeolite synthesized from waste coal fly ash (CFA) in biodiesel production. The zeolite product prepared after fusion of CFA followed by hydrothermal synthesis (F-HS) resulted in a highly crystalline, mesoporous F-HS zeolite with a considerable surface area of 45 m2/g. The impact of post-synthesis modification of the parent HS catalyst (F-HS) by ion exchange with an alkali source (KOH) on its performance in biodiesel production was investigated. The parent F-HS zeolite catalyst resulted in a high biodiesel yield of 84.10%, with a good quality of 65% fatty acid methyl ester (FAME) content and fuel characteristics compliant with standard biodiesel specifications. After ion exchange, the modified HS zeolite catalyst (K/F-HS) decreased in crystallinity, mesoporosity and total surface area.
    URI
    https://doi.org/10.3390/catal12121652
    http://hdl.handle.net/10566/8266
    Collections
    • Research Articles (ENS)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV