Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Natural Sciences
    • Biodiversity & Conservation Biology
    • Research Articles (Bioversity and Conservation Biology)
    • View Item
    •   DSpace Home
    • Faculty of Natural Sciences
    • Biodiversity & Conservation Biology
    • Research Articles (Bioversity and Conservation Biology)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In silico analysis of a putative dehalogenase from the genome of halophilic bacterium Halomonas smyrnensis AAD6T

    Thumbnail
    View/Open
    akinyende,k._Insilico_analysis_nsc_2023.pdf (4.457Mb)
    Date
    2022
    Author
    Oyewusi, Habeebat Adekilekun
    Akinyende, Kolajo Adedamola
    Wahab, Roswanira Abdul
    Metadata
    Show full item record
    Abstract
    Microbial-assisted removal of natural or synthetic pollutants is the prevailing green, low-cost technology to treat polluted environments. However, the challenge with enzyme-assisted bioremediation is the laborious nature of dehalogenase-producing microorganisms’ bioprospecting. This bottleneck could be circumvented by in-silico analysis of certain microorganisms’ whole-genome sequences to predict their protein functions and enzyme versatility for improved biotechnological applications. Herein, this study performed structural analysis on a dehalogenase (DehHsAAD6) from the genome of Halomonas smyrnensis AAD6 by molecular docking and molecular dynamic (MD) simulations. Other bioinformatics tools were also employed to identify substrate preference (haloacids and haloacetates) of the DehHsAAD6. The DehHsAAD6 preferentially degraded haloacids and haloacetates ( 3.2–4.8 kcal/ mol) and which formed three hydrogen bonds with Tyr12, Lys46, and Asp182. MD simulations data revealed the higher stability of DehHsAAD6-haloacid- (RMSD 0.22–0.3 nm) and DehHsAAD6-haloacetates (RMSF 0.05–0.14nm) complexes, with the DehHsAAD6-L-2CP complex being the most stable. The detail of molecular docking calculations ranked complexes with the lowest binding free energies as: DehHsAAD6-L-2CP complex ( 4.8 kcal/mol) ¼ DehHsAAD6-MCA ( 4.8 kcal/mol) < DehHsAAD6-TCA ( 4.5 kcal/mol) < DehHsAAD6-2,3-DCP ( 4.1 kcal/mol) < DehHsAAD6-D-2CP ( 3.9 kcal/mol) < DehHsAAD6-2,2-DCP ( 3.5 kcal/mol) < DehHsAAD6-3CP ( 3.2 kcal/mol). In a nutshell, the study findings offer valuable perceptions into the elucidation of possible reaction mechanisms of dehalogenases for extended substrate specificity and higher catalytic activity.
    URI
    https//doi.org//: 10.1080/07391102.2021.2006085
    http://hdl.handle.net/10566/8305
    Collections
    • Research Articles (Bioversity and Conservation Biology)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV